Assessing Consumer Willingness to Pay for Nutritional Information Using a Dietary App
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. The Discrete Choice Model
+ βFat alertXFat alert,i|c + βAllergy alertXAllergy alert,i|c
+ βpayment Xpayment,i|c + βPriceXPrice,i|c + εi|c
3.2. Product and Attribute Selection
3.3. Data Collection and Analysis
3.4. Discrete Choice Experiment Design and Estimation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 10 January 2022).
- World Health Organization. Noncommunicable Diseases Country Profiles 2018. Available online: https://apps.who.int/iris/handle/10665/274512 (accessed on 16 March 2022).
- Peykari, N.; Hashemi, H.; Dinarvand, R.; Haji-aghajani, M.; Malekzadeh, R.; Sadrolsadat, A.; Sayyari, A.A.; Asadi-lari, M.; Delavari, A.; Farzadfar, F. National Action Plan for Non-Communicable Diseases Prevention and Control in Iran; a Response to Emerging Epidemic. J. Diabetes Metab. Disord. 2017, 16, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moslemi, M.; Kheirandish, M.; Nezhad Fard Mazaheri, R.; Hosseini, H.; Jannat, B.; Mofid, V.; Moghaddam, A.; Karimian, N. National Food Policies in the Islamic Republic of Iran Aimed at Control and Prevention of Noncommunicable Diseases. East. Mediterr. Health J. 2020, 26, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Bergmann, M.M.; Kröger, J.; Schienkiewitz, A.; Weikert, C.; Boeing, H. Healthy Living Is the Best Revenge. Arch. Intern. Med. 2009, 169, 1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khandpur, N.; Sato, P.d.M.; Mais, L.A.; Martins, A.P.B.; Spinillo, C.G.; Garcia, M.T.; Rojas, C.F.U.; Jaime, P.C. Are Front-of-Package Warning Labels More Effective at Communicating Nutrition Information than Traffic-Light Labels ? A Randomized Controlled Experiment in a Brazilian Sample. Nutrients 2018, 10, 688. [Google Scholar] [CrossRef] [Green Version]
- Amine, E.K.; Baba, N.H.; Belhadj, M.; Deurenberg-Yap, M.; Djazayery, A.; Forrestre, T.; Galuska, D.; Herman, S.; Wpt, J.; Kabangu, J.; et al. Nutrition and the Prevention of Chronic Diseases. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149. [Google Scholar] [CrossRef]
- Mirghotbi, M.; Bazhan, M.; Amiri, Z. Knowledge and Practice of Consumers in Food Labels in Tehran, 2008–2009. Payeh Health Monit. 2012, 11, 505–510. [Google Scholar]
- Shine, A.; O’Reilly, S.; O’Sullivan, K.; O’Reilly, S.; O’Sullivan, K. Consumer Use of Nutrition Labels. Br. Food J. 1997, 99, 290–296. [Google Scholar] [CrossRef]
- Iran Food and Drug Administration. The Final Guidelines Food Labelling Food and Drug Administration. Available online: https://fdo.tums.ac.ir/ghaza/uploads/%D8%A8%D8%B1%DA%86%D8%B3%D8%A8%20%DA%AF%D8%B0%D8%A7%D8%B1%DB%8C%2093.pdf (accessed on 23 November 2022).
- Price, S.; Hartwell, H.; Hemingway, A.; Chapleo, C. Workplace Foodservice; Perception of Quality and Trust. Appetite 2016, 97, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Lowe, B.; De Souza-monteiro, D.M.; Fraser, I. Nutritional Labelling Information: Utilisation of New Technologies Nutritional Labelling Information: Utilisation of New Technologies. J. Mark. Manag. 2013, 29, 37–41. [Google Scholar] [CrossRef]
- Niven, P.; Morley, B.; Dixon, H.; Martin, J.; Jones, A.; Petersen, K.; Wakefield, M. Effects of Health Star Labelling on the Healthiness of Adults’ Fast Food Meal Selections: An Experimental Study. Appetite 2019, 136, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Balcombe, K.; Iain, F.; Lowe, B.; Souza Monteiro, D. Information Customization and Food Choice. Am. J. Agric. Econ. 2016, 98, 54–73. [Google Scholar] [CrossRef]
- Fenko, A.; Nicolaas, I.; Galetzka, M. Does Attention to Health Labels Predict a Healthy Food Choice? An Eye-Tracking Study. Food Qual. Prefer. 2018, 69, 57–65. [Google Scholar] [CrossRef]
- Grunert, K.G.; Wills, J.M.; Ferna, L. Nutrition Knowledge, and Use and Understanding of Nutrition Information on Food Labels among Consumers in the UK. Appetite 2010, 55, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Sameni, R.; Eslami, A.; Afshar, A.; Ghafarzadeh, J. Investigation on the Level of Awareness and Attitude of Consumers Regarding the Traffic Lights Nutrition Information in the Label of Food and Beverage Products in Karaj. Aumj 2021, 10, 361–373. [Google Scholar]
- Grunert, K.G.; Wills, J.M. A Review of European Research on Consumer Response to Nutrition Information on Food Labels. J. Public Health 2007, 15, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, S.; Afshin, A.; Shulkin, M.; Ma, W.; Marsden, D.; Smith, J.; Saheb-kashaf, M.; Shi, P.; Micha, R.; Imamura, F.; et al. A Meta-Analysis of Food Labeling Effects on Consumer Diet Behaviors and Industry Practices. Am. J. Prev. Med. 2019, 56, 300–314. [Google Scholar] [CrossRef]
- Cowburn, G.; Stockley, L. Consumer Understanding and Use of Nutrition Labelling: A Systematic Review. Public Health Nutr. 2005, 8, 21–28. [Google Scholar] [CrossRef]
- Temple, N.J. Front-of-Package Food Labels: A Narrative Review. Appetite 2020, 144, 104485. [Google Scholar] [CrossRef]
- Emrich, T.E.; Qi, Y.; Lou, W.Y.; L’Abbe, M.R. Traffic-Light Labels Could Reduce Population Intakes of Calories, Total Fat, Saturated Fat, and Sodium. PLoS ONE 2017, 12, e0171188. [Google Scholar] [CrossRef] [Green Version]
- Mclean, R.; Hoek, J.; Hedderley, D. Effects of Alternative Label Formats on Choice of High- and Low-Sodium Products in a New Zealand Population Sample. Public Health Nutr. 2012, 15, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Hamlin, R.P.; McNeill, L.S.; Moore, V. The Impact of Front-of-Pack Nutrition Labels on Consumer Product Evaluation and Choice: An Experimental Study. Public Health Nutr. 2015, 18, 2126–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreiro-hurlé, J.; Gracia, A.; De-Magistris, T. Does Nutrition Information on Food Products Lead to Healthier Food Choices? Food Policy 2010, 35, 221–229. [Google Scholar] [CrossRef]
- Persson, P. Attention Manipulation and Information Overload. Behav. Public Policy 2018, 2, 78–106. [Google Scholar] [CrossRef] [Green Version]
- Grunert, K.G.; Fernández-Celemín, L.; Wills, J.M.; Storcksdieck Genannt Bonsmann, S.; Nureeva, L. Use and Understanding of Nutrition Information on Food Labels in Six European Countries. J. Public. Health 2010, 18, 261–277. [Google Scholar] [CrossRef] [Green Version]
- Bray, J.; Hartwell, H.; Appleton, K.; Price, S. Consumer Communication When Eating out of Home: The Role of Technology. Br. Food J. 2021, 123, 373–386. [Google Scholar] [CrossRef]
- Bodini, A.; Zanoli, R. Competitive Factors of the Agro-Food E-Commerce. J. Food Prod. Mark. 2011, 17, 241–260. [Google Scholar] [CrossRef]
- Flaherty, S.J.; McCarthy, M.; Collins, A.M.; McCafferty, C.; McAuliffe, F.M. Exploring Engagement with Health Apps: The Emerging Importance of Situational Involvement and Individual Characteristics. Eur. J. Mark. 2021, 55, 122–147. [Google Scholar] [CrossRef]
- Barfield, J. Food Service App Allows Students to Order Meals with Smartphones, Avoid Long Lines. Available online: https://home.tapingo.com/#home-1 (accessed on 14 November 2021).
- SmartAPPetite: Buy Local, Eat Smart, Get Healthy. Available online: https://theheal.ca/projects/smart-appetite/ (accessed on 14 November 2021).
- Glazer, A.; Hassin, R. On the Economics of Subscriptions. Eur. Econ. Rev. 1982, 19, 343–356. [Google Scholar] [CrossRef]
- Cecchini, M.; Warin, L. Impact of Food Labelling Systems on Food Choices and Eating Behaviours: A Systematic Review and Meta-analysis of Randomised Studies. Obes. Rev. 2016, 17, 201–210. [Google Scholar] [CrossRef]
- Thorndike, A.N.; Riis, J.; Sonnenberg, L.M.; Levy, D.E. Traffic-Light Labels and Choice Architecture: Promoting Healthy Food Choices. Am. J. Prev. Med. 2014, 46, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Borgmeier, I.; Westenhoefer, J. Impact of Different Food Label Formats on Healthiness Evaluation and Food Choice of Consumers: A Randomised-Controlled Study. BMC Public Health 2009, 9, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-J.; Weng, S.-H.; Cheng, Y.-Y.; Lord, A.Y.Z.; Lin, H.-H.; Pan, W.-H. The Application of Traffic-Light Food Labelling in a Worksite Canteen Intervention in Taiwan. Public Health 2017, 150, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Vargas-meza, J.; Jáuregui, A.; Contreras-manzano, A.; Nieto, C.; Barquera, S. Acceptability and Understanding of Front-of-Pack Nutritional Labels: An Experimental Study in Mexican Consumers. BMC Public Health 2019, 19, 1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorton, D.; Mhurchu, C.N.; Chen, M.; Dixon, R. Nutrition Labels: A Survey of Use, Understanding and Preferences among Ethnically Diverse Shoppers in New Zealand. Public Health Nutr. 2008, 12, 1359–1365. [Google Scholar] [CrossRef] [Green Version]
- Ducrot, P.; Méjean, C.; Julia, C.; Kesse-Guyot, E.; Touvier, M.; Fezeu, L.; Hercberg, S.; Péneau, S. Effectiveness of Front-of-Pack Nutrition Labels in French Adults: Results from the Nutrinet-Santé Cohort Study. PLoS ONE 2015, 10, e0140898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emrich, T.E.; Qi, Y.; Mendoza, J.E.; Lou, W.; Cohen, J.E.; Abbé, M.R.L. Consumer Perceptions of the Nutrition Facts Table and Front-of-Pack Nutrition Rating Systems. Appl. Physiol. Nutr. Metab. 2014, 39, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Hanley, N.; Mourato, S.; Wright, R.E. Choice Modelling Approaches: A Superior Alternative for Environmental Valuation? J. Econ. Surv. 2001, 15, 435–462. [Google Scholar] [CrossRef]
- Siyaranamual, M.; Amalia, M.; Yusuf, A.; Alisjahbana, A. Consumers’ Willingness to Pay for Electricity Service Attributes: A Discrete Choice Experiment in Urban Indonesia. Energy Rep. 2020, 6, 562–571. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behaviour. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1973; pp. 105–142. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780511753930. [Google Scholar]
- Dickson, P.R.; Ginter, J.L. Market Segmentation, Product Differentiation, and Marketing Strategy. J. Mark. 1987, 51, 1–10. [Google Scholar] [CrossRef]
- Train, K.; Weeks, M. Discrete Choice Models in Preference Space. In Applications of Simulation Methods in Environmental and Resource Economics; Alberini, A., Scarpa, R., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 1–16. ISBN 9788578110796. [Google Scholar]
- Bujosa, A.; Riera, A.; Hicks, R.L. Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach. Environ. Resour. Econ. 2010, 47, 477–493. [Google Scholar] [CrossRef]
- Behnood, A.; Mannering, F.L. An Empirical Assessment of the Effects of Economic Recessions on Pedestrian-Injury Crashes Using Mixed and Latent-Class Models. Anal. Methods Accid. Res. 2016, 12, 1–17. [Google Scholar] [CrossRef]
- Greene, W.H.; Hensher, D.A. A Latent Class Model for Discrete Choice Analysis: Contrasts with Mixed Logit. Transp. Res. Part B Methodol. 2003, 37, 681–698. [Google Scholar] [CrossRef]
- Scarpa, R.; Thiene, M.; Tempesta, T. Latent Class Count Models of Total Visitation Demand: Days out Hiking in the Eastern Alps. Environ. Resour. Econ. 2007, 38, 447–460. [Google Scholar] [CrossRef]
- Balcombe, K.; Fraser, I.; Di Falco, S. Traffic Lights and Food Choice: A Choice Experiment Examining the Relationship between Nutritional Food Labels and Price. Food Policy 2010, 35, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Hagmann, D.; Siegrist, M. Nutri-Score, Multiple Traffic Light and Incomplete Nutrition Labelling on Food Packages: Effects on Consumers’ Accuracy in Identifying Healthier Snack Options. Food Qual. Prefer. 2020, 83, 103894. [Google Scholar] [CrossRef]
- Findling, M.T.G.; Werth, P.M.; Musicus, A.A.; Bragg, M.A.; Graham, D.J.; Elbel, B.; Roberto, C.A. Comparing Five Front-of-Pack Nutrition Labels’ Influence on Consumers’ Perceptions and Purchase Intentions. Prev. Med. 2018, 106, 114–121. [Google Scholar] [CrossRef]
- Arrúa, A.; Machín, L.; Curutchet, M.R.; Martínez, J.; Antúnez, L.; Alcaire, F.; Giménez, A.; Ares, G. Warnings as a Directive Front-of-Pack Nutrition Labelling Scheme: Comparison with the Guideline Daily Amount and Traffic-Light Systems. Public Health Nutr. 2017, 20, 2308–2317. [Google Scholar] [CrossRef]
- Sacks, G.; Rayner, M.; Swinburn, B. Impact of Front-of-Pack “traffic-Light” Nutrition Labelling on Consumer Food Purchases in the UK. Health Promot. Int. 2009, 24, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Soogali, N.B.; Soon, J.M. Food Allergies and Perceptions towards Food Allergen Labelling in Mauritius. Food Control. 2018, 93, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Soon, J.M. Food Allergen Labelling: “May Contain” Evidence from Malaysia. Food Res. Int. 2018, 108, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Lowe, B.; Fraser, I.; Souza-Monteiro, D.M. A Change for the Better? Digital Health Technologies and Changing Food Consumption Behaviors. Psychol. Mark. 2015, 32, 585–600. [Google Scholar] [CrossRef]
- Isabella, G.; Pozzani, A.I.; Chen, V.A.; Gomes, M.B.P. Influence of Discount Price Announcements on Consumer’s Behavior. RAE Rev. Adm. Empresas 2012, 52, 657–671. [Google Scholar] [CrossRef] [Green Version]
- Büyükdağ, N.; Soysal, A.N.; Ki̇tapci, O. The Effect of Specific Discount Pattern in Terms of Price Promotions on Perceived Price Attractiveness and Purchase Intention: An Experimental Research. J. Retail. Consum. Serv. 2020, 55, 102112. [Google Scholar] [CrossRef]
- Sheehan, D.; Hardesty, D.M.; Ziegler, A.H.; Chen, H. (Allan) Consumer Reactions to Price Discounts across Online Shopping Experiences. J. Retail. Consum. Serv. 2019, 51, 129–138. [Google Scholar] [CrossRef]
- Iran Ministary of Health and Medical Education. Atlas of Non-Communicable Disease Risk Factors Survey in Iran. Available online: https://nih.tums.ac.ir/UpFiles/Documents/2afedf65-8951-4429-9a5f-080d742a8252.pdf (accessed on 11 December 2021).
- Sekaran, U. Methodological and Theoretical Issues and Advancements in Cross-Cultural Research. J. Int. Bus. Stud. 1983, 14, 61–73. [Google Scholar] [CrossRef]
- Cavusgil, S.T.; Das, A. Methodological Issues in Empirical Cross-Cultural Research: A Survey of the Management Literature and a Framework. MIR Manag. Int. Rev. 1997, 37, 71–96. [Google Scholar] [CrossRef]
- Hieke, S.; Kuljanic, N.; Wills, J.M.; Pravst, I.; Kaur, A.; Raats, M.M.; van Trijp, H.C.M.; Verbeke, W.; Grunert, K.G. The Role of Health-Related Claims and Health-Related Symbols in Consumer Behaviour: Design and Conceptual Framework of the CLYMBOL Project and Initial Results. Nutr. Bull. 2015, 40, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Salehi, F.; Abdollahi, Z.; Abdollahi, M. Desirable Food Basket for the Iranian Society; Ministry of Health and Medical Education: Tehran, Iran, 2013; ISBN 9786006782232.
- Cummings, R.G. Laura Unbiased Value Estimates for Environmental Goods: A Cheap Talk Design for the Contingent Valuation Method. Am. Econ. Rev. 1999, 89, 649–665. [Google Scholar] [CrossRef]
- Hess, S.; Palma, D. Apollo: A Flexible, Powerful and Customisable Freeware Package for Choice Model Estimation and Application. J. Choice Model. 2019, 32, 100170. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Erdem, S.; McCarthy, T. The Effect of Front-of-Pack Nutrition Labelling Formats on Consumers’ Food Choices and Decision-Making: Merging Discrete Choice Experiment with an Eye Tracking Experiment. In Proceedings of the 2016 Annual Meeting, Boston, MA, USA, 31 July–2 August 2016. [Google Scholar] [CrossRef]
- Hersey, J.C.; Wohlgenant, K.C.; Arsenault, J.E.; Kosa, K.M.; Muth, M.K. Effects of Front-of-Package and Shelf Nutrition Labeling Systems on Consumers. Nutr. Rev. 2013, 71, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Feunekes, G.I.J.; Gortemaker, I.A.; Willems, A.A.; Lion, R.; van den Kommer, M. Front-of-Pack Nutrition Labelling: Testing Effectiveness of Different Nutrition Labelling Formats Front-of-Pack in Four European Countries. Appetite 2008, 50, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Fenyo, K.; Yang, S.; Zhang, J. Thinking Inside the Subscription Box: New Research on e-Commerce Consumers. Available online: https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/thinking-inside-the-subscription-box-new-research-on-ecommerce-consumers (accessed on 23 March 2022).
- Rakotonarivo, O.S.; Schaafsma, M.; Hockley, N. A Systematic Review of the Reliability and Validity of Discrete Choice Experiments in Valuing Non-Market Environmental Goods. J. Environ. Manag. 2016, 183, 98–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hausman, J. Contingent Valuation: From Dubious to Hopeless. J. Econ. Perspect. 2012, 26, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Andorfer, V.A.; Liebe, U. Research on Fair Trade Consumption-A Review. J. Bus. Ethics 2012, 106, 415–435. [Google Scholar] [CrossRef]
Attribute | Description | Levels * |
---|---|---|
Basket | The nutritional information is displayed in two ways: a: basket: information shown in aggregate form for all the selected products (the entire basket). b: individual: information presented for each product in the basket. | Basket = 1, Individual = 0 |
Format | a: Guideline Daily Amounts (GDAs): this label communicates nutrient content levels in absolute values, per 100 g or portion size, and is also expressed as a percentage of proposed daily reference quantities within one’s total diet. b: Traffic Light System (TLS): this label shows nutrient content by weight. Green, amber, and red colours are used to respectively depict low, medium, and high content for unhealthy components (e.g., salt). | Guideline Daily Amounts = 0, Traffic Light System = 1 |
Sodium (salt) alert | A service will alert shoppers if they buy products with high sodium content. | Salt alert = 1, No alert = 0 |
Fat alert | A service to alert shoppers to avoid buying foods with high-fat content. | Fat alert = 1, No alert = 0 |
Allergies | A service helps buyers avoid an allergic reaction. The most common ingredients that trigger food allergens include dairy, eggs, peanuts, wheat, corn and soy. The service also includes any allergens found in flavourings, colourings or other additives. This application allows users to scan products’ barcodes to check for allergens. | Allergy alerts = 1, No alerts = 0 |
Payment | Payment for using the diet application is based on monthly, quarterly, or yearly subscription. Quarterly and yearly subscribes have access to a 50% and 70%discount, respectively. | Monthly = 0, Quarterly = 1, Yearly = 2 |
Price per month | Monthly cost for using services of diet application (without the quarterly and yearly discount). | 1500-, 4500-, 7500-, 10,500-(tomans) |
List of Products | |
---|---|
Bread (400 g package) | Barbecued chicken (800 g pack) |
Rice (300 g pack) | Eggs |
Macaroni (500 g package) | Milk (1 L) |
A can of baked beans and mushrooms (400 g) | Vegetable oils (810 g) |
Olivier salad (250 g pack) | Chicken soup (70 g package) |
Vegetables (250 g pack) | Biscuits (100 g) |
Apples | Coca-cola (1.50 L) |
Cheese (450 g) | Please add to list other foodstuffs you buy |
Variable | Percent (%) |
---|---|
Gender | |
Female | 57.00 |
Male | 43.00 |
Marital Status | |
Single | 29.41 |
Married | 70.59 |
Age | |
18–30 | 25.98 |
31–50 | 61.27 |
51–65 | 12.25 |
Over 65 | 0.49 |
Education level | |
Primary (1–5) | 2.45 |
Middle (6–8) | 6.86 |
Diploma | 20.59 |
Associate degree | 13.24 |
Bachelor | 32.35 |
Master or over | 24.51 |
BodyMass Index (BMI) | |
Underweight | 3.90 |
Normal Weight | 41.00 |
Pre-obesity | 40.00 |
Obesity | 16.00 |
Health conditions | |
High blood pressure | 15.00 |
Food allergies | 15.00 |
Average household monthly income (10 million rial) | |
Below 1.49 | 19.61 |
1.50–2.49 | 29.90 |
2.50–3.49 | 21.57 |
3.50–4.49 | 11.76 |
4.50–5.49 | 7.35 |
5.50–6.49 | 3.43 |
over 6.50 | 6.37 |
ML in Preference Space | ML in Willingness to Pay Space (1000 Tomans) | |||
---|---|---|---|---|
Variable | Mean | Standard Error | Mean | Standard Error |
ASC | 1.94 *** | 0.20 | −1.67 | −0.20 |
Mean estimates | ||||
Basket | −0.47 *** | 0.09 | −9.01 * | 5.09 |
Format (TLS) | 0.03 | 0.07 | −0.19 | 1.14 |
Sodium (salt) alert | 1.16 *** | 0.10 | +20.70 *** | 7.10 |
Fat alert | 1.33 *** | 0.10 | +23.04 *** | 7.95 |
Allergy alerts | 0.79 *** | 0.09 | +12.92 *** | 4.02 |
Payment quarterly | 1.56 * | 0.80 | +23.06 | 15.17 |
Payment yearly | −0.22 ** | 0.11 | −1.74 | 2.00 |
Price | −2.64 *** | 0.24 | +2.71 *** | 0.32 |
Standard deviation estimates | ||||
Basket | 0.96 *** | 0.10 | 16.47 *** | 5.47 |
Format | 0.28 ** | 0.14 | 3.36 | 2.10 |
Sodium (salt) alert | 0.78 *** | 0.09 | 11.98 *** | 4.09 |
Fat alert | 0.90 *** | 0.11 | 10.65 *** | 3.18 |
Allergies | 0.74 *** | 0.10 | 12.05 ** | 5.73 |
Payment quarterly | 2.22 *** | 0.54 | 30.64 ** | 12.40 |
Payment yearly | 0.47 *** | (0.15) | 6.79 ** | 3.29 |
Price | 0.76 *** | (0.13) | 0.89 *** | 0.20 |
Estimated parameters | 17 | 17 | ||
Log-likelihood (final) | −1504.87 | −1496.26 | ||
Rho-square | 0.44 | 0.44 | ||
Adj.Rho-square | 0.43 | 0.44 | ||
AIC | 3043.75 | 3026.52 | ||
BIC | 3142.4 | 3125.17 |
Class 1 | Class 2 | |||||
---|---|---|---|---|---|---|
Variables | Mean | Standard Error | WTP (1000 Tomans) | Mean | Standard Error | WTP (1000 Tomans) |
Basket | −0.54 | 0.37 | −0.36 *** | 0.06 | −7.2 | |
Format | −1.13 ** | 0.49 | −2.51 | 0.04 | 0.05 | |
Sodium (salt) alert | 1.96 *** | 0.70 | 4.36 | 0.81 *** | 0.05 | 16.2 |
Fat alert | 3.98 *** | 0.79 | 8.84 | 0.71 *** | 0.06 | 14.2 |
Allergy alerts | 0.78 * | 0.41 | 1.73 | 0.58 *** | 0.05 | 11.6 |
Payment quarterly | −2.88 *** | 0.75 | −6.40 | −0.02 | 0.32 | |
Payment yearly | −2.49 *** | 0.73 | −5.53 | −0.07 | 0.09 | |
Price | −0.45 *** | 0.11 | −0.05 *** | 0.01 | ||
ASC a | 2.12 *** | 0.19 | - | |||
Class membership probability | 0.14 | 0.86 | ||||
Log-likelihood (final) | −1570.53 | |||||
Rho-square | 0.42 | |||||
Adj.Rho-square | 0.41 | |||||
AIC | 3177.06 | |||||
BIC | 3281.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadrmousavigargari, S.; Cubero Dudinskaya, E.; Mandolesi, S.; Naspetti, S.; Mojaverian, S.M.; Zanoli, R. Assessing Consumer Willingness to Pay for Nutritional Information Using a Dietary App. Nutrients 2022, 14, 5023. https://doi.org/10.3390/nu14235023
Sadrmousavigargari S, Cubero Dudinskaya E, Mandolesi S, Naspetti S, Mojaverian SM, Zanoli R. Assessing Consumer Willingness to Pay for Nutritional Information Using a Dietary App. Nutrients. 2022; 14(23):5023. https://doi.org/10.3390/nu14235023
Chicago/Turabian StyleSadrmousavigargari, Seyyedehsara, Emilia Cubero Dudinskaya, Serena Mandolesi, Simona Naspetti, Seyed Mojtaba Mojaverian, and Raffaele Zanoli. 2022. "Assessing Consumer Willingness to Pay for Nutritional Information Using a Dietary App" Nutrients 14, no. 23: 5023. https://doi.org/10.3390/nu14235023
APA StyleSadrmousavigargari, S., Cubero Dudinskaya, E., Mandolesi, S., Naspetti, S., Mojaverian, S. M., & Zanoli, R. (2022). Assessing Consumer Willingness to Pay for Nutritional Information Using a Dietary App. Nutrients, 14(23), 5023. https://doi.org/10.3390/nu14235023