Left Ventricular Diastolic Dysfunction in Chronic Kidney Disease Patients Not Treated with Dialysis
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Patients
2.3. Defining the Left Ventricular Diastolic Dysfunction
2.4. Metabolic, Nutritional and Inflammatory Parameters
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Lullo, L.; House, A.; Gorini, A.; Santoboni, A.; Russo, D.; Ronco, C. Chronic kidney disease and cardiovascular complications. Heart Fail. Rev. 2015, 20, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Schiattarella, G.G.; Rodolico, D.; Hill, J.A. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc. Res. 2021, 117, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.E.; Robbins, D.C.; Palmieri, V.; Bella, J.N.; Roman, M.J.; Fabsitz, R.; Howard, B.V.; Welty, T.K.; Lee, E.T.; Devereux, R.B. Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: The Strong Heart Study. J. Am. Coll. Cardiol. 2003, 41, 2022–2028. [Google Scholar] [CrossRef]
- Rahman, A.; Jafry, S.; Jeejeebhoy, K.; Nagpal, A.D.; Pisani, B.; Agarwala, R. Malnutrition and Cachexia in Heart Failure. J. Parenter. Enter. Nutr. 2016, 40, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F. Left Ventricular Diastolic Function: Understanding Pathophysiology, Diagnosis, and Prognosis with Echocardiography. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Gatzoulis, M.A.; Adatia, I.; Celermajer, D.; Denton, C.; Ghofrani, A.; Gomez Sanchez, M.A.; Kumar, R.K.; Landzberg, M.; Machado, R.F.; et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62, S34–S41. [Google Scholar] [CrossRef] [Green Version]
- Rochette, L.; Meloux, A.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol. Ther. 2018, 182, 115–132. [Google Scholar] [CrossRef]
- Rochette, L.; Meloux, A.; Rigal, E.; Zeller, M.; Cottin, Y.; Vergely, C. The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int. J. Mol. Sci. 2019, 20, 705. [Google Scholar] [CrossRef] [Green Version]
- Romejko, K.; Rymarz, A.; Szamotulska, K.; Bartoszewicz, Z.; Niemczyk, S. Serum Osteoprotegerin Is an Independent Marker of Left Ventricular Hypertrophy, Systolic and Diastolic Dysfunction of the Left Ventricle and the Presence of Pericardial Fluid in Chronic Kidney Disease Patients. Nutrients 2022, 14, 2893. [Google Scholar] [CrossRef]
- Rymarz, A.; Romejko, K.; Matyjek, A.; Bartoszewicz, Z.; Niemczyk, S. Serum Osteoprotegerin Is an Independent Marker of Metabolic Complications in Non-Dialysis Dependent Chronic Kidney Disease Patients. Nutrients 2021, 13, 3609. [Google Scholar] [CrossRef]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Dhir, M.; Nagueh, S.F. Echocardiography and prognosis of heart failure. Curr. Opin. Cardiol. 2002, 17, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Playford, D.; Strange, G.; Celermajer, D.S.; Evans, G.; Scalia, G.M.; Stewart, S.; Prior, D. Diastolic dysfunction and mortality in 436,360 men and women: The National Echo Database Australia (NEDA). Eur. Heart J. Cardiovasc. Imaging 2021, 22, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Löfman, I.; Szummer, K.; Dahlström, U.; Jernberg, T.; Lund, L.H. Associations with and prognostic impact of chronic kidney disease in heart failure with preserved, mid-range, and reduced ejection fraction. Eur. J. Heart Fail. 2017, 19, 1606–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucharles, S.; Barberato, S.H.; Stinghen, A.E.; Gruber, B.; Meister, H.; Mehl, A.; Piekala, L.; Dambiski, A.C.; Souza, A.; Olandoski, M.; et al. Hypovitaminosis D is associated with systemic inflammation and concentric myocardial geometric pattern in hemodialysis patients with low iPTH levels. Nephron Clin. Pract. 2011, 118, 384–391. [Google Scholar] [CrossRef]
- Hartog, J.W.L.; Voors, A.A.; Bakker, S.J.L.; Smit, A.J.; Van Veldhuisen, D.J. Advanced glycation end-products (AGEs) and heart failure: Pathophysiology and clinical implications. Eur. J. Heart Fail. 2007, 9, 1146–1155. [Google Scholar] [CrossRef]
- Matsubara, J.; Sugiyama, S.; Nozaki, T.; Sugamura, K.; Konishi, M.; Ohba, K.; Matsuzawa, Y.; Akiyama, E.; Yamamoto, E.; Sakamoto, K.; et al. Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. J. Am. Coll. Cardiol. 2011, 57, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Putko, B.N.; Wang, Z.; Lo, J.; Anderson, T.; Becher, H.; Dyck, J.R.B.; Kassiri, Z.; Oudit, G.Y.; on behalf of the Alberta HEART Investigators. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in heart failure with preserved ejection fraction relative to heart failure with reduced ejection fraction: Evidence for a divergence in pathophysiology. PLoS ONE 2014, 9, e99495. [Google Scholar] [CrossRef] [Green Version]
- Bouthoorn, S.; Valstar, G.B.; Gohar, A.; Den Ruijter, H.M.; Reitsma, H.B.; Hoes, A.W.; Rutten, F.H. The prevalence of left ventricular diastolic dysfunction and heart failure with preserved ejection fraction in men and women with type 2 diabetes: A systematic review and meta-analysis. Diabetes Vasc. Dis. Res. 2018, 15, 477–493. [Google Scholar] [CrossRef] [Green Version]
- Altalhi, R.; Pechlivani, N.; Ajjan, R.A. PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 3170. [Google Scholar] [CrossRef]
- Eriksson, P.; Reynisdottir, S.; Lönnqvist, F.; Stemme, V.; Hamsten, A.; Arner, P. Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals. Diabetologia 1998, 41, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Festa, A.; D’Agostino, R., Jr.; Tracy, R.P.; Haffner, S.M. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes 2002, 51, 1131–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamsten, A.; Walldius, G.; Szamosi, A.; Blombäck, M.; Faire, U.; Dahlén, G.; Landou, C.; Wiman, B. Plasminogen activator inhibitor in plasma: Risk factor for recurrent myocardial infarction. Lancet 1987, 2, 3–9. [Google Scholar] [CrossRef]
- Winter, M.P.; Kleber, M.E.; Koller, L.; Sulzgruber, P.; Scharnagl, H.; Delgado, G.; Goliasch, G.; März, W.; Niessner, A. Prognostic significance of tPA/PAI-1 complex in patients with heart failure and preserved ejection fraction. Thromb. Haemost. 2017, 117, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Tuegel, C.; Bansal, N. Heart failure in patients with kidney disease. Heart 2017, 103, 1848–1853. [Google Scholar] [CrossRef]
- Chien, S.C.; Chandramouli, C.; Lo, C.I.; Lin, C.F.; Sung, K.T.; Huang, W.H.; Lai, Y.H.; Yun, C.H.; Su, C.H.; Yeh, H.I.; et al. Associations of obesity and malnutrition with cardiac remodeling and cardiovascular outcomes in Asian adults: A cohort study. PLoS Med. 2021, 18, e1003661. [Google Scholar] [CrossRef]
- Gotsman, I.; Shauer, A.; Zwas, N.R.; Tahiroglu, I.; Lotan, C.; Keren, A. Low serum albumin: A significant predictor of reduced survival in patients with chronic heart failure. Clin. Cardiol. 2019, 42, 365–372. [Google Scholar] [CrossRef]
- Chen, S.C.; Chang, J.M.; Tsai, Y.C.; Huang, J.C.; Su, H.M.; Hwang, S.J.; Chen, H.C. Left atrial diameter and albumin with renal outcomes in chronic kidney disease. Int. J. Med. Sci. 2013, 10, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Otaki, Y.; Watanabe, T.; Takahashi, H.; Funayama, A.; Kinoshita, D.; Yokoyama, M.; Takahashi, T.; Nishiyama, S.; Arimoto, T.; Shishido, T.; et al. Comorbid renal tubular damage and hypoalbuminemia exacerbate cardiac prognosis in patients with chronic heart failure. Clin. Res. Cardiol. 2016, 105, 162–171. [Google Scholar] [CrossRef]
- Bartkowiak, J.; Spitzer, E.; Kurmann, R.; Zürcher, F.; Krähenmann, P.; Garcia-Ruiz, V.; Mercado, J.; Ryffel, C.; Losdat, S.; Llerena, N.; et al. The impact of obesity on left ventricular hypertrophy and diastolic dysfunction in children and adolescents. Sci. Rep. 2021, 11, 13022. [Google Scholar] [CrossRef]
- Powell, B.D.; Redfield, M.M.; Bybee, K.A.; Freeman, W.K.; Rihal, C.S. Association of obesity with left ventricular remodeling and diastolic dysfunction in patients without coronary artery disease. Am. J. Cardiol. 2006, 98, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, H.L.; Lim, W.H.; Seo, J.B.; Kim, S.H.; Zo, J.H.; Kim, M.A. Subclinical alterations in left ventricular structure and function according to obesity and metabolic health status. PLoS ONE 2019, 14, e0222118. [Google Scholar] [CrossRef] [PubMed]
- Vega, A.; Abad, S.; Macías, N.; Aragoncillo, I.; García-Prieto, A.; Linares, T.; Torres, E.; Hernández, A.; Luño, J. Any grade of relative overhydration is associated with long-term mortality in patients with Stages 4 and 5 non-dialysis chronic kidney disease. Clin. Kidney J. 2018, 11, 372–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wizemann, V.; Wabel, P.; Chamney, P.; Zaluska, W.; Moissl, U.; Rode, C.; Malecka-Masalska, T.; Marcelli, D. The mortality risk of overhydration in haemodialysis patients. Nephrol. Dial. Transplant. 2009, 24, 1574–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, B.G.; Lee, J.Y.; Choi, S.O.; Yang, J.W.; Kim, J.S. Relative overhydration is independently associated with left ventricular hypertrophy in dialysis naïve patients with stage 5 chronic kidney disease. Sci. Rep. 2020, 10, 15924. [Google Scholar] [CrossRef]
- Hur, E.; Usta, M.; Toz, H.; Asci, G.; Wabel, P.; Kahvecioglu, S.; Kayikcioglu, M.; Demirci, M.S.; Ozkahya, M.; Duman, S.; et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: A randomized controlled trial. Am. J. Kidney Dis. 2013, 61, 957–965. [Google Scholar] [CrossRef]
- Tai, R.; Ohashi, Y.; Mizuiri, S.; Aikawa, A.; Sakai, K. Association between ratio of measured extracellular volume to expected body fluid volume and renal outcomes in patients with chronic kidney disease: A retrospective single-center cohort study. BMC Nephrol. 2014, 15, 189. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.C.; Tsai, J.C.; Chen, S.C.; Chiu, Y.W.; Hwang, S.J.; Hung, C.C.; Chen, T.H.; Kuo, M.C.; Chen, H.C. Association of fluid overload with kidney disease progression in advanced CKD: A prospective cohort study. Am. J. Kidney Dis. 2014, 63, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Khatibzadeh, S.; Farzadfar, F.; Oliver, J.; Ezzati, M.; Moran, A. Worldwide risk factors for heart failure: A systematic review and pooled analysis. Int. J. Cardiol. 2013, 168, 1186–1194. [Google Scholar] [CrossRef] [Green Version]
- Vedin, O.; Lam, C.S.P.; Koh, A.S.; Benson, L.; Teng, T.H.W.; Tay, W.T.; Braun, O.Ö.; Savarese, G.; Dahlström, U.; Lund, L.H. Significance of Ischemic Heart Disease in Patients with Heart Failure and Preserved, Midrange, and Reduced Ejection Fraction: A Nationwide Cohort Study. Circ. Heart Fail. 2017, 10, e003875. [Google Scholar] [CrossRef]
- Luan, X.; Lu, Q.; Jiang, Y.; Zhang, S.; Wang, Q.; Yuan, H.; Zhao, W.; Wang, J.; Wang, X. Crystal Structure of Human RANKL Complexed with Its Decoy Receptor Osteoprotegerin. J. Immunol. 2012, 189, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, S.; Fabris, B.; Thomas, M.; Toffoli, B.; Tikellis, C.; Candido, R.; Catena, C.; Mulatero, P.; Barbone, F.; Radillo, O.; et al. Osteoprotegerin increases in metabolic syndrome and promotes adipose tissue proinflammatory changes. Moll. Cell. Endocrinol. 2014, 394, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Stępień, E.; Wypasek, E.; Stopyra, K.; Konieczyńska, M.; Przybyło, M.; Pasowicz, M. Increased levels of bone remodeling biomarkers (osteoprotegerin and osteopontin) in hypertensive individuals. Clin. Biochem. 2011, 44, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Kazama, J.J.; Shigematsu, T.; Yano, K.; Tsuda, E.; Miura, M.; Iwasaki, Y.; Kawaguchi, Y.; Gejyo, F.; Kurokawa, K.; Fukagawa, M. Increased circulating levels of osteoclastogenesis inhibitory factor (osteoprotegerin) in patients with chronic renal failure. Am. J. Kidney Dis. 2002, 39, 525–532. [Google Scholar] [CrossRef] [PubMed]
CKD Patients (eGFR < 60 mL/min/1.73 m2) | The Control Group (eGFR ≥ 60 mL/min/1.73 m2) | p-Value | |||
---|---|---|---|---|---|
N | N | ||||
LVDD | 93 | 82.8% | 40 | 57.5% | 0.002 |
IVS > 12 mm | 93 | 18.3% | 40 | 0.0% | 0.004 |
Serum creatinine [mg/dL] | 93 | 1.9 (1.5–2.8) | 40 | 0.9 (0.8–1.0) | <0.001 |
Age [years] | 93 | 63 ± 11 | 40 | 55 ± 16 | <0.001 |
BMI [kg/m2] | 91 | 28.5 (25.2–33.4) | 40 | 28.2 (24.1–31.1) | 0.231 |
SBP [mm Hg] | 91 | 130 (125–140) | 39 | 130 (115–135) | 0.006 |
Hypertension | 91 | 42.9% | 39 | 20.5% | 0.015 |
Myocardial infarction in the past | 93 | 17.2% | 40 | 0.0% | 0.005 |
Fibrinogen [mg/dL] | 55 | 336.9 ± 90.0 | 39 | 259.7 ± 82.4 | <0.001 |
CRP [mg/dL] | 92 | 0.20 (0.10–0.40) | 40 | 0.13 (0.04–0.39) | 0.024 |
TNF-alpha [pg/mL] | 93 | 4.37 (3.43–5.50) | 40 | 2.91 (2.47–4.01) | <0.001 |
Serum glucose [mg/dL] | 92 | 98 (85–132) | 40 | 97 (89–105) | 0.839 |
HgbA1c [%] | 93 | 5.7 (5.3–6.5) | 39 | 5.4 (5.1–5.9) | 0.018 |
HOMA-IR | 92 | 3.8 (1.9–8.2) | 40 | 2.4 (1.5–7.6) | 0.270 |
PAI-1 [ng/mL] | 92 | 92.9 (71.8–117.1) | 40 | 113.2 (82.9–146.6) | 0.015 |
Serum albumin [g/dL] | 92 | 4.4 (4.1–4.6) | 40 | 4.5 (4.3–4.6) | 0.289 |
OPG [pg/mL] | 93 | 403.5 (286.3–550.2) | 40 | 279.5 (201.7–357.6) | <0.001 |
Hemoglobin [g/dL] | 93 | 13.3 ± 1.9 | 40 | 14.7 ± 1.1 | <0.001 |
OH [L] | 80 | 0.18 ± 2.01 | 40 | 0.37 ± 1.12 | 0.594 |
Rel OH [%] | 80 | 0.40 ± 9.36 | 40 | 1.79 ± 5.97 | 0.375 |
Weight [kg] | 91 | 89.31 ± 16.47 | 40 | 85.26 ± 15.51 | 0.189 |
LTI | 80 | 16.79 ± 2.97 | 40 | 15.29 ± 2.90 | 0.010 |
FTI | 80 | 12.16 ± 4.92 | 40 | 12.84 ± 5.59 | 0.495 |
Fat [kg] | 80 | 27.17 ± 11.08 | 40 | 29.17 ± 11.53 | 0.649 |
LTM [kg] | 80 | 51.33 ± 10.54 | 40 | 46.24 ± 9.92 | 0.012 |
ECW [L] | 80 | 19.9 (17.9–21.9) | 40 | 18.2 (17.0–20.6) | 0.027 |
ICW [L] | 80 | 24.5 (21.5–27.8) | 40 | 22.1 (20.2–24.2) | 0.021 |
ECW/ICW | 80 | 0.83 ± 0.10 | 40 | 0.84 ± 0.10 | 0.519 |
CKD Patients (eGFR < 60 mL/min/1.73 m2) | The Control Group (eGFR ≥ 60 mL/min/1.73 m2) | |||||||
---|---|---|---|---|---|---|---|---|
N | Left Ventricular Diastolic Dysfunction | N | Left Ventricular Diastolic Dysfunction | |||||
Yes | No | p-Value | Yes | No | p-Value | |||
Serum creatinine [mg/dL] | 93 | 1.9 (1.5–2.7) | 1.7 (1.4–3.3) | 0.456 | 40 | 0.9 (0.7–1.1) | 0.9 (0.8–0.9) | 1.000 |
Age [years] | 93 | 64 ± 10 | 58 ± 13 | 0.092 | 40 | 64 ± 11 | 42 ± 14 | <0.001 |
BMI [kg/m2] | 91 | 29.1 (25.8–33.5) | 25.9 (24.8–30.1) | 0.109 | 40 | 27.9 (24.4–30.3) | 29.0 (23.4–31.9) | 0.848 |
SBP [mm Hg] | 91 | 130 (127–140) | 130 (120–135) | 0.195 | 39 | 130 (110–134) | 128 (118–135) | 0.554 |
Hypertension | 91 | 45.3% | 31.3% | 0.301 | 39 | 17.4% | 25.0% | 0.563 |
IVS > 12 mm | 93 | 20.8% | 6.3% | 0.171 | 40 | 0.0% | 0.0% | x |
Myocardial infarction in the past | 93 | 20.8% | 0.0% | 0.045 | 40 | 0.0% | 0.0% | x |
Fibrinogen [mg/dL] | 55 | 349.9 ± 91.4 | 285.0 ± 64.1 | 0.012 | 39 | 283.0 ± 84.4 | 226.3 ± 68.9 | 0.033 |
CRP [mg/dL] | 92 | 0.20 (0.10–0.40) | 0.10 (0.10–0.38) | 0.185 | 40 | 0.20 (0.03–0.38) | 0.09 (0.04–0.24) | 0.171 |
TNF-alpha [pg/mL] | 93 | 4.48 (3.44–5.58) | 4.31 (3.33–5.13) | 0.654 | 40 | 3.16 (2.56–4.04) | 2.68 (2.23–3.61) | 0.234 |
Serum glucose [mg/dL] | 92 | 99 (87–140) | 88 (76–97) | 0.010 | 40 | 99 (91–122) | 94 (87–97) | 0.046 |
HgbA1c [%] | 93 | 5.8 (5.3–6.7) | 5.3 (5.2–6.2) | 0.049 | 39 | 5.7 (5.3–6.1) | 5.3 (4.9–5.6) | 0.063 |
HOMA-IR | 92 | 4.0 (2.0–8.7) | 3.0 (1.7–5.6) | 0.293 | 40 | 2.8 (1.5–8.2) | 2.2 (1.5–6.5) | 0.632 |
PAI-1 [ng/mL] | 92 | 91.6 (70.8–113.3) | 100.4 (82.5–138.3) | 0.082 | 40 | 97.8 (85.8–151.7) | 116.2 (81.8–143.3) | 0.594 |
Serum albumin [g/dL] | 91 | 4.4 (4.1–4.6) | 4.6 (4.4–4.9) | 0.018 | 40 | 4.5 (4.4–4.6) | 4.5 (4.3–4.7) | 0.825 |
OPG [pg/mL] | 93 | 419.9 (309.7–559.0) | 325.3 (232.3–553.3) | 0.154 | 40 | 324.5 (255.8–385.2) | 231.8 (184.2–301.6) | 0.008 |
Hemoglobin [g/dL] | 93 | 13.1 ± 1.9 | 13.8 ± 1.4 | 0.211 | 40 | 14.7 ± 1.3 | 14.8 ± 0.7 | 0.828 |
OH [L] | 80 | 0.27 ± 2.14 | −0.19 ± 1.23 | 0.433 | 40 | 0.33 ± 1.14 | 0.42 ± 1.12 | 0.802 |
Rel OH [%] | 80 | 0.69 ± 9.94 | −1.19 ± 6.36 | 0.487 | 40 | 1.61 ± 6.3 | 2.02 ± 5.68 | 0.833 |
Weight [kg] | 91 | 90.31 ± 17.62 | 84.64 ± 8.28 | 0.057 | 40 | 83.19 ± 14.68 | 88.06 ± 16.59 | 0.332 |
LTI | 80 | 16.91 ± 3.10 | 16.26 ± 2.46 | 0.451 | 40 | 14.25 ± 2.76 | 16.69 ± 2.51 | 0.007 |
FTI | 80 | 12.44 ± 5.07 | 10.93 ± 4.14 | 0.288 | 40 | 13.74 ± 5.61 | 11.62 ± 5.50 | 0.241 |
Fat [kg] | 80 | 27.86 ± 11.81 | 24.21 ± 6.62 | 0.114 | 40 | 29.55 ± 11.40 | 26.30 ± 11.79 | 0.386 |
LTM [kg] | 80 | 51.52 ± 10.81 | 50.52 ± 9.65 | 0.744 | 40 | 41.97 ± 8.21 | 52.01 ± 9.25 | 0.001 |
ECW [L] | 80 | 20.0 (17.9–22.3) | 19.3 (17.4–20.5) | 0.158 | 40 | 17.8 (16.5–18.9) | 19.8 (17.1–22.0) | 0.134 |
ICW [L] | 80 | 24.1 (21.2–27.9) | 24.8 (21.5–25.7) | 0.653 | 40 | 21.3 (19.0–23.7) | 24.0 (22.1–28.2) | 0.002 |
ECW/ICW | 80 | 0.84 ± 0.10 | 0.80 ± 0.09 | 0.173 | 40 | 0.88 ± 0.10 | 0.80 ± 0.08 | 0.008 |
CKD Patients (eGFR < 60 mL/min/1.73 m2) | The Control Group (eGFR ≥ 60 mL/min/1.73 m2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | The Advancement of Diastolic Dysfunction | N | The Advancement of Diastolic Dysfunction | |||||||
No LVDD | LVDD and E/E’ ≤ 9 | LVDD and E/E’ > 9 | ptrend -Value | No LVDD | LVDD and E/E’ ≤ 9 * | LVDD and E/E’ > 9 | ptrend -Value | |||
Serum creatinine [mg/dL] | 93 | 1.7 (1.4–3.3) | 1.8 (1.5–2.5) | 1.9 (1.6–2.8) | 0.398 | 28 | 0.8 (0.8–0.9) | 0.8 (0.8–0.8) | 0.8 (0.7–1.0) | 0.277 |
Age [years] | 93 | 58 ± 13 | 64 ± 9 | 64 ± 10 | 0.056 | 28 | 42 ± 14 | 50 ± 1 | 69 ± 10 | <0.001 |
BMI [kg/m2] | 91 | 25.9 (24.8–30.1) | 26.3 (24.5–30.1) | 30.2 (26.3–33.6) | 0.015 | 28 | 29.0 (23.4–31.9) | 36.8 (27.0–46.6) | 28.4 (25.1–30.9) | 0.918 |
SBP [mm Hg] | 91 | 130 (120–135) | 130 (124–144) | 132 (130–140) | 0.118 | 27 | 128 (119–135) | 110 (110–110) | 130 (108–140) | 0.853 |
Hypertension | 91 | 31.3% | 29.4% | 50.0% | 0.103 | 27 | 25.0% | 0.0% | 44.4% | 0.378 |
IVS > 12 mm | 93 | 6.3% | 16.7% | 22.0% | 0.151 | 28 | 0.0% | 0.0% | 0.0% | x |
Myocardial infarction in the past | 93 | 0.0% | 22.2% | 20.3% | 0.102 | 28 | 0.0% | 0.0% | 0.0% | x |
Fibrinogen [mg/dL] | 55 | 285.0 ± 64.1 | 289.8 ± 104.4 | 359.4 ± 87.0 | 0.007 | 27 | 226.3 ± 68.9 | 344.0 ± 114.6 | 325.7 ± 83.6 | 0.003 |
CRP [mg/dL] | 92 | 0.10 (0.10–0.38) | 0.20 (0.10–0.35) | 0.20 (0.10–0.50) | 0.138 | 28 | 0.09 (0.04–0.24) | 0.59 (0.20–0.93) | 0.29 (0.10–0.79) | 0.050 |
TNF-alpha [pg/mL] | 93 | 4.31 (3.33–5.13) | 3.70 (2.52–5.16) | 4.60 (3.70–5.92) | 0.083 | 28 | 2.68 (2.23–3.61) | 2.50 (2.32–2.68) | 3.64 (2.98–5.09) | 0.062 |
Serum glucose [mg/dL] | 92 | 89 (76–97) | 99 (90–126) | 99 (87–145) | 0.061 | 28 | 94 (87–97) | 98 (95–100) | 102 (89–131) | 0.085 |
HgbA1c [%] | 93 | 5.3 (5.2–6.2) | 5.6 (5.3–6.3) | 5.9 (5.4–7.1) | 0.014 | 27 | 5.3 (4.9–5.6) | 4.6 (3.4–5.7) | 5.7 (5.4–6.7) | 0.050 |
HOMA-IR | 92 | 3.0 (1.7–5.6) | 3.4 (1.4–8.1) | 4.3 (2.1–9.5) | 0.156 | 28 | 2.2 (1.5–6.5) | 4.8 (2.9–6.8) | 2.3 (1.4–7.5) | 0.820 |
PAI-1 [ng/mL] | 92 | 100.4 (82.5–138.3) | 86.7 (70.2–102.4) | 92.1 (71.3–119.9) | 0.436 | 28 | 116.2 (81.9–143.3) | 78.9 (61.2–96.6) | 93.3 (80.2–134.8) | 0.315 |
Serum albumin [g/dL] | 91 | 4.6 (4.4–4.9) | 4.3 (4.1–4.6) | 4.4 (4.1–4.6) | 0.090 | 28 | 4.5 (4.3–4.7) | 4.5 (4.4–4.6) | 4.4 (4.0–4.7) | 0.558 |
OPG [pg/mL] | 93 | 325.3 (232.3–553.3) | 358.2 (259.3–516.5) | 436.4 (319.0–576.5) | 0.064 | 28 | 231.8 (184.2–301.6) | 231.6 (221.0–242.3) | 360.9 (333.3–447.2) | 0.002 |
Hemoglobin [g/dL] | 93 | 13.8 ± 1.4 | 13.0 ± 1.7 | 13.2 ± 2.0 | 0.402 | 28 | 14.8 ± 0.8 | 16.0 ± 0.8 | 14.6 ± 1.2 | 0.955 |
OH [L] | 80 | −0.19 ± 1.23 | 0.15 ± 2.03 | 0.30 ± 2.19 | 0.418 | 28 | 0.42 ± 1.12 | −0.50 ± 1.56 | 0.76 ± 1.00 | 0.674 |
Rel OH [%] | 80 | −1.19 ± 6.36 | −0.09 ± 10.34 | 0.92 ± 9.91 | 0.436 | 28 | 2.02 ± 5.68 | −3.75 ± 8.70 | 3.81 ± 4.99 | 0.650 |
Weight [kg] | 91 | 84.64 ± 8.28 | 84.10 ± 17.35 | 92.13 ± 17.42 | 0.050 | 28 | 88.06 ± 16.59 | 104.00 ± 36.77 | 83.22 ± 8.71 | 0.577 |
LTI | 80 | 16.26 ± 2.46 | 17.09 ± 2.28 | 16.85 ± 3.32 | 0.598 | 28 | 16.69 ± 2.51 | 16.30 ± 1.41 | 14.09 ± 3.39 | 0.062 |
FTI | 80 | 10.93 ± 4.14 | 10.63 ± 4.95 | 12.98 ± 5.03 | 0.086 | 28 | 11.62 ± 5.50 | 20.65 ± 11.95 | 13.32 ± 3.82 | 0.248 |
Fat [kg] | 80 | 24.21 ± 6.62 | 23.58 ± 11.41 | 29.14 ± 11.74 | 0.068 | 28 | 26.30 ± 11.79 | 42.70 ± 23.76 | 29.19 ± 7.99 | 0.321 |
LTM [kg] | 80 | 50.52 ± 9.65 | 51.63 ± 9.31 | 51.48 ± 11.30 | 0.793 | 28 | 52.01 ± 9.25 | 46.30 ± 2.83 | 41.89 ± 8.89 | 0.007 |
ECW [L] | 80 | 19.3 (17.4–20.5) | 19.4 (16.8–22.3) | 20.1 (18.0–22.3) | 0.107 | 28 | 19.8 (17.1–22.0) | 20.5 (15.7-25.2) | 18.8 (17.5–19.7) | 0.562 |
ICW [L] | 80 | 24.8 (21.5–25.7) | 25.0 (22.1–27.0) | 23.4 (21.2–28.5) | 0.650 | 28 | 24.0 (22.1–28.2) | 24.3 (21.6-27.0) | 20.6 (19.3–23.1) | 0.013 |
ECW/ICW | 80 | 0.80 ± 0.09 | 0.81 ± 0.09 | 0.85 ± 0.10 | 0.068 | 28 | 0.80 ± 0.08 | 0.83 ± 0.15 | 0.91 ± 0.10 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romejko, K.; Rymarz, A.; Szamotulska, K.; Bartoszewicz, Z.; Rozmyslowicz, T.; Niemczyk, S. Left Ventricular Diastolic Dysfunction in Chronic Kidney Disease Patients Not Treated with Dialysis. Nutrients 2022, 14, 4664. https://doi.org/10.3390/nu14214664
Romejko K, Rymarz A, Szamotulska K, Bartoszewicz Z, Rozmyslowicz T, Niemczyk S. Left Ventricular Diastolic Dysfunction in Chronic Kidney Disease Patients Not Treated with Dialysis. Nutrients. 2022; 14(21):4664. https://doi.org/10.3390/nu14214664
Chicago/Turabian StyleRomejko, Katarzyna, Aleksandra Rymarz, Katarzyna Szamotulska, Zbigniew Bartoszewicz, Tomasz Rozmyslowicz, and Stanisław Niemczyk. 2022. "Left Ventricular Diastolic Dysfunction in Chronic Kidney Disease Patients Not Treated with Dialysis" Nutrients 14, no. 21: 4664. https://doi.org/10.3390/nu14214664
APA StyleRomejko, K., Rymarz, A., Szamotulska, K., Bartoszewicz, Z., Rozmyslowicz, T., & Niemczyk, S. (2022). Left Ventricular Diastolic Dysfunction in Chronic Kidney Disease Patients Not Treated with Dialysis. Nutrients, 14(21), 4664. https://doi.org/10.3390/nu14214664