The Relation between Resistin (−420C/G) Single Nucleotide Variant, Resistin Serum Concentration, Carbohydrate, and Lipid Parameters and Fried Food Taste Preference in Patients with Hypertriglyceridemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric and Biochemical Parameters
2.3. Genotyping Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rygiel, K. Hypertriglyceridemia-Common Causes, Prevention and treatment Strategies. Curr. Cardiol. Rev. 2018, 14, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Al-Shali, K.Z.; Hegele, R.A. Hypertriglyceridemia: Its etiology, effects and treatment. CMAJ 2007, 176, 1113–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Zaunschirm, M.; Pignitter, M.; Kopic, A.; Keßler, C.; Hochkogler, C.; Kretschy, N.; Somoza, M.M.; Somoza, V. Exposure of Human Gastric Cells to Oxidized Lipids Stimulates Pathways of Amino Acid Biosynthesis on a Genomic and Metabolomic Level. Molecules 2019, 24, 4111. [Google Scholar] [CrossRef] [Green Version]
- Guallar-Castillón, P.; Rodríguez-Artalejo, F.; Lopez-Garcia, E.; Leon-Munoz, L.M.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Buckland, G.; Chirlaque, M.-D.; et al. Consumption of fried foods and risk of coronary heart disease: Spanish cohort of the European Prospective Investigation into Cancer and Nutrition study. BMJ 2012, 344, e363. [Google Scholar] [CrossRef] [Green Version]
- Viana, M.; Villacorta, L.; Bonet, B.; Indart, A.; Munteanu, A.; Sánchez-Vera, I.; Azzi, A.; Zingg, J. Effects of aldehydes on CD36 expression. Free Radic. Res. 2005, 39, 973–977. [Google Scholar] [CrossRef]
- Qin, P.; Zhang, M.; Han, M.; Liu, D.; Luo, X.; Xu, L.; Zeng, Y.; Chen, Q.; Wang, T.; Chen, X.; et al. Fried-food consumption and risk of cardiovascular disease and all-cause mortality: A meta-analysis of observational studies. Heart 2021, 107, 1567–1575. [Google Scholar] [CrossRef]
- Yiannakou, I.; Pickering, R.T.; Yuan, M.; Singer, M.R.; Moore, L.L. Potato consumption is not associated with cardiometabolic health outcomes in Framingham Offspring Study adults. J. Nutr. Sci. 2022, 11, e73. [Google Scholar] [CrossRef]
- Russo, S.; Kwiatkowski, M.; Govorukhina, N.; Bischoff, R.; Melgert, B.N. Meta-Inflammation and Metabolic Reprogramming of Macrophages in Diabetes and Obesity: The Importance of Metabolites. Front. Immunol. 2021, 12, 746151. [Google Scholar] [CrossRef]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef]
- Patel, L.; Buckels, A.C.; Kinghorn, I.J.; Murdock, P.R.; Holbrook, J.D.; Plumpton, C.; Macphee, C.H.; Smith, S.A. Resistin is expressed in human macrophages and directly regulated by PPARγ activators. Biochem. Biophys. Res. Commun. 2003, 300, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Lehrke, M.; Reilly, M.P.; Millington, S.C.; Iqbal, N.; Rader, D.J.; Lazar, M.A. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med. 2004, 1, e45. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, E.; Watarai, A.; Tsukahara, T.; Hamada, Y.; Naruse, K.; Kamiya, H.; Kato, J.; Kato, N.; Tomita, M.; Oiso, Y.; et al. Association of resistin polymorphism, its serum levels and prevalence of stroke in Japanese type 2 diabetic patients. J. Diabetes Investig. 2010, 1, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Osawa, H.; Yamada, K.; Onuma, H.; Murakami, A.; Ochi, M.; Kawata, H.; Nishimiya, T.; Niiya, T.; Shimizu, I.; Nishida, W.; et al. The G/G Genotype of a Resistin Single-Nucleotide Polymorphism at −420 Increases Type 2 Diabetes Mellitus Susceptibility by Inducing Promoter Activity through Specific Binding of Sp1/3. Am. J. Hum. Genet 2004, 75, 678–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osawa, H.; Tabara, Y.; Kawamoto, R.; Ohashi, J.; Ochi, M.; Onuma, H.; Nishida, W.; Yamada, K.; Nakura, J.; Kohara, K.; et al. Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with insulin resistance, lower HDL cholesterol, and high-sensitivity C-reactive protein in the Japanese general population. Diabetes Care 2007, 30, 1501–1506. [Google Scholar] [CrossRef] [Green Version]
- Onuma, H.; Tabara, Y.; Kawamura, R.; Ohashi, J.; Nishida, W.; Takata, Y.; Ochi, M.; Nishimiya, T.; Ohyagi, Y.; Kawamoto, R.; et al. Dual Effects of a RETN Single Nucleotide Polymorphism (SNP) at -420 on Plasma Resistin: Genotype and DNA Methylation. J. Clin. Endocrinol. Metab. 2017, 102, 884–892. [Google Scholar] [CrossRef]
- Takhshid, M.; Zare, Z. Resistin–420 C/G polymorphism and serum resistin level in Iranian patients with gestational diabetes mellitus. J. Diabetes Metab. Disord. 2015, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- El-Shal, A.S.; Pasha, H.F.; Rashad, N.M. Association of resistin gene polymorphisms with insulin resistance in Egyptian obese patients. Gene 2015, 515, 233–238. [Google Scholar] [CrossRef]
- Musialik, K.; Miller-Kasprzak, E.; Walczak, M.; Markuszewski, L.; Bogdański, P. The Association between Serum Resistin Level, Resistin (−420C/G) Single Nucleotide Variant, and Markers of Endothelial Dysfunction, including Salt Taste Preference in Hypertensive Patients. Nutrients 2022, 14, 1789. [Google Scholar] [CrossRef]
- Warensjö Lemming, E.; Byberg, L.; Stattin, K.; Ahmad, S.; Lind, L.; Elmståhl, S.; Larsson, S.C.; Wolk, A.; Michaëlsson, K. Dietary Pattern Specific Protein Biomarkers for Cardiovascular Disease: A Cross-Sectional Study in 2 Independent Cohorts. J. Am. Heart Assoc. 2019, 8, e011860. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, A.S.; Murtaza, B.; Hichami, A.; Khan, N.A. Tongue Leptin Decreases Oro-Sensory Perception of Dietary Fatty Acids. Nutrients 2021, 14, 197. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Kubow, S.; Nielsen, D.E. Common variants in the CD36 gene are associated with dietary fat intake, high-fat food consumption and serum triglycerides in a cohort of Quebec adults. Int. J. Obes. 2021, 45, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yu, L.; Zhou, W.; Luo, M. Resistin increases lipid accumulation and CD36 expression in human macrophages. Biochem. Biophys. Res. Commun. 2006, 351, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the special contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016, 253, 281–344. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Kunnari, A.; Ukkola, O.; Kesäniemi, Y.A. Resistin polymorphisms are associated with cerebrovascular disease in Finnish Type 2 diabetic patients. Diabet. Med. 2005, 22, 583–589. [Google Scholar] [CrossRef]
- Chait, A.; Subramanian, S. Hypertriglyceridemia: Pathophysiology, Role of Genetics, Consequences, and Treatment. Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; Inc.: South Dartmouth, MA, USA. Available online: https://www.ncbi.nlm.nih.gov/books/NBK326743/ (accessed on 14 October 2022).
- Menzaghi, C.; Coco, A.; Salvemini, L.; Thompson, R.; De Cosmo, S.; Doria, A.; Trischitta, V. Heritability of serum resistin and its genetic correlation with insulin resistance-related features in nondiabetic Caucasians. J. Clin. Endocrinol. Metab. 2006, 91, 2792–2795. [Google Scholar] [CrossRef]
- Osawa, H.; Ochi, M.; Tabara, Y.; Kato, K.; Yamauchi, J.; Takata, Y.; Nishida, W.; Onuma, H.; Shimizu, I.; Fujii, Y.; et al. Serum resistin is positively correlated with the accumulation of metabolic syndrome factors in type 2 diabetes. Clin. Endocrinol. 2008, 69, 74–80. [Google Scholar] [CrossRef]
- Antonio de Luis, D.; Izaola, O.; Primo, D.; Aller, R.; Pacheco, D. Effect of two polymorphisms of the resistin gene (rs10401670 and rs1862513) on resistin levels and biochemical parameters in morbidly obese patients 1 year after a biliopancreatic diversion surgery. Clin. Nutr. 2016, 35, 1517–1521. [Google Scholar] [CrossRef]
- Zayani, N.; Hamdouni, H.; Boumaiza, I.; Achour, O.; Neffati, F.; Omezzine, A.; Najjar, M.F.; Bouslama, A. Resistin polymorphims, plasma resistin levels and obesity in Tunisian volunteers. J. Clin. Lab. Anal. 2018, 32, e22227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makino, H.; Shimizu, I.; Murao, S.; Kondo, S.; Tabara, Y.; Fujiyama, M.; Fujii, Y.; Takada, Y.; Nakai, K.; Izumi, K.; et al. A pilot study suggests that the G/G genotype of resistin single nucleotide polymorphism at −420 may be an independent predictor of a reduction in fasting plasma glucose and insulin resistance by pioglitazone in type 2 diabetes. Endocr. J. 2009, 56, 1049–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, E.J.; Lamon-Fava, S.; Cohn, S.D.; Schaefer, M.M.; Ordovas, J.M.; Castelli, W.P.; Wilson, P.W. Effects of age, gender, and menopausal status on plasma low density lipoprotein cholesterol and apolipoprotein B levels in the Framingham Offspring Study. J. Lipid Res. 1994, 35, 779–792. [Google Scholar] [CrossRef] [PubMed]
- de Luis, D.A.; Izaola, O.; Primo, D.; de la Fuente, B.; Mulero, I.; Aller, R. The rs1862513 Variant in Resistin Gene-Modified Insulin Resistance and Insulin Levels after Weight Loss Secondary to Hypocaloric Diet. ANM 2016, 69, 256–262. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.-W.; Huang, X.; Song, B.-L.; Wang, Y.; Wang, Y. Regulation of glucose and lipid metabolism in health and disease. Sci. China Life Sci. 2019, 62, 1420–1458. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, Y.; Liu, J.; Chen, D.; Zhang, H.; Yang, Z.; Zhou, X. Effects of Dietary Pork Fat Cooked Using Different Methods on Glucose and Lipid Metabolism, Liver Inflammation and Gut Microbiota in Rats. Foods 2021, 10, 3030. [Google Scholar] [CrossRef]
- de León, A.C.; González, D.A.; Hernández, A.G.; Coello, S.D.; Marrugat, J.; Sánchez, J.J.A.; Díaz, B.B.; Rodríguez, I.M.; Pérez, M.D.C.R. Relationships between Serum Resistin and Fat Intake, Serum Lipid Concentrations and Adiposity in the General Population. J. Atheroscler. Thromb. 2014, 21, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, L.; Orlando, G.; Recinella, L.; Michelotto, B.; Ferrante, C.; Vacca, M. Resistin, but not adiponectin, inhibits dopamine and norepinephrine release in the hypothalamus. Eur. J. Pharmacol. 2004, 493, 41–44. [Google Scholar] [CrossRef]
- Tovar, S.; Nogueiras, R.; Tung, L.Y.C.; Castañeda, T.R.; Vázquez, M.J.; Morris, A.; Williams, L.M.; Dickson, S.L.; Diéguez, C. Central administration of resistin promotes short-term satiety in rats. Eur. J. Endocrinol. 2005, 153, R1–R5. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Imran, S.A.; Belsham, D.D.; Ur, E.; Wilkinson, M. Adipokine Gene Expression in a Novel Hypothalamic Neuronal Cell Line: Resistin-Dependent Regulation of Fasting-Induced Adipose Factor and SOCS-3. NEN 2007, 85, 232–241. [Google Scholar] [CrossRef]
- He, F.; Jin, J.-Q.; Qin, Q.-Q.; Zheng, Y.-Q.; Li, T.-T.; Zhang, Y.; He, J.-D. Resistin Regulates Fatty Acid Β Oxidation by Suppressing Expression of Peroxisome Proliferator Activator Receptor Gamma-Coactivator 1α (PGC-1α). CPB 2018, 46, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Palanivel, R.; Sweeney, G. Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin. FEBS Lett. 2005, 579, 5049–5054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamali, I.; Roupas, N.D.; Armeni, A.K.; Theodoropoulou, A.; Markou, K.B.; Georgopoulos, N.A. Measurement of salivary resistin, visfatin and adiponectin levels. Peptides 2012, 33, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Geloen, A.; Helin, L.; Geeraert, B.; Malaud, E.; Holvoet, P.; Marguerie, G. CD36 Inhibitors Reduce Postprandial Hypertriglyceridemia and Protect against Diabetic Dyslipidemia and Atherosclerosis. PLoS ONE 2012, 7, e37633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Iñiguez, I.; Panduro, A.; Ramos-Lopez, O.; Villaseñor-Bayardo, S.J.; Roman, S. DRD2/ANKK1 TaqI A1 polymorphism associates with overconsumption of unhealthy foods and biochemical abnormalities in a Mexican population. Eat. Weight Disord. 2019, 24, 835–844. [Google Scholar] [CrossRef]
Parameter | N | Hypertriglyceridemia (HTG) n = 179 | Normotriglyceridemia (NTG) n = 182 | p-Value |
---|---|---|---|---|
Female % | 59.89 | 71.66 | <0.01 ^ | |
Age (years) | 179/182 | 60.21± 11.19 | 58.34± 12.16 | NS * |
Body mass (kg) | 179/182 | 87.26 ± 13.20 | 84.96 ± 18.53 | NS # |
BMI (kg/m²) | 179/182 | 31.59 ± 3.82 | 29.81 ± 5.79 | NS * |
Neck circumference (cm) | 179/182 | 39.35 ± 6.42 | 37.99 ± 9.30 | NS * |
Glucose (mg/dL) | 172/143 | 107.94 ± 37.52 | 97.37 ± 23.71 | <0.003 * |
Insulin (mg/dL) | 135/119 | 14.05 ± 13.64 | 13.30 ± 6.82 | NS * |
HOMA-IR | 135/119 | 3.75 ± 3.49 | 3.06 ± 1.49 | 0.04 * |
Total cholesterol (mg/dL) | 165/172 | 209.60 ± 42.46 | 194.39 ± 36.56 | <0.0002 * |
LDL cholesterol (mg/dL) | 165/172 | 116.40 ± 59.89 | 110.78 ± 31.30 | NS * |
HDL cholesterol (mg/dL) | 179/182 | 54.90 ± 12.83 | 62.34 ± 14.89 | <0.000001 * |
Resistin (ng/mL) | 134/119 | 7.65 ± 3.87 | 7.61 ± 3.73 | NS * |
TG (mg/dL) | 179/182 | 262.53 ± 147.09 | 104.42 ± 28.03 | <0.0000001 # |
Obesity % | 52.24 | 44.76 | NS ^ | |
Frying preference % | 38.73 | 29.93 | NS ^ |
Genotype | Hyper Triglyceridemia (HTG) | Normo Triglyceridemia (NTG) | Frying Preference (FP) | Other Cooking Preference (OP) | ||||
---|---|---|---|---|---|---|---|---|
CC | 74 (41.44%) | 93 (48.44%) | 52 (48.15%) | 107 (43.85%) | ||||
CG | 83(46.37%) | 75 (39.06%) | 36 (44.22%) | 110 (45.08%) | ||||
GG | 22 (12.29%) | 24 (12.50%) | 18 (13.63%) | 27 (10.89%) | ||||
Comparison | χ2 | p-value | OR | (95% CI) | χ2 | p-value | OR | (95% CI) |
CC/CG/GG | 2.20 | 0.33 | - | - | 4.64 | 0.09 | - | - |
GG + CG/CC | 1.88 | 0.16 | 1.33 | (0.88–2.00) | 0.8 | 0.36 | 0.81 | (0.51–1.23) |
Hyper triglyceridemia (HTG) | Frying Preference (FP) | |||||||
Genotype | Frying preference (FP) | Other cooking preference (OP) | Hyper triglyceridemia (HTG) | Normo triglyceridemia (NTG) | ||||
CC | 26 (40.00%) | 46 (42.20%) | 26 (40.00%) | 26 (63.41%) | ||||
CG | 26 (40.00%) | 54 (49.54%) | 26 (40.00%) | 10 (24.39%) | ||||
GG | 13 (20.00%) | 9 (8.26%) | 13 (20.00%) | 5 (12.20 %) | ||||
Comparison | χ2 | p-value | OR | (95% CI) | χ2 | p-value | OR | (95% CI) |
CC/CG/GG | 5.29 | 0.07 | - | - | 5.51 | 0.06 | ||
GG + CG/CC | 0.08 | 0.77 | 1.09 | (0.58–2.04) | 5.51 | 0.01 a | 2.6 | (1.16–5.82) |
Normo triglyceridemia (NTG) | Other cooking preference (OP) | |||||||
Genotype | Frying preference (FP) | Other cooking preference (OP) | Hyper triglyceridemia (HTG) | Normo trigliceridemia (NTG) | ||||
CC | 26 (63.41%) | 61(45.19%) | 46 (42.20%) | 61 (45.19%) | ||||
CG | 10 (24.39%) | 56(41.48%) | 54 (49.54%) | 56 (41.48%) | ||||
GG | 5 (12.20%) | 18 (13.33%) | 9 (8.26%) | 18 (13.33%) | ||||
Comparison | χ2 | p-value | OR | (95% CI) | χ2 | p-value | OR | (95% CI) |
CC/CG/GG | 4.59 | 0.10 | - | - | 2.39 | 0.30 | - | - |
GG + CG/CC | 4.18 | 0.04 b | 0.47 | (0.23–0.98) | 0.21 | 0.64 | 1.13 | (0.68–1.88) |
Parameter | Genotype | Total | Hyper Triglyceridemia (HTG) | Normo Triglyceridemia (NTG) | Frying Preference (FP) | Other Cooking Preferences (OP) |
---|---|---|---|---|---|---|
Resistin (ng/mL) | CC | 7.24 ± 2.89 112 | 7.11 ± 2.29 54 | 7.33 ± 3.38 58 | 7.03 ± 3.08 44 | 7.41 ± 2.80 67 |
CG | 8.12 ± 4.6 110 | 8.48 ± 5.07 64 | 7.83 ± 3.92 46 | 7.55 ± 4.32 31 | 7.99 ± 4.26 76 | |
GG | 7.13 ± 3.31 31 | 6.45 ± 1.35 16 | 7.99 ± 4.56 15 | 6.90 ± 1.53 14 | 7.49 ± 4.49 16 | |
Comparison | CC/CG/GG | p = 0.54 ** | p = 0.39 ** | p = 0.71 ** | p = 0.87 ** | p = 0.76 ** |
GG + CG/CC | p = 0.50 * | p = 0.34 * | p = 0.64 * | p = 0.70 * | p = 0.98 * | |
TG (mg/dL) | CC | 172.63 ± 103.77 161 | 252.39 ± 151 74 | 105.72 ± 26.65 87 | 160.65 ± 69.22@ 52 | 176.38 ± 116.402 108 |
CG | 193.25 ± 165.09 154 | 276.54 ± 191.47 83 | 101.07 ± 29.32 71 | 258.60 ± 229.72@ 38 | 173.60 ± 135.401 112 | |
GG | 170.79 ± 76.39 46 | 237.50 ± 151.47 22 | 109.65 ± 29.04 24 | 201.38 ± 64.43 18 | 151.39 ± 79.50 27 | |
Comparison | CC/CG/GG | p = 0.66 ## | p = 0.89 ## | p = 0.43 ## | p = 0.01 ## b p = 0.02@ | p = 0.72 ## |
GG + CG/CC | p = 0.31 # | p = 0.55 # | p = 0.74 # | p = 0.0006 # a | p = 0.77 # |
Parameter | Genotype | Total | Hyper Triglyceridemia (HTG) | Normo Triglyceridemia (NTG) | Frying Preference (FP) | Other Cooking Preferences (OP) |
---|---|---|---|---|---|---|
Glucose (mg/dL) | CC | 101.21 ± 27.69 140 | 106.70 ± 33.78 70 | 95.82 ± 18.81 70 | 102.72 ± 31.09 51 | 100.56 ± 25.95 88 |
CG | 106.49 ± 37.05 135 | 110.90 ± 41.31 80 | 99.85 ± 30.20 55 | 104.05 ± 19.14 37 | 106.76 ± 41.87 95 | |
GG | 99.72 ± 30.22 40 | 102.95 ± 37.47 22 | 95.77 ± 18.18 18 | 103.55 ± 41.67 18 | 97.19 ± 16.50 21 | |
Comparison | CC/CG/GG | p = 0.19 ** | p = 0.34 ** | p = 0.92 ** | p = 0.21 ** | p = 0.76 ** |
GG + CG/CC | p = 0.41 * | p = 0.66 * | p = 0.79 * | p = 0.39 * | p = 0.61 * | |
Insulin (mg/dL) | CC | 13.00 ± 4.90 112 | 13.29 ± 15.30 54 | 12.76 ± 4.56 58 | 12.45 ± 5.14 44 | 13.50 ± 4.77 67 |
CG | 14.47 ± 15.40 111 | 15.47 ± 19.12 65 | 13.19 ± 8.42 46 | 12.46 ± 3.39 31 | 15.57 ± 18.53 77 | |
GG | 13.58 ± 6.32 31 | 11.49 ± 2.59 16 | 15.73 ± 8.44 15 | 13.03 ± 5.64 14 | 13.99 ± 7.38 16 | |
Comparison | CC/CG/GG | p = 0.96 ** | p = 0.47 ** | p = 0.76 ** | p = 0.77 ** | p = 0.86 ** |
GG + CG/CC | p = 0.79 * | p = 0.88 * | p = 0.68 * | p = 0.79 * | p = 0.95 * | |
HOMA -IR | CC | 3.22 ± 1.43 111 | 3.54 ± 1.74 54 | 2.93 ± 1.02 58 | 3.07 ± 1.46 43 | 3.34 ± 1.42 67 |
CG | 3.70 ± 3.80 109 | 4.19 ± 4.78 65 | 3.08 ± 1.84 46 | 3.21 ± 1.06 30 | 3.92 ± 4.54 76 | |
GG | 3.24 ± 1.44 31 | 2.95 ± 1.05 16 | 3.54 ± 1.76 15 | 3.33 ± 1.47 14 | 3.18 ± 1.50 16 | |
Comparison | CC/CG/GG | p = 0.93 ** | p = 0.44 ** | p = 0.72 ** | p = 0.49 ** | p = 0.70 ** |
GG + CG/CC | p = 0.80 * | p = 0.73 * | p = 0.74 * | p = 0.32 * | p = 0.68 * |
Parameter | Genotype | Total | Hyper Triglyceridemia (HTG) | Normo Triglyceridemia (NTG) | Frying Preference (FP) | Other Cooking Preferences (OP) |
---|---|---|---|---|---|---|
TCH (mg/dL) | CC | 204.00 ± 76.55 144 | 220.05 ± 103.16 64 | 192.49 ± 41.46 80 | 208.00 ± 87.95 47 | 202.05 ± 71.53 96 |
CG | 203.34 ± 64.67 147 | 206.51 ± 54.55 79 | 200.65 ± 76.71 68 | 211.33 ± 51.95 36 | 199.34 ± 69.28 108 | |
GG | 213.00 ± 41.55 46 | 212.14 ± 36.76 22 | 213.76 ± 137.60 24 | 208.47 ± 36.98 17 | 217.49 ± 44.40 27 | |
Comparison | CC/CG/GG | p = 0.15 ** | p = 0.88 ** | p = 0.11 ** | p = 0.22 ** | p = 0.10 ** |
GG + CG/CC | p = 0.17 * | p = 0.84 * | p = 0.17 * | p = 0.04 *,b | p = 0.56 * | |
LDL cholesterol (mg/dL) | CC | 112.00 ± 46.92 144 | 116.20 ± 61.39 64 | 109.85 ± 30.67 80 | 108.19 ± 33.26 52 | 115 ± 52.30 106 |
CG | 115.36 ± 52.20 147 | 120.58 ± 65.22 79 | 110.63 ± 35.23 68 | 114.39 ± 53.75 33 | 112.10 ± 48.15 109 | |
GG | 110.70± 25.92 46 | 106.50 ± 3117 22 | 114.55 ± 19.89 24 | 107.16 ± 27.99 18 | 113.78 ± 24.84 27 | |
Comparison | CC/CG/GG | p = 0.83 ** | p = 0.93 ** | p = 0.62 ** | p = 0.95 ** | p = 0.67 ** |
GG + CG/CC | p = 0.65* | p = 0.77 * | p = 0.31 * | p = 0.82 * | p = 0.79 * | |
HDL cholesterol mg/dL | CC | 58.43 ± 13.43 161 | 53.54 ± 11.11 74 | 62.41 ± 13.91 87 | 59.13 ± 14.80 52 | 58.09 ± 12.81 108 |
CG | 59.76 ± 16.52 154 | 55.41 ± 14.36 83 | 62.51 ± 15.57 71 | 59.31 ± 18.04 38 | 59.96 ± 15.56 112 | |
GG | 58.64 ± 14.68 46 | 55.40 ± 11.44 22 | 61.60 ± 16.82 24 | 57.55 ± 11.57 18 | 59.49 ± 16.83 27 | |
Comparison | CC/CG/GG | p = 0.89 ** | p = 0.77 ** | p = 0.85 ** | p = 0.85 ** | p = 0.74 ** |
GG + CG/CC | p = 0.95 * | p = 0.56 * | p = 0.68 * | p = 0.18 * | p = 0.38 * |
Parameter | Groups | Total | Hyper Triglyceridemia (HTG) | Normo Triglyceridemia (NTG) | Frying Preference (FP) | Other Cooking Preferences (OP) |
---|---|---|---|---|---|---|
Resistin (ng/mL) | Both | HOMA-IR (r = 0.40, p = 0.000000) Ins (r = 0.45 p = 0.000000) | HOMA-IR (r = 0.49, p = 0.000000) Ins (r = 0.58, p = 0.000000) | HOMA-IR (r = 0.31, p = 0.000470) Ins (r = 0.34 p = 0.000131) | HOMA-IR (r = 0.50, p = 0.000001) Ins (r = 0.52, p = 0.000000) | HOMA-IR (r = 0.41, p = 0.000000) Ins (r = 0.46, p = 0.000000) |
GG + CG | HOMA-IR (r = 0.32, p = 0.000144) Ins (r = 0.36, p = 0.000011) | HOMA-IR (r = 0.37, p = 0.000879) INS (r = 0.41, p = 0.000174) | HDL (r = 0.36, p = 0.005585 b) HOMA-IR (r = 0.27, p = 0.039224 b) Ins (r = 0.34, p= 0.008120 b) | TG (r = 0.33, p = 0.034394 b) HOMA-IR (r = 0.48, p = 0.000436) Ins (r = 0.47, p = 0.000543) | HOMA-IR (r = 0.35, p = 0.000924 b) Ins (r = 0.40, p = 0.000967 b) | |
CC | HOMA-IR (r = 0.49, p = 0.000000) Ins (r = 0.53, p = 0.000000) | HOMA-IR (r = 0.62, p = 0.000000) Ins (r = 0.79, p = 0.000000) | HOMA-IR (r = 0.39, p = 0.001541 b) Ins (r = 0.33 p = 0.008799) | HOMA-IR (r = 0.52, p = 0.000184) Ins (r = 0.53, p = 0.000113) | HOMA-IR (r = 0.49, p = 0.000013) Ins (r = 0.52, p = 0.000003) | |
TG (mg/dL) | Both | Glucose (r = 0.22, p = 0.000037) HDL (r = −0.33, p = 0.000000) TCH (r = 0.24, p = 0.000002) HOMA-IR (r = 0.15, p = 0.010409 b) | Glucose (r = 0.21 p = 0.004589 b) HDL (r = −0.31 p = 0.000012) TCH (r = 0.15 p = 0.041846 b) | - | HDL (r = −0.37, p = 0.000045) TCH (r = 0.34, p = 0.000199) | Glucose (r = 0.28, p = 0.000042) HDL (r = −0.29, p = 0.000001) TCH (r = 0.21, p = 0.000001) |
GG + CG | Glucose (r = 0.18, p = 0.015882 b ) HDL(r = −0.32, p = 0.000003) TCH (r = 0.23, p = 0.000985 b) | HDL (r = −0.36, p = 0.000161) | - | Res (r = 0.33; p = 0.034394 b) HDL (r = −0.41, p = 0.002373 b) TCH (r = 0.42, p = 0.001712 b) | HDL (r = −0.23, p = 0.005725 b) TCH (r = 0.18, p = 0.030878 b) | |
CC | Glucose (r = 0.26, p = 0.001280 b) HDL (r = −0.38, p = 0.000000) TCH (r = 0.19, p = 0.002289 b) | Glucose (r = 0.32, p = 0.004972 b) HDL (r = −0.32 p = 0.003608 b) | - | HDL (r = −0.39, p = 0.002754 b) | Glucose (r = 0.30, p = 0.003431 b) HDL (r = −0.38, p = 0.000038) TCH (r = 0.23, p = 0.011609 b) | |
HOMA-IR | Both | TG (r = 0.15, p = 0.010409 b) Res (r = 0.40, p = 0.000000) | Res (r = 0.49, p = 0.000000) HDL (r = −0.19, p = 0.025190 b) | Res (r = 0.31, p = 0.000470) | Res (r = 0.50, p = 0.000001) | Res (r = 0.41, p = 0.000000) |
GG + CG | Res (r = 0.32, p = 0.000144) | Res (r = 0.37, p = 0.000979) | Res (r = 0.27, p = 0.039224 b) | Res (r = 0.48, p = 0.001436 b) | Res (r = 0.35, p = 0.000824) | |
CC | Res (r = 0.49, p = 0.000000) | Res (r = 0.62, p = 0.000000) | Res (r = 0.39, p = 0.001541 b) | Res (r = 0.52, p = 0.000184) | Res (r = 0.49, p = 0.000013) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller-Kasprzak, E.; Musialik, K.; Kręgielska-Narożna, M.; Szulińska, M.; Bogdański, P. The Relation between Resistin (−420C/G) Single Nucleotide Variant, Resistin Serum Concentration, Carbohydrate, and Lipid Parameters and Fried Food Taste Preference in Patients with Hypertriglyceridemia. Nutrients 2022, 14, 5092. https://doi.org/10.3390/nu14235092
Miller-Kasprzak E, Musialik K, Kręgielska-Narożna M, Szulińska M, Bogdański P. The Relation between Resistin (−420C/G) Single Nucleotide Variant, Resistin Serum Concentration, Carbohydrate, and Lipid Parameters and Fried Food Taste Preference in Patients with Hypertriglyceridemia. Nutrients. 2022; 14(23):5092. https://doi.org/10.3390/nu14235092
Chicago/Turabian StyleMiller-Kasprzak, Ewa, Katarzyna Musialik, Matylda Kręgielska-Narożna, Monika Szulińska, and Paweł Bogdański. 2022. "The Relation between Resistin (−420C/G) Single Nucleotide Variant, Resistin Serum Concentration, Carbohydrate, and Lipid Parameters and Fried Food Taste Preference in Patients with Hypertriglyceridemia" Nutrients 14, no. 23: 5092. https://doi.org/10.3390/nu14235092
APA StyleMiller-Kasprzak, E., Musialik, K., Kręgielska-Narożna, M., Szulińska, M., & Bogdański, P. (2022). The Relation between Resistin (−420C/G) Single Nucleotide Variant, Resistin Serum Concentration, Carbohydrate, and Lipid Parameters and Fried Food Taste Preference in Patients with Hypertriglyceridemia. Nutrients, 14(23), 5092. https://doi.org/10.3390/nu14235092