The Dietary Intake of Polyphenols Is Associated with a Lower Risk of Severe Lumbar Spinal Stenosis: A Case-Control Analysis from the PREFACE Study
Abstract
:1. Introduction
2. Methods
2.1. Case Patients
2.2. Control Subjects
2.3. Assessment of Covariates
2.4. Dietary Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Strengths
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. PREFACE Study Investigators
References
- Genevay, S.; Atlas, S.J. Lumbar spinal stenosis. Best practice & research. Clin. Rheumatol. 2010, 24, 253–265. [Google Scholar] [CrossRef]
- Jensen, R.K.; Jensen, T.S.; Koes, B.; Hartvigsen, J. Prevalence of lumbar spinal stenosis in general and clinical populations: A systematic review and meta-analysis. Eur. Spine J. 2020, 29, 2143–2163. [Google Scholar] [CrossRef]
- Ravindra, V.M.; Senglaub, S.S.; Rattani, A.; Dewan, M.C.; Härtl, R.; Bisson, E.; Park, K.B.; Shrime, M.G. Degenerative lumbar spine disease: Estimating global incidence and worldwide volume. Global Spine J. 2018, 8, 784–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otani, K.; Kikuchi, S.; Yabuki, S.; Igarashi, T.; Nikaido, T.; Watanabe, K.; Konno, S. Lumbar spinal stenosis has a negative impact on quality of life compared with other comorbidities: An epidemiological cross-sectional study of 1862 community-dwelling individuals. Sci. World J. 2013, 23, 590652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, K.Y.; Zucherman, J.F.; Hartjen, C.A.; Mehalic, T.F.; Implicito, D.A.; Martin, M.J.; Johnson, D.R.; Skidmore, G.A., 2nd; Vessa, P.P.; Dwyer, J.W.; et al. Quality of life of lumbar stenosis-treated patients in whom the X STOP interspinous device was implanted. J. Neurosurg. Spine 2006, 5, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Pahl, M.A.; Brislin, B.; Boden, S.; Hilibrand, A.S.; Vaccaro, A.; Hanscom, B.; Albert, T.J. The impact of four common lumbar spine diagnoses upon overall health status. Spine J. 2006, 6, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Anderson, E.; Larry Durstine, J. Physical activity, exercise, and chronic diseases: A brief review. Sports Med. Health Sci. 2019, 10, 3–10. [Google Scholar] [CrossRef]
- Ruggiero, E.; Costanzo, S.; Di Castelnuovo, A.; Persichillo, M.; Esposito, S.; Magnacca, S.; Carpineta, E.; Cerletti, C.; Bonaccio, M.; Donati, M.B.; et al. Risk factors for atherothrombotic disease and lumbar spinal stenosis: Results from the PREFACE study. J. Spine. 2020, 9, 448. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Stefanadis, C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J. Am. Coll Cardiol. 2004, 44, 152–158. [Google Scholar] [CrossRef]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Pounis, G.; Cerletti, C.; Donati, M.B.; Iacoviello, L.; d Gaetano, G.; MOLI-SANI Study Investigators. Mediterranean diet, dietary polyphenols and low grade inflammation: Results from the MOLI-SANI study. Br. J. Clin. Pharmacol. 2017, 83, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichelmann, F.; Schwingshackl, L.; Fedirko, V.; Aleksandrova, K. Effect of plant-based diets on obesity-related inflammatory profiles: A systematic review and meta-analysis of intervention trials. Obes. Rev. 2016, 17, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, E.; Bonaccio, M.; Costanzo, S.; Esposito, S.; Di Castelnuovo, A.; Carpineta, E.; Cerletti, C.; Donati, M.B.; Paolini, S.; Esposito, V.; et al. PREFACE Investigators. Dietary factors and the risk of lumbar spinal stenosis: A case-control analysis from the PREFACE study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 90–97. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [Green Version]
- van Dam, R.M.; Naidoo, N.; Landberg, R. Dietary flavonoids and the development of type 2-diabetes and cardiovascular diseases: Review of recent findings. Curr. Opin. Lipidol. 2013, 24, 25–33. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2017, 61, 1600930. [Google Scholar] [CrossRef]
- Mendonça, R.D.; Carvalho, N.C.; Martin-Moreno, J.M.; Pimenta, A.M.; Lopes, A.C.S.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The SUN cohort study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 69–78. [Google Scholar] [CrossRef]
- Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Schizas, C.; Theumann, N.; Burn, A.; Tansey, R.; Wardlaw, D.; Smith, F.W.; Kulik, G. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine 2010, 35, 1919–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacoviello, L.; Bonanni, A.; Costanzo, S.; De Curtis, A.; Di Castelnuovo, A.; Olivieri, M.; Zito, F.; Donati, M.B.; de Gaetano, G. The MOLI-SANI Project, a randomized, prospective cohort study in the Molise region in Italy; design, rationale and objectives. Ital. J. Public Health 2007, 4, 110–118. [Google Scholar]
- Mannocci, A.; Masala, D.; Mei, D.; Tribuzio, A.M.; Villari, P.; LA Torre, G. International Physical Activity Questionnaire for Adolescents (IPAQ A): Reliability of an Italian version. Minerva Pediatr. 2021, 73, 383–390. [Google Scholar] [CrossRef]
- Pisani, P.; Faggiano, F.; Krogh, V.; Palli, D.; Vineis, P.; Berrino, F. Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S152–S160. [Google Scholar] [CrossRef] [Green Version]
- Pala, V.; Sieri, S.; Palli, D.; Salvini, S.; Berrino, F.; Bellegotti, M.; Frasca, G.; Tumino, R.; Sacerdote, C.; Fiorini, L.; et al. Diet in the Italian EPIC cohorts: Presentation of data and methodological issues. Tumori 2003, 89, 594–607. [Google Scholar] [CrossRef]
- Salvini, S.; Parpinel, M.; Gnagnarella, P.; Maissoneuve, P.; Turrini, A. Banca Dati Composizione Degli Alimenti per Studi Epidemiologici in Italia; European Institute of Oncology: Milano, Italy, 1998. [Google Scholar]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Pellegrini, N.; Re, R.; Yang, M.; Rice-Evans, C.A. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying the 2.;2-azonobis(3-ethylenebenzothiazoline-6-sulfonic) acid radical cation decolorization assay. Methods Enzymol. 1999, 299, 379–389. [Google Scholar] [CrossRef]
- Ghiselli, A.; Serafini, M.; Maiani, G.; Azzini, E.; Ferro-Luzzi, A. A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic. Biol. Med. 1995, 18, 29–36. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing antioxidant power assay.; direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; Hernández-Díaz, S.; Werler, M.M.; Mitchell, A.A. Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology. Am. J. Epidemiol. 2002, 15, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccio, M.; Bonanni, A.E.; Di Castelnuovo, A.; De Lucia, F.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Moli-sani Project Investigators. Low income is associated with poor adherence to a Mediterranean diet and a higher prevalence of obesity: Cross-sectional results from the Moli-sani study. BMJ Open 2012, 19, e001685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasouli, J.J.; Neifert, S.N.; Gal, J.S.; Snyder, D.J.; Deutsch, B.C.; Steinberger, J.; Caridi, J.M. Disparities in Outcomes by Insurance Payer Groups for Patients Undergoing Anterior Cervical Discectomy and Fusion. Spine 2020, 45, 770–775. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Mawditt, C.; Sacker, A.; Britton, A.; Kelly, Y.; Cable, N. The clustering of health-related behaviours in a British population sample: Testing for cohort differences. Prev. Med. 2016, 88, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Tomkins-Lane, C.C.; Lafave, L.M.; Parnell, J.A.; Krishnamurthy, A.; Rempel, J.; Macedo, L.G.; Moriartey, S.; Stuber, K.J.; Wilson, P.M.; Hu, R.; et al. The spinal stenosis pedometer and nutrition lifestyle intervention (SSPANLI) randomized controlled trial protocol. BMC Musculoskelet Disord. 2013, 14, 322. [Google Scholar] [CrossRef] [Green Version]
- Hijikata, Y.; Kamitani, T.; Otani, K.; Konno, S.; Fukuhara, S.; Yamamoto, Y. Association of Lumbar Spinal Stenosis with Severe Disability and Mortality Among Community-Dwelling Older Adults: The Locomotive Syndrome and Health Outcomes in the Aizu Cohort Study. Spine 2021, 46, E784–E790. [Google Scholar] [CrossRef]
- Lurie, J.; Tomkins-Lane, C. Management of lumbar spinal stenosis. BMJ 2016, 352, h6234. [Google Scholar] [CrossRef]
- Siebert, E.; Prüss, H.; Klingebiel, R.; Failli, V.; Einhäupl, K.M.; Schwab, J.M. Lumbar spinal stenosis: Syndrome, diagnostics and treatment. Nat. Rev. Neurol. 2009, 5, 392–403. [Google Scholar] [CrossRef]
- Shiri, R.; Karppinen, J.; Leino-Arjas, P.; Solovieva, S.; Viikari-Juntura, E. The association between obesity and low back pain: A meta-analysis. Am. J. Epidemiol. 2010, 171, 135–154. [Google Scholar] [CrossRef]
- Mantyselka, P.; Miettola, J.; Niskanen, L.; Kumpusalo, E. Persistent pain at multiple sites–connection to glucose derangement. Diabetes Res. Clin. Pract. 2009, 84, e30–e32. [Google Scholar] [CrossRef] [PubMed]
- Mantyselka, P.; Miettola, J.; Niskanen, L.; Kumpusalo, E. Glucose regulation and chronic pain at multiple sites. Rheumatology. 2008, 47, 1235–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jhawar, B.S.; Fuchs, C.S.; Colditz, G.A.; Stampfer, M.J. Cardiovascular risk factors for physician-diagnosed lumbar disc herniation. Spine J. 2006, 6, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Tomkins-Lane, C.C.; Lafave, L.M.; Parnell, J.A.; Rempel, J.; Moriartey, S.; Andreas, Y.; Wilson, P.M.; Hepler, C.; Ray, H.A.; Hu, R. The spinal stenosis pedometer and nutrition lifestyle intervention (SSPANLI): Development and pilot. Spine J. 2015, 15, 577–586. [Google Scholar] [CrossRef]
- Iriti, M.; Varoni, E.M.; Vitalini, S. Healthy Diets and Modifiable Risk Factors for Non-Communicable Diseases-The European Perspective. Foods 2020, 9, 940. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, Y.; Gruber, C.; Schewe, T.; Sies, H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch. Biochem. Biophys. 2008, 469, 209–219. [Google Scholar] [CrossRef]
- Afanas’ev, I.B.; Dorozhko, A.I.; Brodskii, A.V.; Kostyuk, V.A.; Potapovitch, A.I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 1989, 38, 1763–1769. [Google Scholar] [CrossRef]
- Croft, K.D. Dietary polyphenols: Antioxidants or not? Arch. Biochem. Biophys. 2016, 595, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Pounis, G.; Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Curtis, A.; Persichillo, M.; Sieri, S.; Donati, M.B.; Cerletti, C.; de Gaetano, G.; et al. Polyphenol intake is associated with low-grade inflammation.; using a novel data analysis from the Moli-sani study. Thromb. Haemost. 2016, 115, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Gialluisi, A.; Costanzo, S.; Di Castelnuovo, A.; Ruggiero, E.; De Curtis, A.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; et al. Dietary Polyphenol Intake Is Associated with Biological Aging; a Novel Predictor of Cardiovascular Disease: Cross-Sectional Findings from the Moli-Sani Study. Nutrients 2021, 13, 1701. [Google Scholar] [CrossRef]
- Witkowska, A.M.; Waśkiewicz, A.; Zujko, M.E.; Szcześniewska, D.; Pająk, A.; Stepaniak, U.; Drygas, W. Dietary Polyphenol Intake.; but Not the Dietary Total Antioxidant Capacity.; Is Inversely Related to Cardiovascular Disease in Postmenopausal Polish Women: Results of WOBASZ and WOBASZ II Studies. Oxid. Med. Cell Longev. 2017, 2017, 5982809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant Properties of Phenolic Compounds: H-Atom versus Electron Transfer Mechanism. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- Gusto, G.; Vol, S.; Bedouet, M.; Leglu, C.; Decou, P.; Beslin, E.; Guillaud, C.; Copin, N.; Lantieri, O.; Tichet, J. Reproductibilité et validation satisfaisantes d’un auto-questionnaire pour évaluer l’atteinte des repères du Programme National Nutrition Santé Good reproducibility and validity of a self-administered questionnaire evaluating adherence to the French national nutrition and health program recommendations. Presse Med. 2013, 42, e245–e258. [Google Scholar] [CrossRef]
- Lasfargues, G.; Vol, S.; Le Clésiau, H.; Bedouet, M.; Hagel, L.; Constans, T.; Tichet, J. Validité d’un auto-questionnaire alimentaire court par comparaison avec un entretien diététique Validity of a short self-administered dietary questionnaire compared with a dietetic interview. Presse Med. 1990, 19, 953–957. (In French) [Google Scholar]
LSS Cases n = 156 | Controls n = 312 | p-Value | |
---|---|---|---|
Sex (Men) | 69.2 | 69.2 | Matching variable |
Age (years; means, SD) | 66.2 (9.2) | 66.2 (9.2) | Matching variable |
Physical activity level (%) | Matching variable | ||
Sedentary lifestyle | 67.3 | 67.3 | |
Low active lifestyle | 27.6 | 32.1 | |
Physically active lifestyle | 5.1 | 0.6 | |
Educational level (%) | 0.87 | ||
Up to lower secondary | 62.2 | 64.4 | |
Upper secondary | 29.5 | 27.9 | |
Post-secondary | 8.3 | 7.7 | |
Occupation (%) | <0.001 | ||
Non-manual | 12.2 | 12.2 | |
Manual | 14.7 | 6.7 | |
Retired (Non-manual) | 21.2 | 17.9 | |
Retired (Manual) | 34.6 | 22.8 | |
Other/Unclassified | 17.3 | 40.4 | |
Place of residence (%) | 0.92 | ||
Rural | 36.5 | 38.8 | |
Urban | 63.5 | 61.2 | |
Smoking habits (%) | 0.13 | ||
Never | 37.8 | 41.3 | |
Current | 26.9 | 18.6 | |
Former | 35.3 | 40.1 | |
Body mass index (%) | <0.001 | ||
Normal | 17.3 | 18.6 | |
Overweight | 40.4 | 44.9 | |
Obese | 37.2 | 36.5 | |
Cardiovascular disease (%) | 14.7 | 13.1 | 0.63 |
Cancer (%) | 10.3 | 5.1 | 0.069 |
Diabetes (%) | 22.4 | 10.3 | <0.001 |
Hypertension (%) | 69.2 | 44.9 | <0.001 |
Hyperlipidemia (%) | 26.9 | 15.7 | 0.0034 |
Peripheral artery disease (%) | 2.6 | 1.0 | 0.18 |
Dietary Factors | LSS Cases n = 156 | Controls n = 312 | p-Value |
---|---|---|---|
Means (SD) | Means (SD) | ||
Total polyphenols intake (mg/d) | 595.3 (274.1) | 677.8 (218.0) | 0.0002 |
Polyphenol classes (mg/d) | |||
Flavonoids | 216.0 (160.4) | 282.2 (173.8) | <0.0001 |
Lignans | 23.7 (14.5) | 25.6 (12.9) | 0.13 |
Stilbenes | 3.3 (6.3) | 7.6 (9.1) | <0.0001 |
Phenolic acids | 303.5 (128.7) | 301.4 (121.9) | 0.84 |
Other polyphenols | 48.8 (25.7) | 61.0 (23.9) | <0.0001 |
Total antioxidant capacity | |||
TEAC | 5.8 (2.5) | 6.3 (2.8) | 0.021 |
TRAP | 8.5 (3.8) | 9.1 (4.1) | 0.064 |
FRAP | 17.5 (7.3) | 18.7 (8.2) | 0.061 |
Mediterranean Diet Score | 4.0 (1.8) | 4.1(4.5) | 0.84 |
Polyphenol Classes 1 | LSS Cases (n = 156) | Controls (n = 312) |
---|---|---|
Flavonoids | Seasonal fruit (34.9%), red wine (17.3%), and tea (6.9%). | Seasonal fruit (39.9%), red wine (31.3%), and citrus fruit (10.0%). |
Lignans | Seasonal fruit (42.0%), citrus fruit (19.6%), and cabbages (12.7%). | Seasonal fruit (41.5%), citrus fruit (21.7%), and cabbages (11.2%). |
Stilbenes | Red wine (41.8%), seasonal fruit (35.9%), and white wine (12.9%). | Red wine (63.0%), seasonal fruit (27.0%), and white wine (4.5%). |
Phenolic acids | Coffee (51.7%), seasonal fruit (22.8%), and fruit and orange juices (3.2%). | Coffee (44.7%), seasonal fruit (29.9%), and artichoke (3.2%). |
Other polyphenols | Bread (36.8%), olive oil (31.7%), and red wine (6.4%). | Bread (51.8%), olive oil (24.5%), and red wine (10.3%). |
Dietary Factors | Model 1 | Model 2 | Model 3 | Model 3 + TEAC | Model 3 + TRAP | Model 3 + FRAP | |||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | Δ (%) * | OR (95% CI) | Δ (%) * | OR (95% CI) | Δ (%) * | |
Per 1-SD increment | |||||||||
Total polyphenols | 0.63 (0.49–0.82) | 0.66 (0.48–0.90) | 0.65 (0.47–0.89) | 0.56 (0.33–0.94) | 34.6 | 0.59 (0.38–0.93) | 22.5 | 0.55 (0.34–0.88) | 38.8 |
Polyphenol classes | |||||||||
Flavonoids | 0.58 (0.45–0.75) | 0.59 (0.44–0.80) | 0.57 (0.42–0.78) | 0.53 (0.35–0.78) | 12.9 | 0.57 (0.40–0.80) | 0.0 | 0.54 (0.37–0.78) | 9.6 |
Phenolic acids | 1.02 (0.82–1.28) | 1.07 (0.82–1.40) | 1.07 (0.81–1.40) | 1.57 (1.07–2.31) | - | 1.66 (1.10–2.51) | - | 1.57 (1.06–2.34) | - |
Stilbenes | 0.44 (0.31–0.61) | 0.41 (0.27–0.61) | 0.40 (0.27–0.61) | 0.28 (0.16–0.48) | 38.9 | 0.34 (0.21–0.55) | 17.7 | 0.31 (0.19–0.51) | 27.8 |
Lignans | 0.86 (0.70–1.06) | 0.99 (0.78–1.26) | 0.99 (0.77–1.27) | 1.07 (0.82–1.39) | - | 1.03 (0.80–1.34) | - | 1.05 (0.80–1.36) | - |
Other polyphenols | 0.33 (0.23–0.47) | 0.31 (0.20–0.47) | 0.30 (0.20–0.47) | 0.31 (0.20–0.48) | 2.7 | 0.31 (0.20-0.48) | 2.7 | 0.31 (0.20–0.47) | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggiero, E.; Esposito, S.; Costanzo, S.; Di Castelnuovo, A.; Storto, M.; Carpineta, E.; Cerletti, C.; Donati, M.B.; Paolini, S.; Esposito, V.; et al. The Dietary Intake of Polyphenols Is Associated with a Lower Risk of Severe Lumbar Spinal Stenosis: A Case-Control Analysis from the PREFACE Study. Nutrients 2022, 14, 5229. https://doi.org/10.3390/nu14245229
Ruggiero E, Esposito S, Costanzo S, Di Castelnuovo A, Storto M, Carpineta E, Cerletti C, Donati MB, Paolini S, Esposito V, et al. The Dietary Intake of Polyphenols Is Associated with a Lower Risk of Severe Lumbar Spinal Stenosis: A Case-Control Analysis from the PREFACE Study. Nutrients. 2022; 14(24):5229. https://doi.org/10.3390/nu14245229
Chicago/Turabian StyleRuggiero, Emilia, Simona Esposito, Simona Costanzo, Augusto Di Castelnuovo, Marianna Storto, Ettore Carpineta, Chiara Cerletti, Maria Benedetta Donati, Sergio Paolini, Vincenzo Esposito, and et al. 2022. "The Dietary Intake of Polyphenols Is Associated with a Lower Risk of Severe Lumbar Spinal Stenosis: A Case-Control Analysis from the PREFACE Study" Nutrients 14, no. 24: 5229. https://doi.org/10.3390/nu14245229
APA StyleRuggiero, E., Esposito, S., Costanzo, S., Di Castelnuovo, A., Storto, M., Carpineta, E., Cerletti, C., Donati, M. B., Paolini, S., Esposito, V., de Gaetano, G., Innocenzi, G., Iacoviello, L., & Bonaccio, M., on behalf of the PREFACE Study Investigators. (2022). The Dietary Intake of Polyphenols Is Associated with a Lower Risk of Severe Lumbar Spinal Stenosis: A Case-Control Analysis from the PREFACE Study. Nutrients, 14(24), 5229. https://doi.org/10.3390/nu14245229