Suitability and Allocation of Protein-Containing Foods According to Protein Tolerance in PKU: A 2022 UK National Consensus
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Voting Results
3.2. Final Consensus Results
3.3. Differences in Voting between Paediatric and Adult Care Centres
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BIOPKU. PAHvdb. Available online: http://www.biopku.org (accessed on 9 September 2022).
- Sacharow, S.; Rajabi, F.; Levy, H. Phenylketonuria. In Clinical DNA Variant Interpretation, Theory and Practice, Translation and Applied Genomics Series, 1st ed.; Lázaro, C., Lerner-Ellis, J., Spurdle, A., Eds.; Academic Press: London, UK, 2021; pp. 291–304. [Google Scholar]
- van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The Complete European Guidelines on Phenylketonuria: Diagnosis and Treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Spronsen, F.J.; Blau, N.; Harding, C.; Burlina, A.; Longo, N.; Bosch, A.M. Phenylketonuria. Nat. Rev. Dis. Primers 2021, 7, 36. [Google Scholar] [CrossRef]
- van Spronsen, F.J.; van Wegberg, A.M.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. Key European Guidelines for the Diagnosis and Management of Patients with Phenylketonuria. Lancet Diabetes Endocrinol. 2017, 5, 743–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, A.; van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU Dietary Handbook to Accompany PKU Guidelines. Orphanet. J. Rare Dis. 2020, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Ford, S.; O’Driscoll, M.; MacDonald, A. Living with Phenylketonuria: Lessons from the PKU Community. Mol. Genet. Metab. Rep. 2018, 17, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.; Adam, S.; Adams, S.; Allen, H.; Ashmore, C.; Bailey, S.; Banks, J.; Churchill, H.; Cochrane, B.; Cook, J.; et al. Uniformity of Food Protein Interpretation Amongst Dietitians for Patients with Phenylketonuria (PKU): 2020 UK National Consensus Statements. Nutrients 2020, 12, 2205. [Google Scholar] [CrossRef]
- Ilgaz, F.; Marsaux, C.; Pinto, A.; Singh, S.; Rohde, C.; Karabulut, E.; Gökmen-Özel, H.; Kuhn, M.; MacDonald, A. Protein Substitute Requirements of Patients with Phenylketonuria on BH4 Treatment: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 1040. [Google Scholar] [CrossRef]
- Blau, N. Sapropterin Dihydrochloride for the Treatment of Hyperphenylalaninemias. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1207–1218. [Google Scholar] [CrossRef]
- Datapharm. Eletronic Medicines Compendium. Sapropterin Dihydrochloride 100 mg Soluble Tablets. Available online: https://www.medicines.org.uk/emc/product/13150/smpc#gref (accessed on 3 August 2022).
- Burton, B.K.; Grange, D.K.; Milanowski, A.; Vockley, G.; Feillet, F.; Crombez, E.A.; Abadie, V.; Harding, C.O.; Cederbaum, S.; Dobbelaere, D.; et al. The Response of Patients with Phenylketonuria and Elevated Serum Phenylalanine to Treatment with Oral Sapropterin Dihydrochloride (6r-Tetrahydrobiopterin): A Phase II, Multicentre, Open-Label, Screening Study. J. Inherit. Metab. Dis. 2007, 30, 700–707. [Google Scholar] [CrossRef]
- Lee, P.; Treacy, E.P.; Crombez, E.; Wasserstein, M.; Waber, L.; Wolff, J.; Wendel, U.; Dorenbaum, A.; Bebchuk, J.; Christ-Schmidt, H.; et al. Safety and Efficacy of 22 Weeks of Treatment with Sapropterin Dihydrochloride in Patients with Phenylketonuria. Am. J. Med. Genet. A 2008, 146, 2851–2859. [Google Scholar] [CrossRef]
- Levy, H.L.; Milanowski, A.; Chakrapani, A.; Cleary, M.; Lee, P.; Trefz, F.K.; Whitley, C.B.; Feillet, F.; Feigenbaum, A.S.; Bebchuk, J.D.; et al. Efficacy of Sapropterin Dihydrochloride (Tetrahydrobiopterin, 6r-BH4) for Reduction of Phenylalanine Concentration in Patients with Phenylketonuria: A Phase III Randomised Placebo-Controlled Study. Lancet 2007, 370, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Muntau, A.C.; Adams, D.J.; Bélanger-Quintana, A.; Bushueva, T.V.; Cerone, R.; Chien, Y.H.; Chiesa, A.; Coşkun, T.; de Las Heras, J.; Feillet, F.; et al. International Best Practice for the Evaluation of Responsiveness to Sapropterin Dihydrochloride in Patients with Phenylketonuria. Mol. Genet. Metab. 2019, 127, 1–11. [Google Scholar] [CrossRef]
- Trefz, F.K.; Burton, B.K.; Longo, N.; Casanova, M.M.; Gruskin, D.J.; Dorenbaum, A.; Kakkis, E.D.; Crombez, E.A.; Grange, D.K.; Harmatz, P.; et al. Efficacy of Sapropterin Dihydrochloride in Increasing Phenylalanine Tolerance in Children with Phenylketonuria: A Phase III, Randomized, Double-Blind, Placebo-Controlled Study. J. Pediatr. 2009, 154, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.; Blau, N. Effect of BH(4) Supplementation on Phenylalanine Tolerance. J. Inherit. Metab. Dis. 2009, 32, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, R.; Wolfgart, E.; Weglage, J.; Rutsch, F. Sapropterin Treatment Does Not Enhance the Health-Related Quality of Life of Patients with Phenylketonuria and Their Parents. Acta Paediatr. 2017, 106, 953–959. [Google Scholar] [CrossRef]
- Hennermann, J.B.; Roloff, S.; Gebauer, C.; Vetter, B.; von Arnim-Baas, A.; Mönch, E. Long-Term Treatment with Tetrahydrobiopterin in Phenylketonuria: Treatment Strategies and Prediction of Long-Term Responders. Mol. Genet. Metab. 2012, 107, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Lambruschini, N.; Pérez-Dueñas, B.; Vilaseca, M.A.; Mas, A.; Artuch, R.; Gassió, R.; Gómez, L.; Gutiérrez, A.; Campistol, J. Clinical and Nutritional Evaluation of Phenylketonuric Patients on Tetrahydrobiopterin Monotherapy. Mol. Genet. Metab. 2005, 86, S54–S60. [Google Scholar] [CrossRef]
- Leuret, O.; Barth, M.; Kuster, A.; Eyer, D.; de Parscau, L.; Odent, S.; Gilbert-Dussardier, B.; Feillet, F.; Labarthe, F. Efficacy and Safety of BH4 before the Age of 4 Years in Patients with Mild Phenylketonuria. J. Inherit. Metab. Dis. 2012, 35, 975–981. [Google Scholar] [CrossRef]
- Singh, R.H.; Quirk, M.E.; Douglas, T.D.; Brauchla, M.C. BH(4) Therapy Impacts the Nutrition Status and Intake in Children with Phenylketonuria: 2-Year Follow-Up. J. Inherit. Metab. Dis. 2010, 33, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Tansek, M.Z.; Groselj, U.; Kelvisar, M.; Kobe, H.; Lampret, B.R.; Battelino, T. Long-Term BH4 (Sapropterin) Treatment of Children with Hyperphenylalaninemia—Effect on Median Phe/Tyr Ratios. J. Pediatr. Endocrinol. Metab. 2016, 29, 561–566. [Google Scholar] [CrossRef]
- Thiele, A.G.; Rohde, C.; Mütze, U.; Arelin, M.; Ceglarek, U.; Thiery, J.; Baerwald, C.; Kiess, W.; Beblo, S. The Challenge of Long-Term Tetrahydrobiopterin (BH4) Therapy in Phenylketonuria: Effects on Metabolic Control, Nutritional Habits and Nutrient Supply. Mol. Genet. Metab. Rep. 2015, 4, 62–67. [Google Scholar] [CrossRef]
- Thiele, A.G.; Weigel, J.F.; Ziesch, B.; Rohde, C.; Mütze, U.; Ceglarek, U.; Thiery, J.; Müller, A.S.; Kiess, W.; Beblo, S. Nutritional Changes and Micronutrient Supply in Patients with Phenylketonuria under Therapy with Tetrahydrobiopterin (BH(4)). JIMD Rep. 2013, 9, 31–40. [Google Scholar] [PubMed] [Green Version]
- Demirdas, S.; Maurice-Stam, H.; Boelen, C.C.; Hofstede, F.C.; Janssen, M.C.; Langendonk, J.G.; Mulder, M.F.; Rubio-Gozalbo, M.E.; van Spronsen, F.J.; de Vries, M.; et al. Evaluation of Quality of Life in PKU before and after Introducing Tetrahydrobiopterin (BH4); a Prospective Multi-Center Cohort Study. Mol. Genet. Metab. 2013, 110, S49–S56. [Google Scholar] [CrossRef]
- Vilaseca, M.A.; Lambruschini, N.; Gómez-López, L.; Gutiérrez, A.; Moreno, J.; Tondo, M.; Artuch, R.; Campistol, J. Long-Chain Polyunsaturated Fatty Acid Status in Phenylketonuric Patients Treated with Tetrahydrobiopterin. Clin. Biochem. 2010, 43, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Zori, R.; Ahring, K.; Burton, B.; Pastores, G.M.; Rutsch, F.; Jha, A.; Jurecki, E.; Rowell, R.; Harding, C. Long-Term Comparative Effectiveness of Pegvaliase Versus Standard of Care Comparators in Adults with Phenylketonuria. Mol. Genet. Metab. 2019, 128, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Hillert, A.; Anikster, Y.; Belanger-Quintana, A.; Burlina, A.; Burton, B.K.; Carducci, C.; Chiesa, A.E.; Christodoulou, J.; Đorđević, M.; Desviat, L.R.; et al. The Genetic Landscape and Epidemiology of Phenylketonuria. Am. J. Hum. Genet. 2020, 107, 234–250. [Google Scholar] [CrossRef]
- Aldámiz-Echevarría, L.; Bueno, M.A.; Couce, M.L.; Lage, S.; Dalmau, J.; Vitoria, I.; Andrade, F.; Llarena, M.; Blasco, J.; Alcalde, C.; et al. Tetrahydrobiopterin Therapy vs Phenylalanine-Restricted Diet: Impact on Growth in PKU. Mol. Genet. Metab 2013, 109, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Brantley, K.D.; Douglas, T.D.; Singh, R.H. One-Year Follow-up of B Vitamin and Iron Status in Patients with Phenylketonuria Provided Tetrahydrobiopterin (BH4). Orphanet. J. Rare Dis 2018, 13, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evers, R.A.F.; van Wegberg, A.M.J.; van Dam, E.; de Vries, M.C.; Janssen, M.C.H.; van Spronsen, F.J. Anthropomorphic Measurements and Nutritional Biomarkers after 5 Years of BH(4) Treatment in Phenylketonuria Patients. Mol. Genet. Metab. 2018, 124, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Longo, N.; Arnold, G.L.; Pridjian, G.; Enns, G.M.; Ficicioglu, C.; Parker, S.; Cohen-Pfeffer, J.L. Long-Term Safety and Efficacy of Sapropterin: The PKUDOS Registry Experience. Mol. Genet. Metab. 2015, 114, 557–563. [Google Scholar] [CrossRef]
- Muntau, A.C.; Burlina, A.; Eyskens, F.; Freisinger, P.; Leuzzi, V.; Sivri, H.S.; Gramer, G.; Pazdírková, R.; Cleary, M.; Lotz-Havla, A.S.; et al. Long-Term Efficacy and Safety of Sapropterin in Patients Who Initiated Sapropterin at <4 years of Age with Phenylketonuria: Results of the 3-Year Extension of the Spark Open-Label, Multicentre, Randomised Phase IIIb Trial. Orphanet J. Rare Dis. 2021, 16, 341. [Google Scholar]
- Rocha, J.C.; Ferreira de Almeida, M.; Rocha, S.; Guimas, A.; Ribeiro, R.; Martins, E.; Bandeira, A.; Borger, N.; MacDonald, A.; Van Spronsen, F. Nutritional Status in BH4 Treated Patients with Phenylketonuria: Preliminary Data from TNSPKU Project. J. Inborn Errors Metab. Screen 2017, 5, 90–91. [Google Scholar]
- Rodrigues, C.; Pinto, A.; Faria, A.; Teixeira, D.; van Wegberg, A.M.J.; Ahring, K.; Feillet, F.; Calhau, C.; MacDonald, A.; Moreira-Rosário, A.; et al. Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (PKU)? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3443. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, M.; Spranger, J. Delphi Technique in Health Sciences: A Map. Front. Public Health 2020, 8, 457. [Google Scholar] [CrossRef]
- Public Health England. Composition of Foods Integrated Dataset (Cofid). Available online: https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid (accessed on 14 July 2022).
- British Dietetic Association. Portion Sizes: Food Fact Sheet. Available online: https://www.bda.uk.com/resource/food-facts-portion-sizes.html (accessed on 14 July 2022).
- Raymond, J.L.; Morrow, K. Krause and Mahan’s Food & the Nutrition Care Process, 15th ed.; Elsevier: Saint Louis, MO, USA, 2020. [Google Scholar]
- Bik-Multanowski, M.; Didycz, B.; Mozrzymas, R.; Nowacka, M.; Kaluzny, L.; Cichy, W.; Schneiberg, B.; Amilkiewicz, J.; Bilar, A.; Gizewska, M.; et al. Quality of Life in Noncompliant Adults with Phenylketonuria after Resumption of the Diet. J. Inherit. Metab. Dis. 2008, 31, S415–S418. [Google Scholar] [CrossRef] [PubMed]
- DeCosta, P.; Møller, P.; Frøst, M.B.; Olsen, A. Changing Children’s Eating Behaviour—A Review of Experimental Research. Appetite 2017, 113, 327–357. [Google Scholar] [CrossRef]
- Gibson, E.L.; Wardle, J.; Watts, C.J. Fruit and Vegetable Consumption, Nutritional Knowledge and Beliefs in Mothers and Children. Appetite 1998, 31, 205–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bédard, A.; Lamarche, P.O.; Grégoire, L.M.; Trudel-Guy, C.; Provencher, V.; Desroches, S.; Lemieux, S. Can Eating Pleasure Be a Lever for Healthy Eating? A Systematic Scoping Review of Eating Pleasure and Its Links with Dietary Behaviors and Health. PLoS ONE 2020, 15, e0244292. [Google Scholar] [CrossRef]
- de Gavelle, E.; Davidenko, O.; Fouillet, H.; Delarue, J.; Darcel, N.; Huneau, J.F.; Mariotti, F. The Willingness to Modify Portion Sizes or Eat New Protein Foods Largely Depends on the Dietary Pattern of Protein Intake. Nutrients 2019, 11, 1556. [Google Scholar] [CrossRef] [Green Version]
- de Gavelle, E.; Huneau, J.F.; Fouillet, H.; Mariotti, F. The Initial Dietary Pattern Should Be Considered When Changing Protein Food Portion Sizes to Increase Nutrient Adequacy in French Adults. J. Nutr. 2019, 149, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.; Daly, A.; Chahal, S.; Ashmore, C.; MacDonald, J.; MacDonald, A. The Influence of Parental Food Preference and Neophobia on Children with Phenylketonuria (PKU). Mol. Genet. Metab. Rep. 2018, 14, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.; Daly, A.; Chahal, S.; MacDonald, J.; MacDonald, A. Food Acceptance and Neophobia in Children with Phenylketonuria: A Prospective Controlled Study. J. Hum. Nutr. Diet. 2016, 29, 427–433. [Google Scholar] [CrossRef]
- MacDonald, A.; Harris, G.; Rylance, G.; Asplin, D.; Booth, I.W. Abnormal Feeding Behaviours in Phenylketonuria. J. Hum. Nutr. Dietet. 1997, 10, 163–170. [Google Scholar] [CrossRef]
- Haitjema, S.; Lubout, C.M.A.; Abeln, D.; Bruijn-van der Veen, M.; MacDonald, A.; Wolffenbuttel, B.H.R.; van Spronsen, F.J. Dietary Treatment in Dutch Children with Phenylketonuria: An Inventory of Associated Social Restrictions and Eating Problems. Nutrition 2022, 97, 111576. [Google Scholar] [CrossRef]
- Bourne, L.; Bryant-Waugh, R.; Cook, J.; Mandy, W. Avoidant/Restrictive Food Intake Disorder: A Systematic Scoping Review of the Current Literature. Psychiatry Res. 2020, 288, 112961. [Google Scholar] [CrossRef] [PubMed]
- Bilder, D.A.; Kobori, J.A.; Cohen-Pfeffer, J.L.; Johnson, E.M.; Jurecki, E.R.; Grant, M.L. Neuropsychiatric Comorbidities in Adults with Phenylketonuria: A Retrospective Cohort Study. Mol. Genet. Metab. 2017, 121, 1–8. [Google Scholar] [CrossRef]
- Tonon, T.; Martinez, C.; Poloni, S.; Nalin, T.; Macdonald, A.; Schwartz, I. Food Neophobia in Patients with Phenylketonuria. J. Endocrinol. Metab. 2019, 9, 108–112. [Google Scholar] [CrossRef]
- Viau, K.; Wessel, A.; Martell, L.; Sacharow, S.; Rohr, F. Nutrition Status of Adults with Phenylketonuria Treated with Pegvaliase. Mol. Genet. Metab. 2021, 133, 345–351. [Google Scholar] [CrossRef]
- Azevedo Perry, E.; Thomas, H.; Samra, H.R.; Edmonstone, S.; Davidson, L.; Faulkner, A.; Petermann, L.; Manafò, E.; Kirkpatrick, S.I. Identifying Attributes of Food Literacy: A Scoping Review. Public Health Nutr. 2017, 20, 2406–2415. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.J.; Drummond, M.J.; Ward, P.R. Food Literacy Programmes in Secondary Schools: A Systematic Literature Review and Narrative Synthesis of Quantitative and Qualitative Evidence. Public Health Nutr. 2019, 22, 2891–2913. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.K.; Sullivan, D.K.; Ellerbeck, E.F.; Gajewski, B.J.; Gibbs, H.D. Nutrition Literacy Predicts Adherence to Healthy/Unhealthy Diet Patterns in Adults with a Nutrition-Related Chronic Condition. Public Health Nutr. 2019, 22, 2157–2169. [Google Scholar] [CrossRef] [PubMed]
- Vaitkeviciute, R.; Ball, L.E.; Harris, N. The Relationship between Food Literacy and Dietary Intake in Adolescents: A Systematic Review. Public Health Nutr. 2015, 18, 649–658. [Google Scholar] [CrossRef]
Author, Year | Country | Number of Patients on Sapropterin Treatment (Age) | Length of Time of Follow-Up | Baseline Blood Phenylalanine (µmol/L) | Blood Phenylalanine (µmol/L) with Sapropterin | % Change in Blood Phenylalanine | Baseline Natural Protein/Phenylalanine Intake (mg/day) | Natural Protein/Phenylalanine Intake (mg/day) with Sapropterin | % Change in Natural Protein/Phenylalanine Intake |
---|---|---|---|---|---|---|---|---|---|
Lambruschini N et al. 2005 [20] | Spain | n= 11 (0.2–12.2 years) | 1 year | 382 ± 229 | 442 ± 141 | +15.7% (n.s.) | 356 ± 172 | 1546 ± 192 | +334% |
Burlina A and Blau N, 2009 [17] | Italy | n=12 (5.5 ± 4.7 years) | 6 months–7 years | 662 ± 221.4 | N/A | N/A | 498 ± 49 | 1475 ± 155 | +196% |
Singh RH et al., 2010 [22] | USA | n = 6 (8.7 ± 2.5 years) | 24 months | N/A | N/A | N/A | 421 ± 128 | 1470 ± 455 | +249% |
Hennermann JB et al., 2012 [19] | Germany | n = 18 | 48 ± 27 months | N/A | N/A | N/A | 452 ± 201 | 1593 ± 647 | +252% |
Leuret O et al., 2012 [21] | France | n = 15 (39 ± 27 months) | 23 (7–80) months | 638 ± 176 | 240 ± 72 | −62.4% | 456 ± 181 | 1683 ± 627 | +269% |
Thiele AG et al., 2013 [25] | Germany | n = 8 (5 –16 years) | 3 months | 283 ± 145 | 304 ± 136 | +7.4% (n.s.) | 629 ± 476 | 2131 ± 1084 | +239% |
Thiele AG et al., 2015 [24] | Germany | n = 8 (10.5 ± 3.8 years) | 2 years | 262.2 ± 129.4 | 382.7 ± 148.1 | +46% (s.s.) | 493.2 ± 161.8 | 2021.9 ± 897.4 | +310% |
Longo N et al., 2015 [33] | USA | n = 504 (treatment group) | 6 years | 591 ± 382 | 392 ± 239 | −33.7% (s.s.) | 1000 ± 959 | 1197 ± 667 | +20% |
Aldamiz-Echevarria et al., 2013 [30] | Spain | n = 36 (5 ± 4.6 years) | 2 years | 255.2 ± 146.8 | 365.5 ± 226.5 | +43.2% | 29.9 (18.3–52.3) mg/kg/day | 41.2 (22.9–48.9) mg/kg/day | +38% |
n = 10 (5.2 ± 3.1 years) | 5 years | 204.0 ± 143.9 | 289.6 ± 30.6 | +42% | 30.8 (24.6–54.8) mg/kg/day | 38.1 (17.6–47.9) mg/kg/day | +24% | ||
Tansek MZ et al., 2016 [23] | Slovenia | n = 9 (2–10 years) | 2 years | 200 [191–302] | 190 [135–285] | −5% (n.s.) | 620 [400–700] | 2000 [1000–2000] | +223% |
Feldmann R et al., 2017 [18] | Germany | n = 46 (24 paediatrics) Age: N/A | 6 weeks | 795.3 (340.8–1884) | N/A | N/A | 13.8 (4.3–36.9) mg/kg/day | 35.2 (11.9–81.5) mg/kg/day | +155% |
Evers RAF et al., 2018 [32] | Netherlands | n = 21 (13.1 ± 9.2 years) | 5 years | N/A | N/A | N/A | 0.43 ± 0.28 g/kg/day | 0.66 ± 0.26 g/kg/day | +54% |
Brantley KD et al., 2018 [31] | USA | n = 18 (16.6 ± 10.3 years) | 1 year | 461.5 [366–539] | 355 [231–427] | −23.1% | 791 [529–2207] | 1198 [993–1457] | +52% |
Foods Containing Protein ≤10 g/100 g (n = 6 Food Groups) |
|
Foods Containing Protein ≤12 g/100 g (n = 4 Food Groups) |
|
Foods Containing Protein between 11–15 g/100 g (n = 1 Food Group) |
|
Foods Containing Protein between 11–20 g/100 g (n = 7 Food Groups) |
|
Foods Containing Protein between 11–25 g/100 g (n = 1 Food Group) |
|
Foods Containing Protein >20 g/100 g (n = 7 Food Groups) |
|
Food Group (Protein Content) (g/100 g) | Protein Tolerance (g/day) Considered the Most Suitable Point to Introduce the Protein-Containing Food Group based on majority votes | % (n) of Centres Voting for the Protein Tolerance Level | The Overall Range of Protein Tolerance (g/day) | Overall Median Protein Tolerance (g/day) |
---|---|---|---|---|
Gluten-free pasta (5–10 g) | ≥15 g | 55 (12/22) | 10–20 | 15 |
Lentils in water/brine (5–10 g) | ≥15 g | 62 (13/21) | 10–20 | 15 |
Soft cheese (5–10 g) | ≥15 g | 45 (10/22) | 10–30 | 15 |
Gluten-free flour (<10 g) | ≥15 g | 55 (12/22) | 10–25 | 15 |
Bread and bread products (≤12 g) | ≥15 g | 45 (10/22) | 15–30 | 20 |
Feta cheese/cheese spread (10–20 g) | ≥15 g | 41 (9/22) | 10–40 | 20 |
Plant meat/fish alternatives (5–10 g) | ≥20 g | 62 (13/21) | 10–30 | 20 |
* Pasta (~10 g) | ≥20 g | 43 (9/21) | 15–30 | 20 |
* Flours (≤12 g) | ≥20 g | 41 (9/22) | 10–30 | 20 |
Pot Noodles (5–12 g/pot) | ≥20 g | 65 (13/20) | 15–25 | 20 |
* Pasta (11–15 g) | ≥20 g | 45 (10/22) | 15–30 | 20 |
Eggs (10–20 g) | ≥20 g | 36 (8/22) | 15–40 | 25 |
Nuts (10–20 g) | ≥20 g | 45 (10/22) | 15–30 | 23 |
Dried legumes (10–25 g) | ≥20 g | 33 (7/21) | 15–30 | 20 |
Hard cheese (>20 g) | ≥20 g | 41 (9/22) | 15–50 | 20 |
Seeds (>20 g) | ≥20 g | 33 (7/21) | 10–40 | 20 |
Yeast extract spreads (>20 g) | ≥20 g | 40 (8/20) | 10–40 | 20 |
Meat products (5–10 g) | ≥25 g | 35 (7/20) | 15–40 | 25 |
* Flours (~20 g) | ≥25 g | 41 (9/22) | 10–40 | 25 |
Nuts (>20 g) | ≥25 g | 45 (10/22) | 15–50 | 25 |
Meat (10–20 g) | ≥30 g | 52 (11/21) | 20–40 | 30 |
Fish (10–20 g) | ≥30 g | 52 (11/21) | 20–40 | 30 |
Plant meat/fish alternatives (10–20 g) | ≥30 g | 71 (15/21) | 20–40 | 30 |
Meat (>20 g) | ≥40 g | 62 (13/21) | 30–50 | 40 |
Fish (>20 g) | ≥40 g | 52 (11/21) | 25–50 | 40 |
Plant meat/fish alternatives (>20 g) | ≥40 g | 48 (10/21) | 20–50 | 40 |
Patient Daily Protein Tolerance | Foods/Food Groups Allocated | Protein Content/100 g |
---|---|---|
≥15 g protein/day | Lentils in brine | 5–10 g |
Soft cheese | 5–10 g | |
Cheese spread | 10–20 g | |
Bread and bread products | ≤12 g | |
Gluten-free flour | ≤10 g | |
Gluten-free pasta | 5–10 g | |
≥20 g protein/day | Nuts | >20 g |
Flours * | ~20 g and ≤12 g | |
Meat products | 5–10 g | |
Plant alternatives | 5–10 g | |
Nuts | ~10–20 g | |
Hard cheese | >20 g | |
Pot Noodles | 5–12 g/pot | |
Pasta * | ~10 g and 10–15 g | |
Seeds | >20 g | |
Yeast extract | >20 g | |
Eggs | 10–20 g | |
Dried legumes | 10–25 g | |
≥30 g protein/day | Meat/Fish | >10–20 g |
Plant foods | >10–20 g | |
≥40 g protein/day | Meat/Fish | >20 g |
Plant foods | >20 g |
Food Group (Protein Content) (g/100 g) | Protein Tolerance Level with the Highest Number of Votes | % (n) of Centres Voting for the Tolerance Level | Protein Tolerance Range | Median Minimal Protein Tolerance (g/day) | |||
---|---|---|---|---|---|---|---|
Paediatric centre | Adult centre | Paediatric centre | Adult centre | Paediatric centre | Adult centre | ||
Gluten-free pasta (5–10 g) | 15 g | 45 (5) | 64 (7) | 10–20 | 10–20 | 15 | 15 |
Lentils in water/brine (5–10 g) | 15 g | 70 (7) | 54 (6) | 10–20 | 10–20 | 15 | 15 |
Soft cheese (5–10 g) | 15 g | 54 (6) | 36 (4) | 10–20 | 10–30 | 15 | 17.5 |
Gluten-free flour (<10 g) | 15 g | 64 (7) | 45 (5) | 10–25 | 10–20 | 15 | 15 |
Bread and bread products (≤12 g) | 15 g | 45 (5) | 45 (5) | 15–25 | 15–30 | 20 | 20 |
Cheese spread/feta (10–20 g) | 15 g | 63 (7) | 18 (2) | 10–40 | 20–30 | 15 | 20 |
Plant meat/fish alternatives (5–10 g) | 20 g | 60 (6) | 64 (7) | 10–30 | 15–30 | 20 | 20 |
Pasta (~10 g) | 20 g | 27 (3) | 60 (6) | 15–25 | 20–30 | 15 | 20 |
Flours (≤12 g) | 20 g | 36 (4) | 45 (5) | 10–30 | 15–30 | 20 | 20 |
Pot Noodles (5–12 g/pot) | 20 g | 80 (8) | 50 (5) | 15–25 | 15–25 | 20 | 20 |
Pasta (10–15 g) | 20 g | 45 (5) | 45 (5) | 15–30 | 15–30 | 20 | 20 |
Eggs (10–20 g) | 20 g | 36 (4) | 36 (4) | 15–40 | 15–40 | 25 | 25 |
Nuts (10–20 g) | 20 g | 36 (4) | 55 (6) | 20–30 | 15–30 | 25 | 20 |
Dried legumes (10–25 g) | 20 g | 30 (3) | 36 (4) | 15–25 | 15–30 | 15 | 20 |
Hard cheese (>20 g) | 20 g | 55 (6) | 27 (3) | 15–40 | 15–50 | 20 | 25 |
Seeds (>20 g) | 20 g | 30 (3) | 36 (4) | 15–40 | 10–40 | 17.5 | 20 |
Yeast extract spreads (>20 g) | 20 g | 60 (6) | 20 (2) | 10–40 | 10–40 | 20 | 17.5 |
Meat products (5–10 g) | 25 g | 40 (4) | 30 (3) | 15–40 | 15–40 | 25 | 30 |
Flours (~20 g) | 25 g | 27 (3) | 55 (6) | 10–40 | 15–40 | 25 | 25 |
Nuts (>20 g) | 25 g | 64 (7) | 27 (3) | 20–50 | 15–50 | 25 | 20 |
Meat (10–20 g) | 30 g | 60 (6) | 45 (5) | 20–40 | 30–40 | 30 | 40 |
Fish (10–20 g) | 30 g | 50 (5) | 55 (6) | 20–40 | 20–40 | 30 | 30 |
Plant meat/fish alternatives (10–20 g) | 30 g | 70 (7) | 72 (8) | 20–40 | 20–40 | 30 | 30 |
Meat (>20 g) | 40 g | 50 (5) | 72 (8) | 30–50 | 40–50 | 40 | 40 |
Fish (>20 g) | 40 g | 20 (2) | 82 (9) | 25–50 | 40–50 | 40 | 40 |
Plant meat/fish alternatives (>20 g) | 40 g | 40 (4) | 55 (6) | 20–50 | 20–50 | 35 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gama, M.I.; Adam, S.; Adams, S.; Allen, H.; Ashmore, C.; Bailey, S.; Cochrane, B.; Dale, C.; Daly, A.; De Sousa, G.; et al. Suitability and Allocation of Protein-Containing Foods According to Protein Tolerance in PKU: A 2022 UK National Consensus. Nutrients 2022, 14, 4987. https://doi.org/10.3390/nu14234987
Gama MI, Adam S, Adams S, Allen H, Ashmore C, Bailey S, Cochrane B, Dale C, Daly A, De Sousa G, et al. Suitability and Allocation of Protein-Containing Foods According to Protein Tolerance in PKU: A 2022 UK National Consensus. Nutrients. 2022; 14(23):4987. https://doi.org/10.3390/nu14234987
Chicago/Turabian StyleGama, Maria Inês, Sarah Adam, Sandra Adams, Heather Allen, Catherine Ashmore, Sarah Bailey, Barbara Cochrane, Clare Dale, Anne Daly, Giana De Sousa, and et al. 2022. "Suitability and Allocation of Protein-Containing Foods According to Protein Tolerance in PKU: A 2022 UK National Consensus" Nutrients 14, no. 23: 4987. https://doi.org/10.3390/nu14234987
APA StyleGama, M. I., Adam, S., Adams, S., Allen, H., Ashmore, C., Bailey, S., Cochrane, B., Dale, C., Daly, A., De Sousa, G., Donald, S., Dunlop, C., Ellerton, C., Evans, S., Firman, S., Ford, S., Freedman, F., French, M., Gaff, L., ... MacDonald, A. (2022). Suitability and Allocation of Protein-Containing Foods According to Protein Tolerance in PKU: A 2022 UK National Consensus. Nutrients, 14(23), 4987. https://doi.org/10.3390/nu14234987