Are Caffeine’s Effects on Resistance Exercise and Jumping Performance Moderated by Training Status?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Exercise Protocol
2.3.1. Warm-Up
2.3.2. 1RM Testing
2.3.3. 1RM Mean Repetition Velocity
2.3.4. Muscular Endurance Assessment
2.3.5. Countermovement Jump
2.4. Rating of Perceived Exertion
2.5. Effectiveness of the Blinding
2.6. Statistical Analysis
3. Results
3.1. Bench Press
3.2. Back Squat
3.3. CMJ
3.4. RPE
3.5. Effectiveness of the Blinding
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sport. Med. 2020, 54, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sport. Med. 2019, 27, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of caffeine on resistance exercise: A review of recent research. Sport. Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef]
- Karayigit, R.; Naderi, A.; Akca, F.; Cruz, C.J.G.D.; Sarshin, A.; Yasli, B.C.; Ersoz, G.; Kaviani, M. Effects of Different Doses of Caffeinated Coffee on Muscular Endurance, Cognitive Performance, and Cardiac Autonomic Modulation in Caffeine Naive Female Athletes. Nutrients 2020, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar] [CrossRef]
- Cristina-Souza, G.; Santos, P.S.; Santos-Mariano, A.C.; Coelho, D.B.; Rodacki, A.; De-Oliveira, F.R.; Bishop, D.J.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine Increases Endurance Performance via Changes in Neural and Muscular Determinants of Performance Fatigability. Med. Sci. Sport. Exerc. 2022, 54, 1591–1603. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur. J. Sport Sci. 2017, 17, 1029–1036. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sport. Med. 2018, 48, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Grgic, J. Caffeine and exercise: What next? Sport. Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef]
- Carvalho, A.; Marticorena, F.M.; Grecco, B.H.; Barreto, G.; Saunders, B. Can I Have My Coffee and Drink It? A Systematic Review and Meta-analysis to Determine Whether Habitual Caffeine Consumption Affects the Ergogenic Effect of Caffeine. Sport. Med. 2022, 52, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Pickering, C.; Del Coso, J.; Schoenfeld, B.J.; Mikulic, P. CYP1A2 genotype and acute ergogenic effects of caffeine intake on exercise performance: A systematic review. Eur. J. Nutr. 2021, 60, 1181–1195. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Caffeine and sports performance. Appl. Physiol. Nutr. Metab. 2008, 33, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Kimura, Y.; Tokizawa, K.; Ishii, K.; Oda, K.; Sasaki, T.; Nakamura, Y.; Muraoka, I.; Ishiwata, K. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: A [11C] TMSX PET study. Nucl. Med. Biol. 2005, 32, 831–836. [Google Scholar] [CrossRef]
- Collomp, K.; Ahmaidi, S.; Chatard, J.; Audran, M.; Prefaut, C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 377–380. [Google Scholar] [CrossRef]
- Astorino, T.A.; Cottrell, T.; Lozano, A.T.; Aburto-Pratt, K.; Duhon, J. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiol. Behav. 2012, 106, 211–217. [Google Scholar] [CrossRef]
- Apostolidis, A.; Mougios, V.; Smilios, I.; Frangous, M.; Hadjicharalambous, M. Caffeine supplementation is ergogenic in soccer players independent of cardiorespiratory or neuromuscular fitness levels. J. Int. Soc. Sport. Nutr. 2020, 17, 31. [Google Scholar] [CrossRef]
- O’Rourke, M.P.; O’Brien, B.J.; Knez, W.L.; Paton, C.D. Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. J. Sci. Med. Sport 2008, 11, 231–233. [Google Scholar] [CrossRef] [Green Version]
- Porterfield, S.; Linderman, J.; Laubach, L.L.; Daprano, C.M. Comparison of the effect of caffeine ingestion on time to exhaustion between endurance trained and untrained men. J. Exerc. Physiol. Online 2013, 16, 90–99. [Google Scholar]
- Brooks, J.H.; Wyld, K.; Chrismas, B.C. Acute effects of caffeine on strength performance in trained and untrained individuals. J. Athl. Enhancement. 2015, 5, 31–33. [Google Scholar] [CrossRef]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sport. Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Allerheiligen, B.; Rogers, R. Plyometrics program design. Strength Cond. 1995, 17, 26. [Google Scholar] [CrossRef]
- Bühler, E.; Lachenmeier, D.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahr. Umsch. 2014, 61, 58–63. [Google Scholar]
- Holm, S. Declaration of helsinki. Int. Encycl. Ethics 2013. [Google Scholar] [CrossRef]
- Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B. International Society of Sports Nutrition position stand: Nutrient timing. J. Int. Soc. Sport. Nutr. 2017, 14, 33. [Google Scholar] [CrossRef]
- Skinner, T.L.; Jenkins, D.G.; Taaffe, D.R.; Leveritt, M.D.; Coombes, J.S. Coinciding exercise with peak serum caffeine does not improve cycling performance. J. Sci. Med. Sport 2013, 16, 54–59. [Google Scholar] [CrossRef]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning; Human kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Balsalobre-Fernández, C.; Marchante, D.; Baz-Valle, E.; Alonso-Molero, I.; Jiménez, S.L.; Muñóz-López, M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front. Physiol. 2017, 8, 649. [Google Scholar] [CrossRef] [Green Version]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Gonçalves, L.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sport. 2017, 27, 1240–1247. [Google Scholar] [CrossRef]
- Boyett, J.C.; Giersch, G.E.; Womack, C.J.; Saunders, M.J.; Hughey, C.A.; Daley, H.M.; Luden, N.D. Time of day and training status both impact the efficacy of caffeine for short duration cycling performance. Nutrients 2016, 8, 639. [Google Scholar] [CrossRef] [Green Version]
- Santos Junior, E.R.T.; de Salles, B.F.; Dias, I.; Ribeiro, A.S.; Simão, R.; Willardson, J.M. Classification and determination model of resistance training status. Strength Cond. J. 2021, 43, 77–86. [Google Scholar] [CrossRef]
- Grgic, J.; Oppici, L.; Mikulic, P.; Bangsbo, J.; Krustrup, P.; Pedisic, Z. Test–retest reliability of the Yo-Yo test: A systematic review. Sport. Med. 2019, 49, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Nimmerichter, A.; Steindl, M.; Williams, C.A. Reliability of the single-visit field test of critical speed in trained and untrained adolescents. Sports 2015, 3, 358–368. [Google Scholar] [CrossRef]
- Póvoas, S.C.; Castagna, C.; da Costa Soares, J.M.; Silva, P.; Coelho-e-Silva, M.; Matos, F.; Krustrup, P. Reliability and construct validity of Yo-Yo tests in untrained and soccer-trained schoolgirls aged 9–16. Pediatr. Exerc. Sci. 2016, 28, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test–retest reliability of the one-repetition maximum (1RM) strength assessment: A systematic review. Sport. Med.-Open 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Lombard, W.; Reid, S.; Pearson, K.; Lambert, M. Reliability of metrics associated with a counter-movement jump performed on a force plate. Meas. Phys. Educ. Exerc. Sci. 2017, 21, 235–243. [Google Scholar] [CrossRef]
- Tallis, J.; Higgins, M.F.; Cox, V.M.; Duncan, M.J.; James, R.S. An exercise-induced improvement in isolated skeletal muscle contractility does not affect the performance-enhancing benefit of 70 µmol L−1 caffeine treatment. J. Exp. Biol. 2018, 221, jeb190132. [Google Scholar] [CrossRef] [Green Version]
- Polito, M.; Souza, D.; Casonatto, J.; Farinatti, P. Acute effect of caffeine consumption on isotonic muscular strength and endurance: A systematic review and meta-analysis. Sci. Sport. 2016, 31, 119–128. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sport. Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, F.M.; Carvalho, A.; de Oliveira, L.F.; Dolan, E.; Gualano, B.; Swinton, P.; Saunders, B. Nonplacebo controls to determine the magnitude of ergogenic interventions: A systematic review and meta-analysis. Med. Sci. Sport. Exerc. 2021, 53, 1766–1777. [Google Scholar] [CrossRef]
Variable | Trained (Caffeine) | Trained (Placebo) | Trained (Control) | Recreationally Active (Caffeine) | Recreationally Active (Placebo) | Recreationally Active (Control) | Interaction (p-Value) | Condition (p-Value) | Training Status (p-Value) |
---|---|---|---|---|---|---|---|---|---|
1RM bench press (kg) | 114.5 ± 18.3 | 111.5 ± 15.6 | 109.8 ± 17.0 | 52.8 ± 8.9 | 50.0 ± 8.3 | 48.8 ± 8.8 | 0.823 | <0.001 | <0.001 |
1RM bench press mean velocity (m/s) | 0.15 ± 0.04 | 0.15 ± 0.03 | 0.16 ± 0.03 | 0.14 ± 0.02 | 0.15 ± 0.02 | 0.14 ± 0.01 | 0.502 | 0.719 | 0.143 |
Repetitions to failure with 70% of 1RM in the bench press (repetitions) | 19.4 ± 3.4 | 15.1 ± 2.3 | 16.1 ± 2.6 | 20.6 ± 3.3 | 16.0 ± 3.1 | 15.7 ± 3.1 | 0.218 | <0.001 | 0.647 |
1RM Squat(kg) | 155.0 ± 14.3 | 153.0 ± 13.3 | 152.5 ± 15.5 | 76.5 ± 13.3 | 76.0 ± 12.6 | 73.8 ± 13.1 | 0.572 | 0.02 | <0.001 |
1RM Squat mean velocity (m/s) | 0.16 ± 0.04 | 0.17 ± 0.02 | 0.17 ± 0.03 | 0.18 ± 0.02 | 0.19 ± 0.02 | 0.19 ± 0.02 | 0.811 | 0.157 | 0.025 |
Repetitions to failure with 70% of 1RM in the squat (repetitions) | 21.2 ± 5.7 | 17.2 ± 2.7 | 16.6 ± 2.3 | 20.1 ± 4.7 | 16.0 ± 4.2 | 15.0 ± 4.7 | 0.954 | <0.001 | 0.43 |
CMJ (cm) | 43.5 ± 5.9 | 39.5 ± 7.3 | 39.5 ± 5.8 | 31.5 ± 4.6 | 28.0 ± 5.7 | 27.8 ± 5.4 | 0.933 | <0.001 | <0.001 |
Session RPE | 6.6 ± 1.1 | 6.0 ± 1.2 | 5.9 ± 0.9 | 6.0 ± 0.7 | 5.5 ± 1.0 | 5.9 ± 1.0 | 0.374 | 0.054 | 0.303 |
Variable | Caffeine vs. Placebo | Caffeine vs. Control | Placebo vs. Control |
---|---|---|---|
1RM bench press (kg) | 0.08 (95% CI: 0.03, 0.13) | 0.12 (95% CI: 0.08, 0.17) | 0.04 (95% CI: 0.01, 0.08) |
Repetitions to failure with 70% of 1RM in the bench press (repetitions) | 1.41 (95% CI: 0.91, 2.03) | 1.28 (95% CI: 0.80, 1.86) | −0.12 (95% CI: −0.46, 0.21) |
1RM squat (kg) | 0.03 (95% CI: −0.01, 0.07) | 0.06 (95% CI: 0.02, 0.10) | 0.03 (95% CI: −0.02, 0.08) |
Repetitions to failure with 70% of 1RM for squat (repetitions) | 0.89 (95% CI: 0.36, 1.47) | 1.04 (95% CI: 0.59, 1.57) | 0.21 (95% CI: −0.12, 0.55) |
CMJ (cm) | 0.43 (95% CI: 0.23, 0.66) | 0.46 (95% CI: 0.24, 0.72) | 0.02 (95% CI: −0.14, 0.17) |
Recreational | Trained | |||||||
---|---|---|---|---|---|---|---|---|
Pre-Test | Post Test | Pre-Test | Post-Test | |||||
PLA | CAF | PLA | CAF | PLA | CAF | PLA | CAF | |
Guessed CAF | 3 | 2 | 2 | 3 | 0 | 3 | 0 | 4 |
Guessed PLA | 3 | 1 | 3 | 0 | 3 | 2 | 3 | 1 |
Did not know | 4 | 7 | 5 | 7 | 7 | 5 | 7 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berjisian, E.; Naderi, A.; Mojtahedi, S.; Grgic, J.; Ghahramani, M.H.; Karayigit, R.; Forbes, J.L.; Amaro-Gahete, F.J.; Forbes, S.C. Are Caffeine’s Effects on Resistance Exercise and Jumping Performance Moderated by Training Status? Nutrients 2022, 14, 4840. https://doi.org/10.3390/nu14224840
Berjisian E, Naderi A, Mojtahedi S, Grgic J, Ghahramani MH, Karayigit R, Forbes JL, Amaro-Gahete FJ, Forbes SC. Are Caffeine’s Effects on Resistance Exercise and Jumping Performance Moderated by Training Status? Nutrients. 2022; 14(22):4840. https://doi.org/10.3390/nu14224840
Chicago/Turabian StyleBerjisian, Erfan, Alireza Naderi, Shima Mojtahedi, Jozo Grgic, Mohammad Hossein Ghahramani, Raci Karayigit, Jennifer L. Forbes, Francisco J. Amaro-Gahete, and Scott C. Forbes. 2022. "Are Caffeine’s Effects on Resistance Exercise and Jumping Performance Moderated by Training Status?" Nutrients 14, no. 22: 4840. https://doi.org/10.3390/nu14224840