Serum Osteoprotegerin Is an Independent Marker of Left Ventricular Hypertrophy, Systolic and Diastolic Dysfunction of the Left Ventricle and the Presence of Pericardial Fluid in Chronic Kidney Disease Patients
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Patients
2.3. Defining the Cardiovascular Complications
- Heart failure is classified into 3 phenotypes depending on the left ventricle ejection fraction (EF). Heart failure with EF ≤ 40% is defined as heart failure with reduced ejection fraction—HFrEF. Heart failure with ejection fraction from 41–49% is defined as heart failure with mildly reduced ejection fraction—HFmrEF. When EF is ≥ 50% but there are symptoms of heart failure, it is defined as heart failure with preserved ejection fraction (HFpEF) [18].
- The value of tricuspid annular plane systolic excursion (TAPSE) is most frequently used to assess the right heart dysfunction. The currently recommended lower limit cut-off for TAPSE is < 17 mm [19].
- Impaired relaxation is responsible for the development of left ventricle diastolic dysfunction. The mitral valve inflow assessment is the most frequently used technique to evaluate the diastolic function of the left ventricle. The E wave reflects the flow through mitral valve in the early diastolic and the A wave—in the later atrial contraction. An E/A ratio ≥ 1 is the correct value. Impaired relaxation is defined as reversal of the normal E/A ratio (<1) [20]. The impaired relaxation divides into 3 stages, with the reversal of E/A < 1 to E/A > 1 (pseudonormalization) and E/A > 2 (restriction).
- 4.
- LVH develops with the increase in myocardial thickness. The correct value of end-diastolic interventricular septum thickness (IVS) does not exceed 12 mm [23].
2.4. Statistical Analysis
3. Results
3.1. Systolic Function of the Left Ventricle
3.2. Left Ventricle Hypertrophy
3.3. The Size of LA and the Diastolic Dysfunction of the Left Ventricle
3.4. Dysfunction of the Right Ventricle
3.5. The Presence of Pericardial Fluid
3.6. Myocardial Infarction in the Past
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luan, X.; Lu, Q.; Jiang, Y.; Zhang, S.; Wang, Q.; Yuan, H.; Zhao, W.; Wang, J.; Wang, X. Crystal Structure of Human RANKL Complexed with Its Decoy Receptor Osteoprotegerin. J. Immunol. 2012, 189, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, L.C.; Khosla, S.; Dunstan, C.R.; Lacey, D.L.; Boyle, W.J.; Riggs, B.L. The Roles of Osteoprotegerin and Osteoprotegerin Ligand in the Paracrine Regulation of Bone Resorption. J. Bone. Miner. Res. 2000, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Morena, M.; Jaussent, I.; Halkovich, A.; Dupuy, A.M.; Bargnoux, A.S.; Chenine, L.; Leray-Moragues, H.; Klouche, K.; Vernhet, H.; Canaud, B.; et al. Bone Biomarkers Help Grading Severity of Coronary Calcifications in Non Dialysis Chronic Kidney Disease Patients. PLoS ONE 2012, 7, e36175. [Google Scholar] [CrossRef] [Green Version]
- Kiechl, S.; Schett, G.; Wenning, G.; Redlich, K.; Oberhollenzer, M.; Mayr, A.; Santer, P.; Smolen, J.; Poewe, W.; Willeit, J. Osteoprotegerin Is a Risk Factor for Progressive Atherosclerosis and Cardiovascular Disease. Circulation 2004, 109, 2175–2180. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, S.; Fabris, B.; Thomas, M.; Toffoli, B.; Tikellis, C.; Candido, R.; Catena, C.; Mulatero, P.; Barbone, F.; Radillo, O.; et al. Osteoprotegerin increases in metabolic syndrome and promotes adipose tissue proinflammatory changes. Moll. Cell. Endocrinol. 2014, 394, 13–20. [Google Scholar] [CrossRef]
- Stępień, E.; Wypasek, E.; Stopyra, K.; Konieczyńska, M.; Przybyło, M.; Pasowicz, M. Increased levels of bone remodeling biomarkers (osteoprotegerin and osteopontin) in hypertensive individuals. Clin. Biochem. 2011, 44, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Kazama, J.J.; Shigematsu, T.; Yano, K.; Tsuda, E.; Miura, M.; Iwasaki, Y.; Kawaguchi, Y.; Gejyo, F.; Kurokawa, K.; Fukagawa, M. Increased circulating levels of osteoclastogenesis inhibitory factor (osteoprotegerin) in patients with chronic renal failure. Am. J. Kidney. Dis. 2002, 39, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Rashtchizadeh, N.; Ghorbanihaghjo, A.; Argani, H.; Meimand, S.M.; Safa, J.; Vatankhahan, H.; Shahidi, M. Serum Receptor Activator of Nuclear Factor-κ B Ligand, Osteoprotegrin, and Intact Parathyroid Hormone in Hemodialysis and Renal Transplant Patients. Ther. Apher. Dial. 2012, 16, 600–604. [Google Scholar] [CrossRef]
- Lewis, J.R.; Lim, W.H.; Zhu, K.; Wong, G.; Dhaliwal, S.S.; Lim, E.M.; Ueland, T.; Bollerslev, J.; Prince, R.L. Elevated Osteoprotegerin Predicts Declining Renal Function in Elderly Women: A 10-Year Prospective Cohort Study. Am. J. Nephrol. 2014, 39, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.R.; Myeong, C.; Song, S.H.; Choi, H.S.; Suh, S.H.; Kim, C.S.; Bae, E.H.; Chung, W.; Choi, K.H.; Oh, K.H.; et al. Association between serum osteoprotegerin level and renal prognosis in nondialysis patients with chronic kidney disease in the Korean Cohort Study for Outcomes in Patients with Chronic Kidney Disease (the KNOW-CKD Study). Kidney Res. Clin. Pract. 2022, 41, 200–208. [Google Scholar] [CrossRef]
- Bargnoux, A.S.; Dupuy, A.M.; Garrigue, V.; Deleuze, S.; Cristol, J.P.; Mourad, G. Renal Transplantation Decreases Osteoprotegerin Levels. Transplant. Proc. 2006, 38, 2317–2318. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, A.K.; Chhabra, Y.K.; Mahajan, S. Cardiovascular disease in patients with chronic kidney disease: A neglected subgroup. Heart Asia 2016, 8, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Hsu, C.; Li, Y.; Mishra, R.K.; Keane, M.; Rosas, S.E.; Dries, D.; Xie, D.; Chen, J.; He, J.; et al. Associations between Kidney Function and Subclinical Cardiac Abnormalities in CKD. J. Am. Soc. Nephrol. 2012, 23, 1725–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, A. Clinical Epidemiology of Cardiovascular Disease in Chronic Kidney Disease Prior to Dialysis. Semin. Dial. 2003, 16, 101–105. [Google Scholar] [CrossRef]
- Marques, G.L.; Hayashi, S.; Bjällmark, A.; Larsson, M.; Riella, M.; Olandoski, M.; Lindholm, B.; Nascimento, M.M. Osteoprotegerin is a marker of cardiovascular mortality in patients with chronic kidney disease stages 3–5. Sci. Rep. 2021, 11, 2473. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Stenvinkel, P.; Qureshi, A.R.; Carrero, J.J.; Axelsson, J.; Heimbürger, O.; Bárány, P.; Alvestrand, A.; Lindholm, B.; Suliman, M.E. Inflammation modifies the association of osteoprotegerin with mortality in chronic kidney disease. J. Nephrol. 2009, 22, 774–782. [Google Scholar] [PubMed]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J.; et al. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Gorter, T.M.; van Veldhuisen, D.J.; Bauersachs, J.; Borlaug, B.A.; Celutkiene, J.; Coats, A.J.S.; Crespo-Leiro, M.G.; Guazzi, M.; Harjola, V.P.; Heymans, S.; et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: Mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 16–37. [Google Scholar] [CrossRef]
- Dhir, M.; Nagueh, S.F. Echocardiography and prognosis of heart failure. Curr. Opin. Cardiol. 2002, 17, 253–256. [Google Scholar] [CrossRef]
- Playford, D.; Strange, G.; Celermajer, D.S.; Evans, G.; Scalia, G.M.; Stewart, S.; Prior, D. Diastolic dysfunction and mortality in 436,360 men and women: The National Echo Database Australia (NEDA). Eur. Heart J. Cardiovasc. Imaging 2021, 22, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to diagnose heart failure with preserved ejection fraction: The HFA–PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamińska, J.; Stopiński, M.; Mucha, K.; Pac, M.; Gołębiowski, M.; Niewczas, M.A.; Pączek, L.; Foroncewicz, B. Circulating Osteoprotegerin in Chronic Kidney Disease and All-Cause Mortality. Int. J. Gen. Med. 2021, 14, 2413–2420. [Google Scholar] [CrossRef] [PubMed]
- Morena, M.; Jaussent, I.; Dupuy, A.M.; Bargnoux, A.S.; Kuster, N.; Chenine, L.; Leray-Moragues, H.; Klouche, K.; Vernhet, H.; Canaud, B.; et al. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: Potential partners in vascular calcifications. Nephrol. Dial. Transplant. 2015, 30, 1345–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainini, G.; Incoronato, M.; Urso, L.; Scaffa, C. Serum osteoprotegerin correlates with age and bone mass in postmenopausal, but not in fertile age women. Clin. Exp. Obstet. Gynecol. 2011, 38, 355–359. [Google Scholar] [PubMed]
- Nascimento, M.M.; Hayashi, S.Y.; Riella, M.C.; Lindholm, B. Elevated levels of plasma osteoprotegerin are associated with all-cause mortality risk and atherosclerosis in patients with stages 3 to 5 chronic kidney disease. Braz. J. Med. Biol. Res. 2014, 47, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Morena, M.; Dupuy, A.M.; Jaussent, I.; Vernhet, H.; Gahide, G.; Klouche, K.; Bargnoux, A.S.; Delcourt, C.; Canaud, B.; Cristol, J.P. A cut-off value of plasma osteoprotegerin level may predict the presence of coronary artery calcifications in chronic kidney disease patients. Nephrol. Dial. Transplant. 2009, 24, 3389–3397. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Thompson, C.R.; Ethier, J.; Carlisle, E.J.F.; Tobe, S.; Mendelssohn, D.; Burgess, E.; Jindal, K.; Barrett, B.; Singer, J.; et al. Left ventricular mass index increase in early renal disease: Impact of decline in hemoglobin. Am. J. Kidney Dis. 1999, 34, 125–134. [Google Scholar] [CrossRef]
- Zoccali, C.; Benedetto, F.A.; Mallamaci, F.; Tripepi, G.; Giacone, G.; Stancanelli, B.; Cataliotti, A.; Malatino, L.S. Left ventricular mass monitoring in the follow-up of dialysis patients: Prognostic value of left ventricular hypertrophy progression. Kidney Int. 2004, 65, 1492–1498. [Google Scholar] [CrossRef] [Green Version]
- Laukkanen, J.A.; Kurl, S.; Eränen, J.; Huttunen, M.; Salonen, J.T. Left Atrium Size and the Risk of Cardiovascular Death in Middle-aged Men. Arch. Intern. Med. 2005, 165, 1788–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagueh, S.F. Left Ventricular Diastolic Function: Understanding Pathophysiology, Diagnosis, and Prognosis with Echocardiography. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Aramburu-Bodas, Ó.; García-Casado, B.; Salamanca-Bautista, P.; Guisado-Espartero, M.E.; Arias-Jiménez, J.L.; Barco-Sánchez, A.; Santamaría-González, J.C.; Formiga, F.; Montero-Pérez-Barquero, M.; Manzano, L. Relationship between osteoprotegerin and mortality in decompensated heart failure with preserved ejection fraction. J. Cardiovasc. Med. 2015, 16, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Di Giuseppe, R.; Biemann, R.; Wirth, J.; Menzel, J.; Isermann, B.; Stangl, G.I.; Fritsche, A.; Boeing, H.; Schulze, M.B.; Weikert, C. Plasma osteoprotegerin, its correlates, and risk of heart failure: A prospective cohort study. Eur. J. Epidemiol. 2017, 32, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Mogelvang, R.; Pedersen, S.H.; Flyvbjerg, A.; Bjerre, M.; Iversen, A.Z.; Galatius, S.; Frystyk, J.; Jensen, J.S. Comparison of osteoprotegerin to traditional atherosclerotic risk factors and high-sensitivity C-reactive protein for diagnosis of atherosclerosis. Am. J. Cardiol. 2012, 109, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Vik, A.; Mathiesen, E.B.; Brox, J.; Wilsgaard, T.; Njølstad, I.; Jørgensen, L.; Hansen, J.-B. Serum osteoprotegerin is a predictor for incident cardiovascular disease and mortality in a general population: The Tromsø Study. J. Thromb. Haemost. 2011, 9, 638–644. [Google Scholar] [CrossRef]
- Secchiero, P.; Corallini, F.; Beltrami, A.P.; Ceconi, C.; Bonasia, V.; Di Chiara, A.; Ferrari, R.; Zauli, G. An imbalanced OPG/TRAIL ratio is associated to severe acute myocardial infarction. Atherosclerosis 2010, 210, 274–277. [Google Scholar] [CrossRef]
- Erkol, A.; Oduncu, V.; Pala, S.; Kızılırmak, F.; Kılıcgedik, A.; Yılmaz, F.; Güler, A.; Karabay, C.Y.; Kırma, C. Plasma osteoprotegerin level on admission is associated with no-reflow phenomenon after primary angioplasty and subsequent left ventricular remodeling in patients with acute ST-segment elevation myocardial infarction. Atherosclerosis 2012, 221, 254–259. [Google Scholar] [CrossRef]
- Rymarz, A.; Romejko, K.; Matyjek, A.; Bartoszewicz, Z.; Niemczyk, S. Serum Osteoprotegerin Is an Independent Marker of Metabolic Complications in Non-DialysisDependent Chronic Kidney Disease Patients. Nutrients 2021, 13, 3609. [Google Scholar] [CrossRef]
- Kleiman, J.H.; Motta, J.; London, E.; Pennell, J.P.; Popp, R.L. Pericardial effusions in patients with end-stage renal disease. Br. Heart J. 1978, 40, 190–193. [Google Scholar] [CrossRef]
- Zayed, S.; Tlili, R.; Azaiez, F.; Zouari, F.; Hentati, R.; Ameur, Y.B. Echocardiographic parameters of the right ventricle in chronic hemodialysis. Tunis Med. 2019, 97, 956–961. [Google Scholar] [PubMed]
- Tamulėnaitė, E.; Žvirblytė, R.; Ereminienė, R.; Žiginskienė, E.; Ereminienė, E. Changes of Left and Right Ventricle Mechanics and Function in Patients with End-Stage Renal Disease Undergoing Haemodialysis. Medicina 2018, 54, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inclusion Criteria | Exclusion Criteria |
---|---|
eGFR < 60 mL/min/1.73 m2 Age 18–80 years | eGFR ≥ 60 mL/min/1.73 m2 Renal replacement therapy or its requirement within the following 3 months Clinical signs of infection Metal parts in the body Physical exertion the day before the examination Alcohol consumption the day before the examination Lack of agreement to participate in the study |
n | Total (n = 101) | CKD Stage | ptrend | |||
---|---|---|---|---|---|---|
3A (n = 37) | 3B (n = 32) | 4–5 (n = 32) | ||||
OPG [pg/mL], median (IQR) | 101 | 425.61 (298.59–560.39) | 335.38 (262.50–429.11) | 467.63 (356.21–593.31) | 499.71 (342.11–677.41) | <0.001 |
Age, median (IQR) | 101 | 66 (59–71) | 67 (57–72) | 70 (65–75) | 61 (54–68) | 0.176 |
Creatinine [mg/dL] median (IQR) | 101 | 1.9 (1.5–2.8) | 1.5 (1.4–1.6) | 1.9 (1.8–2.1) | 3.4 (2.8–4.9) | <0.001 |
eGFR [mL/min/1.73 m2], mean ± SD | 101 | 37 ± 14 | 51 ± 5 | 37 ± 4 | 19 ± 6 | <0.001 |
Overweight or obesity, % | 98 | 77.6% | 83.8% | 74.2% | 73.3% | 0.296 |
%fat, mean ± SD | 85 | 30.0 ± 8.4 | 30.9 ± 7.1 | 31.5 ± 8.3 | 27.6 ± 9.8 | 0.158 |
%LTM, mean ± SD | 85 | 58.0 ± 11.5 | 57.4 ± 10.2 | 56.1 ± 10.7 | 60.6 ± 13.7 | 0.329 |
FTI | 85 | 12.3 ± 4.8 | 12.6 ± 4.2 | 13.0 ± 5.1 | 11.2 ± 5.3 | 0.298 |
LTI | 85 | 16.7 ± 2.9 | 16.7 ± 2.6 | 16.1 ± 2.8 | 17.2 ± 3.5 | 0.624 |
OH > 1.0 L, % | 85 | 28.2 | 12.1% | 30.8% | 46.2% | 0.004 |
ECW/ICW ratio, mean ± SD | 85 | 0.84 ± 0.10 | 0.82 ± 0.09 | 0.84 ± 0.08 | 0.85 ± 0.12 | 0.241 |
Hypertension, % | 98 | 40.8% | 29.7% | 35.5% | 60.0% | 0.014 |
Myocardial infarction in the past, % | 101 | 18.8% | 13.5% | 18.8% | 25.0% | 0.226 |
TNF-alpha [pg/mL], median (IQR) | 101 | 4.37 (3.50–5.52) | 4.06 (3.28–4.82) | 4.36 (3.39–5.23) | 5.32 (4.39–6.88) | <0.001 |
n | Median | Range | p-Value | |
---|---|---|---|---|
EF | ||||
≥50% | 99 | 419.90 | 152.89–1239.35 | 0.044 |
<50% | 2 | 703.70 | 660.01–747.38 | |
Myocardial infarction in the past | ||||
No | 82 | 380.75 | 152.89–1239.35 | 0.016 |
Yes | 19 | 490.28 | 272.70–910.38 | |
IVS | ||||
≤12 mm | 80 | 361.79 | 176.02–910.38 | 0.006 |
>12 mm | 21 | 529.01 | 152.89–1239.35 | |
LA | ||||
<20 cm2 | 32 | 335.38 | 199.16–902.30 | 0.003 |
≥20 cm2 | 69 | 463.34 | 152.89–1239.35 | |
Relaxation | ||||
Correct | 16 | 325.27 | 152.89–687.31 | 0.154 |
Impaired: (I, II, III stage) | 77 | 419.90 | 176.02–1239.35 | |
E/E’ | ||||
≤9 | 34 | 355.00 | 152.89–1239.35 | 0.081 |
>9 | 59 | 436.39 | 177.48–910.38 | |
TAPSE | ||||
<17 mm | 3 | 529.01 | 250.91–536.07 | 0.904 |
≥17 mm | 98 | 422.76 | 152.89–1239.35 | |
Pericardial fluid | ||||
No | 90 | 393.27 | 152.89–910.38 | 0.003 |
Yes | 11 | 672.29 | 280.04–1239.35 |
Cardiovascular Outcome | Crude Results | Adjusted Results | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
IVS a > 12 mm | 1.004 (1.001–1.006) | 0.007 | 1.004 (1.001–1.007) | 0.010 |
LA b ≥ 20 cm2 | 1.004 (1.001–1.007) | 0.009 | 1.004 (1.0001–1.007) | 0.045 |
Pericardial fluid c | 1.006 (1.002–1.009) | 0.002 | 1.004 (0.9999–1.008) | 0.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romejko, K.; Rymarz, A.; Szamotulska, K.; Bartoszewicz, Z.; Niemczyk, S. Serum Osteoprotegerin Is an Independent Marker of Left Ventricular Hypertrophy, Systolic and Diastolic Dysfunction of the Left Ventricle and the Presence of Pericardial Fluid in Chronic Kidney Disease Patients. Nutrients 2022, 14, 2893. https://doi.org/10.3390/nu14142893
Romejko K, Rymarz A, Szamotulska K, Bartoszewicz Z, Niemczyk S. Serum Osteoprotegerin Is an Independent Marker of Left Ventricular Hypertrophy, Systolic and Diastolic Dysfunction of the Left Ventricle and the Presence of Pericardial Fluid in Chronic Kidney Disease Patients. Nutrients. 2022; 14(14):2893. https://doi.org/10.3390/nu14142893
Chicago/Turabian StyleRomejko, Katarzyna, Aleksandra Rymarz, Katarzyna Szamotulska, Zbigniew Bartoszewicz, and Stanisław Niemczyk. 2022. "Serum Osteoprotegerin Is an Independent Marker of Left Ventricular Hypertrophy, Systolic and Diastolic Dysfunction of the Left Ventricle and the Presence of Pericardial Fluid in Chronic Kidney Disease Patients" Nutrients 14, no. 14: 2893. https://doi.org/10.3390/nu14142893
APA StyleRomejko, K., Rymarz, A., Szamotulska, K., Bartoszewicz, Z., & Niemczyk, S. (2022). Serum Osteoprotegerin Is an Independent Marker of Left Ventricular Hypertrophy, Systolic and Diastolic Dysfunction of the Left Ventricle and the Presence of Pericardial Fluid in Chronic Kidney Disease Patients. Nutrients, 14(14), 2893. https://doi.org/10.3390/nu14142893