Adherence to Pro-Vegetarian Food Patterns and Risk of Oesophagus, Stomach, and Pancreas Cancers: A Multi Case–Control Study (The PANESOES Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dietary Intake and Pro-Vegetarian Food Patterns
2.3. Other Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Sociedad Española de Oncología Médica (SEOM). Las Cifras del Cáncer en España 2022. 2022. Available online: https://seom.org/images/LAS_CIFRAS_DEL_CANCER_EN_ESPANA_2022.pdf (accessed on 27 October 2022). ISBN 978-84-09-38029-9.
- Chang, C.M.; Corey, C.G.; Rostron, B.L.; Apelberg, B.J. Systematic review of cigar smoking and all cause and smoking related mortality. BMC Public Health 2015, 15, 390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, J.E.; Shin, D.W.; Han, K.; Kim, D.; Jeong, S.M.; Koo, H.Y.; Yu, S.J.; Park, J.; Choi, K.S. Association of the Frequency and Quantity of Alcohol Consumption with Gastrointestinal Cancer. JAMA Netw. Open 2021, 4, e2120382, Erratum in JAMA Netw. Open 2021, 4, e2130551. [Google Scholar] [CrossRef] [PubMed]
- Boffetta, P.; Hecht, S.; Gray, N.; Gupta, P.; Straif, K. Smokeless tobacco and cancer. Lancet Oncol. 2008, 9, 667–675. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Y.; Cao, D.; Qiu, S.; Chen, B.; Li, J.; Bao, Y.; Wei, Q.; Han, P.; Liu, L. Vitamin C Intake and Cancers: An Umbrella Review. Front. Nutr. 2022, 8, 812394. [Google Scholar] [CrossRef]
- Bertuccio, P.; Alicandro, G.; Rota, M.; Pelucchi, C.; Bonzi, R.; Galeone, C.; Bravi, F.; Johnson, K.C.; Hu, J.; Palli, D.; et al. Citrus fruit intake and gastric cancer: The stomach cancer pooling (StoP) project consortium. Int. J. Cancer 2019, 144, 2936–2944. [Google Scholar] [CrossRef]
- Umesawa, M.; Iso, H.; Fujino, Y.; Kikuchi, S.; Tamakoshi, A.; JACC Study Group. Salty Food Preference and Intake and Risk of Gastric Cancer: The JACC Study. J. Epidemiol. 2016, 26, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Morais, S.; Costa, A.; Albuquerque, G.; Araújo, N.; Pelucchi, C.; Rabkin, C.S.; Liao, L.M.; Sinha, R.; Zhang, Z.F.; Hu, J.; et al. Salt intake and gastric cancer: A pooled analysis within the Stomach cancer Pooling (StoP) Project. Cancer Causes Control 2022, 33, 779–791. [Google Scholar] [CrossRef]
- Loomis, D.; Guyton, K.Z.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; et al. Carcinogenicity of drinking coffee, mate, and very hot beverages. Lancet Oncol. 2016, 17, 877–878. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; et al. Food groups and risk of colorectal cancer. Int. J. Cancer 2018, 142, 1748–1758. [Google Scholar] [CrossRef]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Rosato, V.; Rota, M.; Costa, A.R.; Morais, S.; Pelucchi, C.; Johnson, K.C.; Hu, J.; Palli, D.; Ferraroni, M.; et al. Meat intake and risk of gastric cancer in the Stomach cancer Pooling (StoP) project. Int. J. Cancer 2020, 147, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Xue, K.S.; Tang, L.; Sun, G.; Wang, S.; Hu, X.; Wang, J.S. Mycotoxin exposure is associated with increased risk of esophageal squamous cell carcinoma in Huaian area, China. BMC Cancer 2019, 19, 1218. [Google Scholar] [CrossRef] [Green Version]
- Morze, J.; Danielewicz, A.; Przybyłowicz, K.; Zeng, H.; Hoffmann, G.; Schwingshackl, L. An updated systematic review and meta-analysis on adherence to mediterranean diet and risk of cancer. Eur. J. Nutr. 2021, 60, 1561–1586. [Google Scholar] [CrossRef] [PubMed]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Sánchez-Tainta, A.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; Lamuela-Raventós, R.M.; Schröder, H.; et al. PREDIMED Group. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am. J. Clin. Nutr. 2014, 100 (Suppl. S1), 320S–328S, Erratum in Am. J. Clin. Nutr. 2014, 100, 1605. [Google Scholar] [CrossRef] [Green Version]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, H.; Giovannucci, E.L. Plant-based diet quality and the risk of total and disease-specific mortality: A population-based prospective study. Clin. Nutr. 2021, 40, 5718–5725. [Google Scholar] [CrossRef]
- Li, H.; Zeng, X.; Wang, Y.; Zhang, Z.; Zhu, Y.; Li, X.; Hu, A.; Zhao, Q.; Yang, W. A prospective study of healthful and unhealthful plant-based diet and risk of overall and cause-specific mortality. Eur. J. Nutr. 2022, 61, 387–398. [Google Scholar] [CrossRef]
- Romanos-Nanclares, A.; Willett, W.C.; Rosner, B.A.; Collins, L.C.; Hu, F.B.; Toledo, E.; Eliassen, A.H. Healthful and Unhealthful Plant-Based Diets and Risk of Breast Cancer in U.S. Women: Results from the Nurses’ Health Studies. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1921–1931. [Google Scholar] [CrossRef]
- Loeb, S.; Fu, B.C.; Bauer, S.R.; Pernar, C.H.; Chan, J.M.; Van Blarigan, E.L.; Giovannucci, E.L.; Kenfield, S.A.; Mucci, L.A. Association of plant-based diet index with prostate cancer risk. Am. J. Clin. Nutr. 2022, 115, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Martínez-González, M.Á.; Martin-Gorgojo, A.; Sánchez-Bayona, R.; De Amicis, R.; Bertoli, S.; Battezzati, A.; Bes-Rastrollo, M. Mediterranean diet, Dietary Approaches to Stop Hypertension, and Pro-vegetarian dietary pattern in relation to the risk of basal cell carcinoma: A nested case-control study within the Seguimiento Universidad de Navarra (SUN) cohort. Am. J. Clin. Nutr. 2020, 112, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Barber, X.; Bolumar, F.; Porta, M.; Santibáñez, M.; de la Hera, M.G.; Moreno-Osset, E.; PANESOES Study Group. Esophageal cancer risk by type of alcohol drinking and smoking: A case-control study in Spain. BMC Cancer 2008, 8, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santibañez, M.; Vioque, J.; Alguacil, J.; Barber, X.; García de la Hera, M.; Kauppinen, T.; PANESOES Study Group. Occupational exposures and risk of oesophageal cancer by histological type: A case-control study in eastern Spain. Occup. Environ. Med. 2008, 65, 774–781. [Google Scholar] [CrossRef]
- Santibañez, M.; Vioque, J.; Alguacil, J.; de la Hera, M.G.; Moreno-Osset, E.; Carrato, A.; Porta, M.; Kauppinen, T. Occupational exposures and risk of pancreatic cancer. Eur. J. Epidemiol. 2010, 25, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Santibañez, M.; Alguacil, J.; de la Hera, M.G.; Navarrete-Muñoz, E.M.; Llorca, J.; Aragonés, N.; Kauppinen, T.; Vioque, J.; PANESOES Study Group. Occupational exposures and risk of stomach cancer by histological type. Occup. Environ. Med. 2012, 69, 268–275. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Vioque, J. Validez de la evaluación de la ingesta dietética. In Nutrición y Salud Pública Métodos, Bases Científicas y Aplicaciones, 2nd ed.; Serra Majem, L., Aranceta Bartrina, J., Eds.; Masson-Elsevier: Barcelona, Spain, 2006; pp. 199–210. [Google Scholar]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef] [Green Version]
- Baden, M.Y.; Liu, G.; Satija, A.; Li, Y.; Sun, Q.; Fung, T.T.; Rimm, E.B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Changes in Plant-Based Diet Quality and Total and Cause-Specific Mortality. Circulation 2019, 140, 979–991. [Google Scholar] [CrossRef]
- Kane-Diallo, A.; Srour, B.; Sellem, L.; Deschasaux, M.; Latino-Martel, P.; Hercberg, S.; Galan, P.; Fassier, P.; Guéraud, F.; Pierre, F.H.; et al. Association between a pro plant-based dietary score and cancer risk in the prospective NutriNet-santé cohort. Int. J. Cancer 2018, 143, 2168–2176. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhan, J.; Wang, Y.; Wang, D. The Relationship between Plant-Based Diet and Risk of Digestive System Cancers: A Meta-Analysis Based on 3,059,009 Subjects. Front. Public Health 2022, 10, 892153. [Google Scholar] [CrossRef] [PubMed]
- Hullings, A.G.; Sinha, R.; Liao, L.M.; Freedman, N.D.; Graubard, B.I.; Loftfield, E. Whole grain and dietary fiber intake and risk of colorectal cancer in the NIH-AARP Diet and Health Study cohort. Am. J. Clin. Nutr. 2020, 112, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, Z.; Xu, J.; Xu, G.; Liu, X. Dietary fiber intake reduces risk for Barrett’s esophagus and esophageal cancer. Crit. Rev. Food Sci. Nutr. 2017, 57, 2749–2757. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, R.; Goto, A.; Shimazu, T.; Yamaji, T.; Sawada, N.; Iwasaki, M.; Inoue, M.; Tsugane, S.; Japan Public Health Center-Based Prospective Study Group. Dietary fiber intake and risk of gastric cancer: The Japan Public Health Center-based prospective study. Int. J. Cancer 2021, 148, 2664–2673. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins. 2010. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Ingested-Nitrate-And-Nitrite-And-Cyanobacterial-Peptide-Toxins-2010 (accessed on 24 October 2022).
- Wang, C.H.; Qiao, C.; Wang, R.C.; Zhou, W.P. Dietary fiber intake and pancreatic cancer risk: A meta-analysis of epidemiologic studies. Sci. Rep. 2015, 5, 10834. [Google Scholar] [CrossRef] [Green Version]
- Nucci, D.; Santangelo, O.E.; Provenzano, S.; Fatigoni, C.; Nardi, M.; Ferrara, P.; Gianfredi, V. Dietary Fiber Intake and Risk of Pancreatic Cancer: Systematic Review and Meta-Analysis of Observational Studies. Int. J. Environ. Res. Public Health 2021, 18, 11556. [Google Scholar] [CrossRef]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef]
- Ponte, L.G.S.; Pavan, I.C.B.; Mancini, M.C.S.; da Silva, L.G.S.; Morelli, A.P.; Severino, M.B.; Bezerra, R.M.N.; Simabuco, F.M. The Hallmarks of Flavonoids in Cancer. Molecules 2021, 26, 2029. [Google Scholar] [CrossRef]
- Bobe, G.; Peterson, J.J.; Gridley, G.; Hyer, M.; Dwyer, J.T.; Brown, L.M. Flavonoid consumption and esophageal cancer among black and white men in the United States. Int. J. Cancer 2009, 125, 1147–1154. [Google Scholar] [CrossRef]
- Fagundes, M.d.A.; Silva, A.R.C.; Fernandes, G.A.; Curado, M.P. Dietary Polyphenol Intake and Gastric Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 5878. [Google Scholar] [CrossRef]
- Molina-Montes, E.; Sánchez, M.J.; Zamora-Ros, R.; Bueno-de-Mesquita, H.B.; Wark, P.A.; Obon-Santacana, M.; Kühn, T.; Katzke, V.; Travis, R.C.; Ye, W.; et al. Flavonoid and lignan intake and pancreatic cancer risk in the European prospective investigation into cancer and nutrition cohort. Int. J. Cancer 2016, 139, 1480–1492. [Google Scholar] [CrossRef] [PubMed]
- Romo Ventura, E.; Konigorski, S.; Rohrmann, S.; Schneider, H.; Stalla, G.K.; Pischon, T.; Linseisen, J.; Nimptsch, K. Association of dietary intake of milk and dairy products with blood concentrations of insulin-like growth factor 1 (IGF-1) in Bavarian adults. Eur. J. Nutr. 2020, 59, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, E.J.; LeRoith, D. The proliferating role of insulin and insulin-like growth factors in cancer. Trends Endocrinol. Metab. 2010, 21, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3, Erratum in Cell Metab. 2019, 30, 226; Erratum in Cell Metab. 2020, 32, 690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K.; International Agency for Research on Cancer Handbook Working Group. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michels, N.; Specht, I.O.; Heitmann, B.L.; Chajès, V.; Huybrechts, I. Dietary trans-fatty acid intake in relation to cancer risk: A systematic review and meta-analysis. Nutr. Rev. 2021, 79, 758–776. [Google Scholar] [CrossRef]
- Matta, M.; Huybrechts, I.; Biessy, C.; Casagrande, C.; Yammine, S.; Fournier, A.; Olsen, K.S.; Lukic, M.; Gram, I.T.; Ardanaz, E.; et al. Dietary intake of trans fatty acids and breast cancer risk in 9 European countries. BMC Med. 2021, 19, 81. [Google Scholar] [CrossRef]
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2012, 346, e7492. [Google Scholar] [CrossRef]
Food Groups | Included Food Items | gPVG 3 | hPVG | uPVG |
---|---|---|---|---|
Plant food groups 2 | ||||
1. Vegetables | Spinach, cabbage, cauliflower, broccoli, lettuce, endive, tomatoes, onion, carrot, pumpkin, green beans, eggplant, zucchini, cucumber, peppers, asparagus | Positive 1 | Positive | Reverse |
2. Fruits | Oranges, grapefruit, mandarin, banana, apple, pear, strawberries, cherries, peaches, apricots, fresh figs, watermelon, melon, grapes, canned fruit (peach, pear, pineapple) | Positive | Positive | Reverse |
3. Legumes | Lentils, chickpeas, beans, peas | Positive | Positive | Reverse |
4. Whole grains | Whole-grain bread | Positive | Positive | Reverse |
5. Refined grains | White bread, rolls, white rice, white pasta | Positive | Reverse | Positive |
7. Potatoes | Boiled and roasted potatoes | Positive | Positive | Reverse |
6. Fries and chips | French fries, potato chips | Positive | Reverse | Positive |
8. Nuts | Pine nuts, almonds, peanuts, hazelnuts, and other nuts | Positive | Positive | Reverse |
9. Olive oil | Olive oil | Positive | Positive | Reverse |
10. Tea and coffee | Caffeinated coffee, decaffeinated coffee, tea | Not scored | Positive | Reverse |
11. Fruit juices | Orange juice, other packaged fruit juices | Not scored | Reverse | Positive |
12. Sugar-sweetened beverages | Carbonated soft drinks: cola, orange, lemon | Not scored | Reverse | Positive |
13. Sweets and desserts | Maria cookies, chocolate cookies, croissants, donuts, muffins, cakes, pies, churros (fried dough), chocolate, bonbons, cocoa powder, sugar | Not scored | Reverse | Positive |
Animal food groups | ||||
14. Meat/meat products | Chicken with or without skin, beef, pork, lamb, game meat (rabbit, quail, duck), liver of beef, pork or chicken, viscera, cold cuts (ham, salami, mortadella) sausages and similar, foie gras, hamburger, bacon | Reverse | Reverse | Reverse |
15. Animal fats for cooking or as a spread | Butter, lard | Reverse | Reverse | Reverse |
16. Eggs | Eggs | Reverse | Reverse | Reverse |
17. Fish and other seafood | Fried fish, boiled or grilled fish (hake, sole, sardines, tuna), salted fish (cod, anchovies), canned fish (tuna, sardines, herring), clams, mussels, oysters, squid, octopus, shellfish (prawns, lobster and similar) | Reverse | Reverse | Reverse |
18. Dairy products | Whole milk, skim or low-fat milk, condensed milk, yoghurt, cottage cheese, curd, white or fresh cheese, creamy cheese or cheese in portions, cured or semi-cured cheese (Manchego), custard, flan, pudding, ice cream | Reverse | Reverse | Reverse |
Nº of Participants (%) | Controls 455 (36.9) | Cases 778 (63.1) | ||
---|---|---|---|---|
Oesophagus 199 (25.6) | Stomach 414 (53.2) | Pancreas 165 (21.2) | ||
Age (years) | 63.0 (10.7) 1 | 60.5 (9.8) | 64.8 (11.4) | 65.2 (11.6) |
Sex, n (%) | ||||
Male | 285 (62.6) | 184 (92.5) | 271 (65.5) | 100 (60.6) |
Female | 170 (37.4) | 15 (7.5) | 143 (34.5) | 65 (39.4) |
Province, n (%) | ||||
Valencia | 316 (69.5) | 154 (77.4) | 281 (67.9) | 105 (63.6) |
Alicante | 139 (30.5) | 45 (22.6) | 133 (32.1) | 60 (36.4) |
Educational level, n (%) | ||||
<Primary | 246 (54.1) | 112 (56.3) | 250 (60.3) | 90 (54.5) |
Primary | 172 (37.8) | 66 (33.2) | 129 (31.2) | 56 (33.9) |
>Primary | 37 (8.1) | 21 (10.6) | 35 (8.5) | 19 (11.5) |
Alcohol drinking, n (%) | ||||
Never | 183 (40.2) | 17 (8.5) | 146 (35.3) | 56 (33.9) |
1–24 g/day | 162 (35.6) | 36 (18.1) | 132 (31.9) | 58 (35.2) |
25–49 g/day | 50 (11.0) | 24 (12.1) | 64 (15.5) | 14 (8.5) |
50–99 g/day | 41 (9.0) | 53 (26.6) | 47 (11.4) | 25 (15.2) |
>99 g/day | 19 (4.2) | 69 (34.7) | 25 (6.0) | 12 (7.3) |
Energy intake (Kcal/day) | 1800.8 (620.5) | 2274.3 (821.2) | 1996.8 (662.5) | 1934.4 (741.6) |
Tobacco smoking, n (%) | ||||
Never | 218 (47.9) | 23 (11.6) | 174 (42.0) | 72 (43.3) |
Former | 117 (25.7) | 54 (27.1) | 92 (22.1) | 34 (20.7) |
≤24 c/day | 87 (19.1) | 58 (29.1) | 106 (25.7) | 37 (22.6) |
>24 c/day | 33 (7.3) | 64 (32.2) | 42 (10.2) | 22 (13.4) |
gPVG (points of score) | 36.8 (5.3) | 34.6 (5.6) | 35.7 (5.1) | 35.8 (5.4) |
hPVG (points of score) | 53.9 (7.1) | 55.3 (6.5) | 53.4 (6.6) | 54.2 (6.5) |
uPVG (points of score) | 53.6 (5.6) | 54.5 (6.4) | 54.4 (6.0) | 53.0 (6.3) |
gPVG Food Pattern Quintiles | |||||||
---|---|---|---|---|---|---|---|
Very Low: <32 | Low: 32–35 | Moderate: 36–37 | High: 38–41 | Very High: >41 | Per 1 Unit Increment in Adherence | p-Trend 3 | |
RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | |||
Oesophagus, n | 58 | 56 | 27 | 40 | 18 | 199 | |
Model 1 1 | Ref. | 0.69 (0.42, 1.12) | 0.55 (0.31, 1.00) | 0.41 (0.24, 0.69) | 0.31 (0.16, 0.60) | 0.93 (0.89, 0.96) | 0.001 |
Model 2 2 | Ref. | 0.72 (0.56, 0.93) | 0.60 (0.51, 0.71) | 0.47 (0.38, 0.59) | 0.37 (0.32, 0.42) | 0.94 (0.91, 0.97) | 0.01 |
Stomach, n | 86 | 115 | 67 | 98 | 48 | 414 | |
Model 1 1 | Ref. | 0.82 (0.55, 1.25) | 0.85 (0.53, 1.37) | 0.55 (0.36, 0.84) | 0.38 (0.23, 0.64) | 0.94 (0.92, 0.97) | 0.001 |
Model 2 2 | Ref. | 0.78 (0.63, 0.97) | 0.88 (0.69, 1.13) | 0.53 (0.42, 0.65) | 0.34 (0.27, 0.43) | 0.94 (0.92, 0.96) | 0.001 |
Pancreas, n | 41 | 42 | 19 | 37 | 26 | 165 | |
Model 1 1 | Ref. | 0.61 (0.36, 1.04) | 0.49 (0.26, 0.94) | 0.41 (0.24, 0.71) | 0.39 (0.21, 0.74) | 0.94 (0.91, 0.98) | 0.001 |
Model 2 2 | Ref. | 0.66 (0.51, 0.84) | 0.53 (0.45, 0.62) | 0.46 (0.35, 0.60) | 0.43 (0.35, 0.52) | 0.95 (0.92, 0.98) | 0.01 |
hPVG Food Pattern Quintiles | |||||||
---|---|---|---|---|---|---|---|
Very Low <48 | Low: 49–52 | Moderate: 53–56 | High: 57–60 | Very High: >60 | Per 1 Unit Increment in Adherence | p-Trend 3 | |
RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | |||
Oesophagus, n | 29 | 36 | 50 | 42 | 42 | 199 | |
Model 1 1 | Ref. | 1.55 (0.87, 2.76) | 2.57 (1.47, 4.51) | 1.97 (1.10, 3.52) | 2.18 (1.19, 4.03) | 1.04 (1.01, 1.07) | 0.01 |
Model 2 2 | Ref. | 1.09 (0.87, 1.37) | 1.26 (1.02, 1.56) | 0.87 (0.70, 1.08) | 0.72 (0.58, 0.90) | 0.98 (0.95, 1.00) | 0.10 |
Stomach, n | 92 | 89 | 102 | 73 | 58 | 414 | |
Model 1 1 | Ref. | 1.15 (0.77, 1.72) | 1.56 (1.03, 2.36) | 0.96 (0.62, 1.49) | 0.70 (0.44, 1.14) | 0.98 (0.96, 1.00) | 0.10 |
Model 2 2 | Ref. | 0.99 (0.79, 1.24) | 1.18 (0.97, 1.45) | 0.66 (0.54, 0.82) | 0.42 (0.34, 0.52) | 0.95 (0.94, 0.97) | 0.01 |
Pancreas, n | 32 | 35 | 37 | 32 | 29 | 165 | |
Model 1 1 | Ref. | 1.31 (0.75, 2.28) | 1.63 (0.92, 2.87) | 1.22 (0.67, 2.20) | 1.00 (0.53, 1.90) | 1.00 (0.97, 1.03) | 0.10 |
Model 2 2 | Ref. | 1.17 (0.91, 1.52) | 1.38 (1.10, 1.73) | 0.96 (0.77, 1.21) | 0.74 (0.59, 0.92) | 0.98 (0.96, 1.00) | 0.10 |
uPVG Food Pattern Quintiles | |||||||
---|---|---|---|---|---|---|---|
Very low <50 | Low: 50–52 | Moderate: 53–56 | High: 57–59 | Very High: >59 | Per 1 Unit Increment in Adherence | p-Trend 3 | |
RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | RRR (95% CI) | |||
Oesophagus, n | 42 | 33 | 39 | 40 | 45 | 199 | |
Model 1 1 | Ref. | 0.88 (0.51, 1.53) | 0.75 (0.45, 1.27) | 1.14 (0.66, 1.95) | 1.56 (0.91, 2.66) | 1.02 (0.99, 1.05) | 0.10 |
Model 2 2 | Ref. | 0.92 (0.74, 1.15) | 0.67 (0.54, 0.84) | 0.97 (0.73, 1.28) | 1.26 (1.00, 1.60) | 1.01 (0.99, 1.03) | 0.10 |
Stomach, n | 86 | 62 | 112 | 74 | 80 | 414 | |
Model 1 1 | Ref. | 0.92 (0.60, 1.42) | 1.25 (0.85, 1.84) | 1.29 (0.84, 1.98) | 1.53 (1.00, 2.36) | 1.02 (1.00, 1.05) | 0.05 |
Model 2 2 | Ref. | 0.99 (0.79, 1.24) | 1.37 (1.12, 1.68) | 1.42 (1.13, 1.78) | 1.76 (1.42, 2.18) | 1.03 (1.02, 1.05) | 0.01 |
Pancreas, n | 51 | 33 | 36 | 16 | 29 | 165 | |
Model 1 1 | Ref. | 0.84 (0.50, 1.41) | 0.69 (0.42, 1.15) | 0.48 (0.26, 0.91) | 0.94 (0.54, 1.64) | 0.98 (0.96, 1.01) | 0.10 |
Model 2 2 | Ref. | 0.86 (0.66, 1.11) | 0.66 (0.52, 0.84) | 0.48 (0.40, 0.59) | 0.91 (0.72, 1.14) | 0.98 (0.96, 1.00) | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oncina-Cánovas, A.; González-Palacios, S.; Notario-Barandiaran, L.; Torres-Collado, L.; Signes-Pastor, A.; de-Madaria, E.; Santibañez, M.; García-de la Hera, M.; Vioque, J. Adherence to Pro-Vegetarian Food Patterns and Risk of Oesophagus, Stomach, and Pancreas Cancers: A Multi Case–Control Study (The PANESOES Study). Nutrients 2022, 14, 5288. https://doi.org/10.3390/nu14245288
Oncina-Cánovas A, González-Palacios S, Notario-Barandiaran L, Torres-Collado L, Signes-Pastor A, de-Madaria E, Santibañez M, García-de la Hera M, Vioque J. Adherence to Pro-Vegetarian Food Patterns and Risk of Oesophagus, Stomach, and Pancreas Cancers: A Multi Case–Control Study (The PANESOES Study). Nutrients. 2022; 14(24):5288. https://doi.org/10.3390/nu14245288
Chicago/Turabian StyleOncina-Cánovas, Alejandro, Sandra González-Palacios, Leyre Notario-Barandiaran, Laura Torres-Collado, Antonio Signes-Pastor, Enrique de-Madaria, Miguel Santibañez, Manuela García-de la Hera, and Jesús Vioque. 2022. "Adherence to Pro-Vegetarian Food Patterns and Risk of Oesophagus, Stomach, and Pancreas Cancers: A Multi Case–Control Study (The PANESOES Study)" Nutrients 14, no. 24: 5288. https://doi.org/10.3390/nu14245288
APA StyleOncina-Cánovas, A., González-Palacios, S., Notario-Barandiaran, L., Torres-Collado, L., Signes-Pastor, A., de-Madaria, E., Santibañez, M., García-de la Hera, M., & Vioque, J. (2022). Adherence to Pro-Vegetarian Food Patterns and Risk of Oesophagus, Stomach, and Pancreas Cancers: A Multi Case–Control Study (The PANESOES Study). Nutrients, 14(24), 5288. https://doi.org/10.3390/nu14245288