Bone Strength of the Calcaneus Is Associated with Dietary Calcium Intake in Older Japanese Men, but Not Women
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Assessment of Nutrient Intake
2.3. Measurement of Bone Strength
2.4. Assessment of Other Variables
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Comparison of Characteristics between Low- and High-OSI Groups according to Sex
3.3. Interaction between Sex and Calcium Intake on the OSI
3.4. Multiple Regression Analysis of the Serum Calcium Concentrations as a Dependent Variable according to Sex
3.5. Multiple Regression Analysis of the OSI as a Dependent Variable according to Sex
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B. (Eds.) National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Bristow, S.M.; Bolland, M.J.; Gamble, G.D.; Leung, W.; Reid, I.R. Dietary Calcium Intake and Change in Bone Mineral Density in Older Adults: A Systematic Review of Longitudinal Cohort Studies. Eur. J. Clin. Nutr. 2022, 76, 196–205. [Google Scholar] [CrossRef]
- Tai, V.; Leung, W.; Grey, A.; Reid, I.R.; Bolland, M.J. Calcium Intake and Bone Mineral Density: Systematic Review and Meta-Analysis. BMJ 2015, 351, h4183. [Google Scholar] [CrossRef] [Green Version]
- Wallace, T.C.; Jun, S.; Zou, P.; McCabe, G.P.; Craig, B.A.; Cauley, J.A.; Weaver, C.M.; Bailey, R.L. Dairy Intake Is Not Associated with Improvements in Bone Mineral Density or Risk of Fractures across the Menopause Transition: Data from the Study of Women’s Health Across the Nation. Menopause 2020, 27, 879–886. [Google Scholar] [CrossRef]
- Holick, M.F. High Prevalence of Vitamin D Inadequacy and Implications for Health. Mayo Clin. Proc. 2006, 81, 353–373. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P.; Dowell, M.S.; Hale, C.A.; Bendich, A. Calcium Absorption Varies within the Reference Range for Serum 25-Hydroxyvitamin D. J. Am. Coll. Nutr. 2003, 22, 142–146. [Google Scholar] [CrossRef]
- Bullamore, J.R.; Wilkinson, R.; Gallagher, J.C.; Nordin, B.E.; Marshall, D.H. Effect of Age on Calcium Absorption. Lancet 1970, 296, 535–537. [Google Scholar] [CrossRef]
- Nordin, B.E.C.; Need, A.G.; Morris, H.A.; O’Loughlin, P.D.; Horowitz, M. Effect of Age on Calcium Absorption in Postmenopausal Women. Am. J. Clin. Nutr. 2004, 80, 998–1002. [Google Scholar] [CrossRef] [Green Version]
- Abrams, S.A.; O’brien, K.O.; Liang, L.K.; Stuff, J.E. Differences in Calcium Absorption and Kinetics between Black and White Girls Aged 5–16 Years. J. Bone Miner. Res. 1995, 10, 829–833. [Google Scholar] [CrossRef]
- Nakamura, K.; Tsugawa, N.; Saito, T.; Ishikawa, M.; Tsuchiya, Y.; Hyodo, K.; Maruyama, K.; Oshiki, R.; Kobayashi, R.; Nashimoto, M.; et al. Vitamin D Status, Bone Mass, and Bone Metabolism in Home-Dwelling Postmenopausal Japanese Women: Yokogoshi Study. Bone 2008, 42, 271–277. [Google Scholar] [CrossRef]
- Kim, K.M.; Choi, S.H.; Lim, S.; Moon, J.H.; Kim, J.H.; Kim, S.W.; Jang, H.C.; Shin, C.S. Interactions between Dietary Calcium Intake and Bone Mineral Density or Bone Geometry in a Low Calcium Intake Population (KNHANES IV 2008–2010). J. Clin. Endocrinol. Metab. 2014, 99, 2409–2417. [Google Scholar] [CrossRef]
- Nakamura, K.; Saito, T.; Nishiwaki, T.; Ueno, K.; Nashimoto, M.; Okuda, Y.; Tsuchiya, Y.; Oshiki, R.; Muto, K.; Yamamoto, M. Correlations between Bone Mineral Density and Demographic, Lifestyle, and Biochemical Variables in Community-Dwelling Japanese Women 69 Years of Age and Over. Osteoporos. Int. 2006, 17, 1202–1207. [Google Scholar] [CrossRef]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of Relative Validity of Food Group Intakes Estimated by Comprehensive and Brief-Type Self-Administered Diet History Questionnaires against 16 d Dietary Records in Japanese Adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Yanagibori, R.; Amano, K. Self-Administered Diet History Questionnaire Developed for Health Education: A Relative Validation of the Test-Version by Comparison with 3-Day Diet Record in Women. J. Epidemiol. 1998, 8, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Harata, S.; Kumazawa, Y.; Mita, R.; Kida, K.; Tsuge, M. Bone Mineral Density and Osteo Sono Assessment Index in Adolescents. J. Orthop. Sci. 2000, 5, 185–191. [Google Scholar] [CrossRef]
- Suzuki, Y.; Maruyama-Nagao, A.; Sakuraba, K.; Kawai, S. Level of Serum Undercarboxylated Osteocalcin Correlates with Bone Quality Assessed by Calcaneal Quantitative Ultrasound Sonometry in Young Japanese Females. Exp. Ther. Med. 2017, 13, 1937–1943. [Google Scholar] [CrossRef] [Green Version]
- Tsuda-Futami, E.; Hans, D.; Njeh, C.F.; Fuerst, T.; Fan, B.; Li, J.; He, Y.Q.; Genant, H.K. An Evaluation of a New Gel-Coupled Ultrasound Device for the Quantitative Assessment of Bone. Br. J. Radiol. 1999, 72, 691–700. [Google Scholar] [CrossRef]
- Horio, M.; Imai, E.; Yasuda, Y.; Watanabe, T.; Matsuo, S. GFR Estimation Using Standardized Serum Cystatin C in Japan. Am. J. Kidney Dis. 2013, 61, 197–203. [Google Scholar] [CrossRef]
- Moris, M.; Peretz, A.; Tjeka, R.; Negaban, N.; Wouters, M.; Bergmann, P. Quantitative Ultrasound Bone Measurements: Normal Values and Comparison with Bone Mineral Density by Dual X-Ray Absorptiometry. Calcif. Tissue Int. 1995, 57, 6–10. [Google Scholar] [CrossRef]
- Morimoto, A.; Kikuta, J.; Nishikawa, K.; Sudo, T.; Uenaka, M.; Furuya, M.; Hasegawa, T.; Hashimoto, K.; Tsukazaki, H.; Seno, S.; et al. SLPI Is a Critical Mediator That Controls PTH-Induced Bone Formation. Nat. Commun. 2021, 12, 2136. [Google Scholar] [CrossRef]
- Anderson, J.J.B.; Roggenkamp, K.J.; Suchindran, C.M. Calcium Intakes and Femoral and Lumbar Bone Density of Elderly U.S. Men and Women: National Health and Nutrition Examination Survey 2005–2006 Analysis. J. Clin. Endocrinol. Metab. 2012, 97, 4531–4539. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Di Somma, C.; Laudisio, D.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Sex Differences of Vitamin D Status across BMI Classes: An Observational Prospective Cohort Study. Nutrients 2019, 11, 3034. [Google Scholar] [CrossRef] [Green Version]
- Gocho, Y.; Tanaka, M.; Sugawara, H.; Furuhashi, M.; Moniwa, N.; Yamashita, T.; Takizawa, H.; Mukai, H.; Ohno, K.; Maeda, T.; et al. Seasonal Variation of Serum 25-Hydroxyvitamin D Level in Hemodialysis Patients in the Northernmost Island of Japan. Clin. Exp. Nephrol. 2021, 25, 1360–1366. [Google Scholar] [CrossRef]
- Wood, R.J.; Fleet, J.C.; Cashman, K.; Bruns, M.E.; Deluca, H.F. Intestinal Calcium Absorption in the Aged Rat: Evidence of Intestinal Resistance to 1,25(OH)2 Vitamin D. Endocrinology 1998, 139, 3843–3848. [Google Scholar] [CrossRef]
- Brooke-Wavell, K.; Jones, P.R.; Pye, D.W. Ultrasound and Dual X-Ray Absorptiometry Measurement of the Calcaneus: Influence of Region of Interest Location. Calcif. Tissue Int. 1995, 57, 20–24. [Google Scholar] [CrossRef]
- Waud, C.E.; Lew, R.; Baran, D.T. The Relationship between Ultrasound and Densitometric Measurements of Bone Mass at the Calcaneus in Women. Calcif. Tissue Int. 1992, 51, 415–418. [Google Scholar] [CrossRef]
- Nicholson, P.H.F.; Bouxsein, M.L. Bone Marrow Influences Quantitative Ultrasound Measurements in Human Cancellous Bone. Ultrasound Med. Biol. 2002, 28, 369–375. [Google Scholar] [CrossRef]
- Capuani, S. Water Diffusion in Cancellous Bone. Microporous Mesoporous Mater. 2013, 178, 34–38. [Google Scholar] [CrossRef]
- Wu, N.; Li, X.; Mu, S.; Fu, Q.; Ba, G. Handgrip Strength Is Positively Associated with Bone Mineral Density in Middle and Aged Adults: Results from NHANES 2013–2014. Arch. Osteoporos. 2021, 16, 121. [Google Scholar] [CrossRef]
- Tachiki, T.; Kouda, K.; Dongmei, N.; Tamaki, J.; Iki, M.; Kitagawa, J.; Takahira, N.; Sato, Y.; Kajita, E.; Fujita, Y.; et al. Muscle Strength Is Associated with Bone Health Independently of Muscle Mass in Postmenopausal Women: The Japanese Population-Based Osteoporosis Study. J. Bone Miner. Metab. 2019, 37, 53–59. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, K.; He, M. Association between Grip Strength and Bone Mineral Density in General US Population of NHANES 2013–2014. Arch. Osteoporos. 2020, 15, 47. [Google Scholar] [CrossRef]
- Schoenau, E.; Fricke, O. Mechanical Influences on Bone Development in Children. Eur. J. Endocrinol. 2008, 159 (Suppl. S1), S27–S31. [Google Scholar] [CrossRef] [Green Version]
- Ho-Pham, L.T.; Nguyen, U.D.T.; Nguyen, T.V. Association between Lean Mass, Fat Mass, and Bone Mineral Density: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2014, 99, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Miyauchi, Y.; Sato, Y.; Kobayashi, T.; Yoshida, S.; Mori, T.; Kanagawa, H.; Katsuyama, E.; Fujie, A.; Hao, W.; Miyamoto, K.; et al. HIF1α Is Required for Osteoclast Activation by Estrogen Deficiency in Postmenopausal Osteoporosis. Proc. Natl. Acad. Sci. USA 2013, 110, 16568–16573. [Google Scholar] [CrossRef] [Green Version]
- Rodan, G.A.; Martin, T.J. Therapeutic Approaches to Bone Diseases. Science 2000, 289, 1508–1514. [Google Scholar] [CrossRef]
- Delmas, P.D. Treatment of Postmenopausal Osteoporosis. Lancet 2002, 359, 2018–2026. [Google Scholar] [CrossRef]
- Collins, B.C.; Laakkonen, E.K.; Lowe, D.A. Aging of the Musculoskeletal System: How the Loss of Estrogen Impacts Muscle Strength. Bone 2019, 123, 137–144. [Google Scholar] [CrossRef]
- Ikeda, K.; Horie-Inoue, K.; Inoue, S. Functions of Estrogen and Estrogen Receptor Signaling on Skeletal Muscle. J. Steroid Biochem. Mol. Biol. 2019, 191, 105375. [Google Scholar] [CrossRef]
- Faulkner, K.G.; McClung, M.R.; Coleman, L.J.; Kingston-Sandahl, E. Quantitative Ultrasound of the Heel: Correlation with Densitometric Measurements at Different Skeletal Sites. Osteoporos. Int. 1994, 4, 42–47. [Google Scholar] [CrossRef]
- Yamazaki, K.; Kushida, K.; Ohmura, A.; Sano, M.; Inoue, T. Ultrasound Bone Densitometry of the Os Calcis in Japanese Women. Osteoporos. Int. 1994, 4, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Baran, D.T.; McCarthy, C.K.; Leahey, D.; Lew, R. Broadband Ultrasound Attenuation of the Calcaneus Predicts Lumbar and Femoral Neck Density in Caucasian Women: A Preliminary Study. Osteoporos. Int. 1991, 1, 110–113. [Google Scholar] [CrossRef]
Total (n = 314) | Male (n = 157) | Female (n = 157) | |||||
---|---|---|---|---|---|---|---|
Mean (n) | SD (%) | Mean (n) | SD (%) | Mean (n) | SD (%) | p-Value | |
Age (y) | 71.9 | 6.0 | 71.7 | 5.8 | 72.1 | 6.2 | 0.49 |
Height (cm) | 155.2 | 14.8 | 162.5 | 13.1 | 147.9 | 12.8 | <0.01 |
Weight (kg) | 57.6 | 10.0 | 63.5 | 9.2 | 51.8 | 6.7 | <0.01 |
BMI (kg/m2) | 23.4 | 2.9 | 23.7 | 3.1 | 23.2 | 2.6 | 0.10 |
Systolic blood pressure (mmHg) | 143 | 19 | 143 | 18 | 142 | 19 | 0.92 |
Diastolic blood pressure (mmHg) | 78 | 11 | 78 | 11 | 77 | 11 | 0.28 |
Fasting plasma glucose (mg/dL) | 99.3 | 19.3 | 103.0 | 22.3 | 95.6 | 15.1 | <0.01 |
Serum calcium concentrations (mg/dL) | 9.31 | 0.32 | 9.29 | 0.31 | 9.33 | 0.33 | 0.20 |
Serum 25(OH)D concentrations (ng/mL) | 25.8 | 7.8 | 28.0 | 7.8 | 23.6 | 7.2 | <0.01 |
Intact PTH (pg/mL) | 47.8 | 18.2 | 45.1 | 17.0 | 50.5 | 19.0 | 0.01 |
CC/BW (cm/kg) | 0.58 | 0.07 | 0.54 | 0.05 | 0.63 | 0.05 | <0.01 |
GS/BW (kgf/kg) | 0.51 | 0.11 | 0.58 | 0.10 | 0.44 | 0.08 | <0.01 |
eGFR (mL/min/1.73 m2) | 71.6 | 14.8 | 71.4 | 15.2 | 71.8 | 14.5 | 0.80 |
Osteo-sono assessment index | 2.54 | 0.36 | 2.75 | 0.34 | 2.34 | 0.23 | <0.01 |
Total energy intake (kcal/day) | 1899 | 625 | 2083 | 627 | 1715 | 567 | <0.01 |
Protein intake (g/1000 kcal) | 15.6 | 3.5 | 14.9 | 3.2 | 16.3 | 3.6 | <0.01 |
Fat intake (g/1000 kcal) | 24.0 | 6.1 | 22.4 | 5.8 | 25.6 | 5.9 | <0.01 |
Carbohydrate intake (g/1000 kcal) | 55.2 | 8.5 | 54.3 | 8.3 | 56.2 | 8.5 | 0.04 |
Vitamin D intake (μg/1000 kcal) | 9.4 | 5.9 | 8.8 | 5.6 | 10.0 | 6.1 | 0.09 |
Calcium intake (mg/1000 kcal) | 321 | 119 | 297 | 113 | 346 | 119 | <0.01 |
Smoking status (n, %) | <0.01 | ||||||
Non-smoker | 168 | 54 | 27 | 17 | 141 | 90 | |
Ex-smoker | 107 | 34 | 98 | 62 | 9 | 6 | |
Current smoker | 39 | 12 | 32 | 20 | 7 | 4 | |
Drinking habit (n, %) | <0.01 | ||||||
Non-drinker | 180 | 57 | 49 | 31 | 131 | 83 | |
Less than 20 mg/day | 70 | 22 | 47 | 30 | 23 | 15 | |
20–40 mg/day | 61 | 19 | 58 | 37 | 3 | 2 | |
More than 40 mg/day | 3 | 1 | 3 | 2 | 0 | 0 |
Male | Female | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Low-OSI (n = 79) | High-OSI (n = 78) | Low-OSI (n = 76) | High-OSI (n = 81) | |||||||
Mean (n) | SD (%) | Mean (n) | SD (%) | p-Value | Mean (n) | SD (%) | Mean (n) | SD (%) | p-Value | |
Age (y) | 73.2 | 6.3 | 70.1 | 4.7 | <0.01 | 73.2 | 6.9 | 71.1 | 5.3 | 0.04 |
Height (cm) | 161.0 | 17.4 | 164.1 | 6.0 | 0.14 | 148.2 | 5.6 | 147.6 | 17.0 | 0.77 |
Weight (kg) | 60.4 | 8.8 | 66.5 | 8.7 | <0.01 | 49.9 | 6.1 | 53.5 | 6.8 | <0.01 |
BMI (kg/m2) | 22.7 | 2.9 | 24.7 | 2.9 | <0.01 | 22.7 | 2.6 | 23.6 | 2.5 | 0.04 |
Systolic blood pressure (mmHg) | 144 | 18 | 142 | 18 | 0.50 | 143 | 21 | 142 | 17 | 0.64 |
Diastolic blood pressure (mmHg) | 78 | 12 | 79 | 11 | 0.58 | 77 | 13 | 76 | 10 | 0.64 |
Fasting plasma glucose (mg/dL) | 101.9 | 15.6 | 104.0 | 27.5 | 0.56 | 93.3 | 10.5 | 97.7 | 18.1 | 0.06 |
Serum calcium concentrations (mg/dL) | 9.28 | 0.33 | 9.29 | 0.30 | 0.78 | 9.31 | 0.34 | 9.36 | 0.33 | 0.36 |
Serum 25(OH)D concentrations (ng/mL) | 27.2 | 7.2 | 28.7 | 8.4 | 0.23 | 24.4 | 8.3 | 22.9 | 5.9 | 0.20 |
Intact PTH (pg/mL) | 46.4 | 18.5 | 43.8 | 15.2 | 0.34 | 51.7 | 20.5 | 49.4 | 17.4 | 0.44 |
CC/BW (cm/kg) | 0.55 | 0.05 | 0.53 | 0.05 | <0.01 | 0.64 | 0.05 | 0.61 | 0.05 | <0.01 |
GS/BW (kgf/kg) | 0.58 | 0.10 | 0.58 | 0.10 | 0.87 | 0.43 | 0.08 | 0.45 | 0.08 | 0.09 |
eGFR (mL/min/1.73 m2) | 70.5 | 16.3 | 72.2 | 14.0 | 0.48 | 71.6 | 15.7 | 71.9 | 13.5 | 0.89 |
Osteo-sono assessment index | 2.49 | 0.16 | 3.01 | 0.27 | <0.01 | 2.15 | 0.10 | 2.51 | 0.18 | <0.01 |
Total energy intake (kcal/day) | 2016 | 590 | 2151 | 660 | 0.18 | 1745 | 598 | 1687 | 538 | 0.52 |
Protein intake (g/1000 kcal) | 14.8 | 2.9 | 15.1 | 3.6 | 0.58 | 16.2 | 3.6 | 16.4 | 3.7 | 0.78 |
Fat intake (g/1000 kcal) | 22.4 | 6.0 | 22.5 | 5.6 | 0.85 | 25.5 | 6.5 | 25.6 | 5.3 | 0.88 |
Carbohydrate intake (g/1000 kcal) | 55.5 | 8.2 | 53 | 8.4 | 0.06 | 56.6 | 9.4 | 55.9 | 7.7 | 0.62 |
Vitamin D intake (μg/1000 kcal) | 8.5 | 4.6 | 9.2 | 6.5 | 0.39 | 9.8 | 5.8 | 10.1 | 6.4 | 0.75 |
Calcium intake (mg/1000 kcal) | 285 | 104 | 309 | 122 | 0.18 | 354 | 121 | 340 | 118 | 0.47 |
Smoking status (n, %) | 0.83 | 0.52 | ||||||||
Non-smoker | 15 | 19 | 12 | 15 | 69 | 91 | 72 | 89 | ||
Ex-smoker | 48 | 61 | 50 | 64 | 5 | 7 | 4 | 5 | ||
Current smoker | 16 | 20 | 16 | 21 | 2 | 3 | 5 | 6 | ||
Drinking habit (n, %) | 0.27 | 0.63 | ||||||||
Non-drinker | 29 | 37 | 20 | 26 | 62 | 82 | 69 | 85 | ||
Less than 20 mg/day | 25 | 32 | 22 | 28 | 13 | 17 | 10 | 12 | ||
20–40 mg/day | 24 | 30 | 34 | 44 | 1 | 1 | 2 | 2 | ||
More than 40 mg/day | 1 | 1 | 2 | 3 | 0 | 0 | 0 | 0 |
Low Calcium Intake | High Calcium Intake | |||||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | Sex | Mean | SE | Mean | SE | p for Sex a | p for Calcium Intake Levels b | p for Interactions c |
OSI | Male | 2.61 | 0.04 | 2.72 | 0.03 | <0.01 | 0.28 | <0.01 |
Female | 2.44 | 0.04 | 2.39 | 0.03 |
Total | Male | Female | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Non-Standardized β | Standardized β | p-Value | Non-Standardized β | Standardized β | p-Value | Non-Standardized β | Standardized β | p-Value |
Age | −0.01 | −0.12 | 0.03 | −0.01 | −0.10 | 0.23 | −0.01 | −0.13 | 0.10 |
BMI | 0.00 | −0.01 | 0.80 | 0.00 | 0.02 | 0.78 | −0.01 | −0.06 | 0.45 |
Drinking habits | −0.05 | −0.12 | 0.05 | −0.04 | −0.11 | 0.19 | −0.06 | −0.08 | 0.32 |
Smoking status | −0.01 | −0.01 | 0.86 | −0.02 | −0.03 | 0.71 | 0.05 | 0.08 | 0.36 |
Intact PTH | 0.00 | −0.20 | <0.01 | 0.00 | −0.23 | <0.01 | 0.00 | −0.17 | 0.03 |
Total | Male | Female | |||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Non-Standardized β | Standardized β | p-Value | Non-Standardized β | Standardized β | p-Value | Non-Standardized β | Standardized β | p-Value |
Age | −0.01 | −0.14 | 0.01 | −0.02 | −0.26 | <0.01 | −0.01 | −0.31 | <0.01 |
BMI | 0.04 | 0.35 | <0.01 | 0.04 | 0.32 | <0.01 | 0.02 | 0.28 | <0.01 |
eGFR | 0.00 | −0.10 | 0.06 | 0.00 | −0.03 | 0.73 | 0.00 | −0.23 | 0.02 |
Drinking habits | 0.07 | 0.16 | <0.01 | 0.03 | 0.08 | 0.35 | −0.01 | −0.03 | 0.73 |
Smoking status | 0.11 | 0.21 | <0.01 | 0.04 | 0.07 | 0.33 | 0.09 | 0.18 | 0.03 |
GS/BW | 0.76 | 0.25 | <0.01 | 0.05 | 0.02 | 0.85 | 0.55 | 0.19 | 0.04 |
Intact PTH | 0.00 | −0.12 | 0.01 | 0.00 | −0.09 | 0.22 | 0.00 | −0.11 | 0.16 |
Serum 25(OH)D | 0.00 | 0.09 | 0.06 | 0.01 | 0.16 | 0.04 | 0.00 | −0.03 | 0.74 |
Calcium intake | 0.00 | 0.07 | 0.14 | 0.00 | 0.24 | <0.01 | 0.00 | −0.08 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, K.; Tsujiguchi, H.; Hara, A.; Miyagi, S.; Nguyen, T.T.T.; Kambayashi, Y.; Shimizu, Y.; Suzuki, F.; Takazawa, C.; Nakamura, M.; et al. Bone Strength of the Calcaneus Is Associated with Dietary Calcium Intake in Older Japanese Men, but Not Women. Nutrients 2022, 14, 5225. https://doi.org/10.3390/nu14245225
Suzuki K, Tsujiguchi H, Hara A, Miyagi S, Nguyen TTT, Kambayashi Y, Shimizu Y, Suzuki F, Takazawa C, Nakamura M, et al. Bone Strength of the Calcaneus Is Associated with Dietary Calcium Intake in Older Japanese Men, but Not Women. Nutrients. 2022; 14(24):5225. https://doi.org/10.3390/nu14245225
Chicago/Turabian StyleSuzuki, Keita, Hiromasa Tsujiguchi, Akinori Hara, Sakae Miyagi, Thao Thi Thu Nguyen, Yasuhiro Kambayashi, Yukari Shimizu, Fumihiko Suzuki, Chie Takazawa, Masaharu Nakamura, and et al. 2022. "Bone Strength of the Calcaneus Is Associated with Dietary Calcium Intake in Older Japanese Men, but Not Women" Nutrients 14, no. 24: 5225. https://doi.org/10.3390/nu14245225
APA StyleSuzuki, K., Tsujiguchi, H., Hara, A., Miyagi, S., Nguyen, T. T. T., Kambayashi, Y., Shimizu, Y., Suzuki, F., Takazawa, C., Nakamura, M., Tsuboi, H., Kannon, T., Tajima, A., & Nakamura, H. (2022). Bone Strength of the Calcaneus Is Associated with Dietary Calcium Intake in Older Japanese Men, but Not Women. Nutrients, 14(24), 5225. https://doi.org/10.3390/nu14245225