Synergism between Extracts of Garcinia mangostana Pericarp and Curcuma in Ameliorating Altered Brain Neurotransmitters, Systemic Inflammation, and Leptin Levels in High-Fat Diet-Induced Obesity in Male Wistar Albino Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Animals and Housing Conditions
2.3. Preparation of Extracts
2.4. Phytochemical Screening of the Plant Extracts
2.5. Quantitation of Total Phenolic Content (TPC)
2.6. Quantitation of Total Flavonoid Content (TFC)
2.7. Antioxidant Activity
- a.
- Reducing power assay
- b.
- DPPH radical scavenging assay
- c.
- Determination of hydroxyl radical scavenging activity
2.8. Experimental Work
2.9. Measurement of the BMI
2.10. Collection of Samples
2.11. Brain Tissue
2.12. Blood
2.13. Biochemical Assays
- Determination of brain dopamine:
- 2.
- Determination of brain glutamate:
- 3.
- Determination of brain Serotonin:
- 4.
- Determination of serum interleukin 6:
- 5.
- Determination of serum interleukin 12:
- 6.
- Determination of serum leptin:
2.14. Statistical Analysis
3. Results
3.1. Phytochemical Analysis
3.2. Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Plourde, G. Impact of obesity on glucose and lipid profiles in adolescents at different age groups in relation to adulthood. BMC Fam. Prim. 2002, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Fact SheetObesity and Overweight, Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 9 July 2022).
- Garde, A. The “Obesity Risk”: For an Effective Use of Law to Prevent Non-Communicable Diseases. Eur. J. Risk Regul. 2017, 8, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.K.; Yoo, E.-G. Hypertriglyceridemia in Obese Children and Adolescents. J. Obes. Metab. Syndr. 2018, 27, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajer, B.; Rádiková, A.; Havranová, A.; Žitňanová, I.; Vlček, M.; Imrich, R.; Sabaka, P.; Bendžala, M.; Penesová, A. Effect of 8-weeks intensive lifestyle intervention on LDL and HDL subfractions. Obes. Res. Clin. Prim. 2019, 13, 586–593. [Google Scholar] [CrossRef]
- Duan, Y.; Zeng, L.; Zheng, C.; Song, B.; Li, F.; Kong, X.; Xu, K. Inflammatory Links between High Fat Diets and Diseases. Front. Immunol. 2018, 9, 2649. [Google Scholar] [CrossRef] [Green Version]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; Da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.J.; Petiwala, S.M.; Syed, D.N.; Rasmussen, J.T.; Adhami, V.M.; Siddiqui, I.A.; Kohl, A.M.; Mukhtar, H. α-Mangostin, a xanthone from mangosteen fruit, promotes cell cycle arrest in prostate cancer and decreases xenograft tumor growth. Carcinogenesis 2011, 33, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Orozco, F.; Thomas-Ahner, J.M.; Galley, J.D.; Bailey, M.T.; Clinton, S.K.; Lesinski, G.B.; Failla, M.L. Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain. Nutrients 2015, 7, 764–784. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Baghdadi, A.; Tayebi-Meigooni, A. Alpha-Mangostin-Rich Extracts from Mangosteen Pericarp: Optimization of Green Extraction Protocol and Evaluation of Biological Activity. Molecules 2018, 23, 1852. [Google Scholar] [CrossRef]
- Narasimhan, S.; Maheshwaran, S.; Abu-Yousef, I.A.; Majdalawieh, A.F.; Rethavathi, J.; Das, P.E.; Poltronieri, P. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana. Molecules 2017, 22, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.; McGrath, J.J.; Dean, O.M.; Dodd, S.; Baker, A.; Cotton, S.; Scott, J.; Kavanagh, B.E.; Ashton, M.M.; Walker, A.J.; et al. Protocol and Rationale: A 24-week Double-blind, Randomized, Placebo Controlled Trial of the Efficacy of Adjunctive Garcinia mangostanaLinn. (Mangosteen) Pericarp for Schizophrenia. Clin. Psychopharmacol. Neurosci. 2019, 17, 297–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, T. Curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2017, 9, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Orhan, I.E.; Bawazeer, S. Health perspectives of a bioactive compound curcumin: A review. Trends Food Sci. Technol. 2018, 74, 33–45. [Google Scholar] [CrossRef]
- Liu, Q.; Li, D.; Wang, A.; Dong, Z.; Yin, S.; Zhang, Q.; Ye, Y.; Li, L.; Lin, L. Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry 2016, 131, 115–123. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Sears, B. Anti-inflammatory Diets. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 14–21. [Google Scholar] [CrossRef]
- Hodson, L.; McQuaid, S.E.; Humphreys, S.M.; Milne, R.; Fielding, B.A.; Frayn, K.N.; Karpe, F. Greater dietary fat oxidation in obese compared with lean men: An adaptive mechanism to prevent liver fat accumulation? Am. J. Physiol. Metab. 2010, 299, E584–E592. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Tian, L. Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum). Molecules 2017, 22, 1606. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Garamszegi, S.P.; Xie, X.; Mash, D.C. Altered Dopamine Synaptic Markers in Postmortem Brain of Obese Subjects. Front. Hum. Neurosci. 2017, 11, 386. [Google Scholar] [CrossRef]
- Gómez-Apo, E.; Mondragón-Maya, A.; Ferrari-Díaz, M.; Silva-Pereyra, J. Structural Brain Changes Associated with Overweight and Obesity. J. Obes. 2021, 2021, 6613385. [Google Scholar] [CrossRef] [PubMed]
- Philip, G.; Reeves. Components of the AIN-93 Diets as Improvements in the AIN-76A Diet. J. Nutr. 1997, 127, 838–841. [Google Scholar]
- Aslani, S.; Vieira, N.; Marques, F.; Costa, P.; Sousa, N.; Palha, J.A. The effect of high-fat diet on rat’s mood, feeding behavior and response to stress. Transl. Psychiatry 2015, 5, e684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udani, J.K.; Singh, B.B.; Barrett, M.L.; Singh, V.J. Evaluation of Mangosteen juice blend on biomarkers of inflammation in obese subjects: A pilot, dose finding study. Nutr. J. 2009, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Zhang, J.J.; Liu, C.Y.; Bai, W.S.; Cheng, N. A modified Folin-Ciocalteu method for the microdetermination of total phenolic content in honey. Int. Food Res. J. 2020, 27, 576–584. Available online: http://www.ifrj.upm.edu.my (accessed on 15 February 2021).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Park, S.H.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- Kunchandy, E.; Rao, M. Oxygen radical scavenging activity of curcumin. Int. J. Pharm. 1990, 58, 237–240. [Google Scholar] [CrossRef]
- Adiputro, D.L.; Widodo, M.A.; Romdoni, R.; Sargowo, D. Extract of Mangosteen increases high density lipoprotein levels in rats fed high lipid. J. Univ. Med. 2013, 32, 37–43. [Google Scholar]
- Novelli, E.L.B.; Diniz, Y.S.; Galhardi, C.M.; Ebaid, G.M.X.; Rodrigues, H.G.; Mani, F.; Fernandes, A.A.H.; Cicogna, A.C.; Filho, J.L.V.B.N. Anthropometrical parameters and markers of obesity in rats. Lab. Anim. 2007, 41, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Phan, M.A.T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 2018, 58, 1310–1329. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Li, J.; Song, B.; Xiao, X.; Zhang, B.; Qi, M.; Huang, W.; Yang, L.; Wang, Z. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol. Appl. Pharmacol. 2016, 304, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Sukatta, U.; Takenaka, M.; Ono, H.; Okadome, H.; Sotome, I.; Nanayama, K.; Thanapase, W.; Isobe, S. Distribution of Major Xanthones in the Pericarp, Aril, and Yellow Gum of Mangosteen (Garcinia Mangostana L.) Fruit and Their Contribution to Antioxidative Activity. Biosci. Biotechnol. Biochem. 2013, 77, 984–987. [Google Scholar] [CrossRef] [PubMed]
- Widowati, W.; Darsono, L.; Suherman, J.; Yelliantty, Y.; Maesaroh, M. High Performance Liquid Chromatography (HPLC) Analysis, Antioxidant, Antiaggregation of Mangosteen Peel Extract (Garcinia mangostana L.). Int. J. Biosci. Biochem. Bioinform. 2014, 4, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Wittenauer, J.; Falk, S.; Schweiggert-Weisz, U.; Carle, R. Characterisation and quantification of xanthones from the aril and pericarp of mangosteens (Garcinia mangostana L.) and a mangosteen containing functional beverage by HPLC–DAD–MSn. Food Chem. 2012, 134, 445–452. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Sukandar, E.Y.; Kurniati, N.F.; Adnyana, I.K. Preventive effect on obesity of mangosteen (Garcinia mangostana L.) pericarp ethanolic extract by reduction of fatty acid synthase level in monosodium glutamate and high-calorie diet-induced male wistar rats. Asian J. Pharm. Clin. Res. 2016, 9, 257–260. [Google Scholar]
- Kim, J.H.; Kim, O.-K.; Yoon, H.-G.; Park, J.; You, Y.; Kim, K.; Lee, Y.-H.; Choi, K.-C.; Lee, J.; Jun, W. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food Nutr. Res. 2016, 60, 30428. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Faßhauer, M.; Stumvoll, M.; et al. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity. PLoS ONE 2015, 10, e0121971. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.H.; Park, H.S.; Kim, K.-S.; Choi, W.H.; Ahn, C.W.; Kim, B.T.; Kim, S.M.; Lee, S.Y.; Ahn, S.M.; Kim, Y.K.; et al. Effect of weight loss on some serum cytokines in human obesity: Increase in IL-10 after weight loss. J. Nutr. Biochem. 2008, 19, 371–375. [Google Scholar] [CrossRef]
- Ashton, M.M.; Dean, O.M.; Walker, A.; Bortolasci, C.; Ng, C.; Hopwood, M.; Harvey, B.; Moller, M.; McGrath, J.J.; Marx, W.; et al. The Therapeutic Potential of Mangosteen Pericarp as an Adjunctive Therapy for Bipolar Disorder and Schizophrenia. Front. Psychiatry 2019, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Pedraza-Chaverri, J.; Cárdenas-Rodríguez, N.; Orozco-Ibarra, M.; Pérez-Rojas, J.M. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 2008, 46, 3227–3239. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Azlan, A. Fruit Pod Extracts as a Source of Nutraceuticals and Pharmaceuticals. Molecules 2012, 17, 11931–11946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotie, J. Pharmacological and Biological Activities of Xanthones. Anti-Infective Agents Med. Chem. 2006, 5, 15–31. [Google Scholar] [CrossRef]
- Kondo, T.; Kishi, M.; Fushimi, T.; Ugajin, S.; Kaga, T. Vinegar Intake Reduces Body Weight, Body Fat Mass, and Serum Triglyceride Levels in Obese Japanese Subjects. Biosci. Biotechnol. Biochem. 2009, 73, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Kullmann, S.; Abbas, Z.; Machann, J.; Shah, N.J.; Scheffler, K.; Birkenfeld, A.L.; Häring, H.; Fritsche, A.; Heni, M.; Preissl, H. Investigating obesity-associated brain inflammation using quantitative water content mapping. J. Neuroendocr. 2020, 32, e12907. [Google Scholar] [CrossRef] [PubMed]
- Naksuriya, O.; Okonogi, S. Comparison and combination effects on antioxidant power of curcumin with gallic acid, ascorbic acid, and xanthone. Drug Discov. Ther. 2015, 9, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Orozco, F.; Failla, M.L. Biological Activities and Bioavailability of Mangosteen Xanthones: A Critical Review of the Current Evidence. Nutrients 2013, 5, 3163–3183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sáinz, N.; Barrenetxe, J.; Moreno-Aliaga, M.J.; Martínez, J.A. Leptin resistance and diet-induced obesity: Central and peripheral actions of leptin. Metabolism 2014, 64, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Mzhelskaya, K.V.; Shipelin, V.A.; Shumakova, A.A.; Musaeva, A.D.; Soto, J.S.; Riger, N.A.; Trusov, N.V.; Kirbaeva, N.V.; Apryatin, S.A.; Gmoshinski, I.V. Effects of quercetin on the neuromotor function and behavioral responses of Wistar and Zucker rats fed a high-fat and high-carbohydrate diet. Behav. Brain Res. 2020, 378, 112270. [Google Scholar] [CrossRef]
- Wang, J.; Obici, S.; Morgan, K.; Barzilai, N.; Feng, Z.; Rossetti, L. Overfeeding Rapidly Induces Leptin and Insulin Resistance. Diabetes 2001, 50, 2786–2791. [Google Scholar] [CrossRef] [Green Version]
- Koerner, A.; Kratzsch, J.; Kiess, W. Adipocytokines: Leptin—The classical, resistin—The controversical, adiponectin—The promising, and more to come. Best Prim. Res. Clin. Endocrinol. Metab. 2005, 19, 525–546. [Google Scholar] [CrossRef] [PubMed]
- Wihastuti, T.A.; Widodo, M.A.; Heriansyah, T.; Sari, N.A.K. Study of the inhibition effect of ethanolic extract of mangosteen pericarp on atherogenesis in hypercholesterolemic rat. Asian Pac. J. Trop. Dis. 2015, 5, 830–834. [Google Scholar] [CrossRef]
- Shibata, M.-A.; Harada-Shiba, M.; Shibata, E.; Tosa, H.; Matoba, Y.; Hamaoka, H.; Iinuma, M.; Kondo, Y. Crude α-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism. Int. J. Mol. Sci. 2019, 20, 1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kivimäki, M.; Luukkonen, R.; Batty, G.D.; Ferrie, J.E.; Pentti, J.; Nyberg, S.T.; Shipley, M.J.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; et al. Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals. Alzheimer’s Dement. 2017, 14, 601–609. [Google Scholar] [CrossRef]
- Lloret, A.; Monllor, P.; Esteve, D.; Cervera-Ferri, A.; Lloret, M.-A. Obesity as a Risk Factor for Alzheimer’s Disease: Implication of Leptin and Glutamate. Front. Neurosci. 2019, 13, 508. [Google Scholar] [CrossRef]
- Fritz, B.M.; Muñoz, B.; Yin, F.; Bauchle, C.; Atwood, B.K. A High-fat, High-sugar ‘Western’ Diet Alters Dorsal Striatal Glutamate, Opioid, and Dopamine Transmission in Mice. Neuroscience 2017, 372, 1–15. [Google Scholar] [CrossRef]
- Ovalle-Magallanes, B.; Eugenio-Pérez, D.; Pedraza-Chaverri, J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem. Toxicol. 2017, 109, 102–122. [Google Scholar] [CrossRef]
- Do, H.T.T.; Cho, J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer’s Disease, Parkinson’s Disease, and Depression with Pharmacokinetic and Safety Profiles. Int. J. Mol. Sci. 2020, 21, 6211. [Google Scholar] [CrossRef]
- Schwartz, T.L.; Siddiqui, U.A.; Stahl, S.M. Vilazodone: A brief pharmacological and clinical review of the novel serotonin partial agonist and reuptake inhibitor. Ther. Adv. Psychopharmacol. 2011, 1, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Palmiter, R.D. Dopamine Signaling in the Dorsal Striatum Is Essential for Motivated Behaviors. Ann. N. Y. Acad. Sci. 2008, 1129, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Halford, N.G.; Curtis, T.Y.; Muttucumaru, N.; Postles, J.; Elmore, J.S.; Mottram, D.S. The acrylamide problem: A plant and agronomic science issue. J. Exp. Bot. 2012, 63, 2841–2851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.-J.; Baler, R.D. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn. Sci. 2011, 15, 37–46. [Google Scholar] [CrossRef] [Green Version]
- van Galen, K.A.; ter Horst, K.W.; Booij, J.; la Fleur, S.E.; Serlie, M.J. The role of central dopamine and serotonin in human obesity: Lessons learned from molecular neuroimaging studies. Metab. Clin. Exp. 2018, 85, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Abu-Taweel, G.M. Neurobehavioral protective properties of curcumin against the mercury chloride treated mice offspring. Saudi J. Biol. Sci. 2019, 26, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Geiger, B.; Haburcak, M.; Avena, N.; Moyer, M.; Hoebel, B.; Pothos, E. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 2009, 159, 1193–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrera, I. Current Drugs and Potential Future Neuroprotective Compounds for Parkinson’s Disease. Curr. Neuropharmacol. 2019, 17, 295–306. [Google Scholar] [CrossRef]
- Fukutomi, R.; Ohishi, T.; Koyama, Y.; Pervin, M.; Nakamura, Y.; Isemura, M. Beneficial Effects of Epigallocatechin-3-O-gallate, Chlorogenic Acid, Resveratrol, and Curcumin on Neurodegenerative Diseases. Molecules 2021, 26, 415. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, J.; Feng, J. The neuroprotective effects of curcumin are associated with the regulation of the reciprocal function between autophagy and HIF-1α in cerebral ischemia-reperfusion injury. Drug Des. Dev. Ther. 2019, 13, 1135–1144. [Google Scholar] [CrossRef]
Phyto-Constituents | G. mangostana Pericarp | C. longa Rhizomes |
---|---|---|
Phenolic compounds | +++ | +++ |
Flavonoids | +++ | +++ |
Xanthones | +++ | + |
Tannins | ++ | ++ |
Phytosterols | ++ | ++ |
Alkaloids | - | - |
Saponins | - | - |
Sample | TPC (mg GAE/g Dried Extract) | TFC (mg CAT/g Dried Extract) | RP (Absorbance at 80 µg mL−1) | DPPH IC50 (µg mL−1) | OH IC50 (µg mL−1) |
---|---|---|---|---|---|
G. mangostana | 86.23 ± 0.62 a | 137.24 ± 1.05 b | 2.123 ± 0.05 b | 10.35 ± 0.46 c | 12.37 ± 0.62 a |
C. longa | 72.02 ± 0.22 b | 174.24 ± 0.20 a | 2.542 ± 0.03 a | 7.48 ± 0.52 b | 24.26 ± 0.25 c |
CAT | - | - | 2.34 ± 0.06 c | 4.45 ± 0.10 a | 14.67 ± 0.25 b |
Parameters | Groups (n) | Mean ± SEM | Percentage Change | p Value a |
---|---|---|---|---|
Initial BW (g) | Control obese (5) | 458.60 ± 15.95 | 100.00 | |
MPE-treated (5) | 405.00 ± 7.46 | −4.62 | N.S | |
Curcuma-treated (5) | 411.20 ± 9.42 | −0.83 | N.S | |
Synergistic-treated (5) | 392.00 ± 17.27 | −12.19 | ˂0.05 | |
Final BW (g) | Control obese (5) | 528.40 ± 15.17 | ||
MPE-treated (5) | 504.00 ± 6.64 | |||
Curcuma-treated (5) | 524.00 ± 9.68 | |||
Synergistic-treated (5) | 464.00 ± 17.08 | |||
Weight gain (g) | Control obese (5) | 69.80 ± 2.33 | 100.00 | |
MPE-treated (5) | 99.00 ± 1.00 | −11.69 | ˂0.05 | |
Curcuma-treated (5) | 112.80 ± 1.39 | −10.34 | ˂0.05 | |
Synergistic-treated (5) | 72.00 ± 1.38 | −14.52 | ˂0.05 | |
BMI (g/cm2) | Control obese (5) | 0.86 ± 0.09 | 100.00 | |
MPE-treated (5) | 0.81 ± 0.06 | −5.49 | N.S | |
Curcuma-treated (5) | 0.78 ± 0.03 | −9.09 | N.S | |
Synergistic-treated (5) | 0.79 ± 0.07 | −7.46 | N.S |
Dependent Variable | Predictor Variable | Coefficient | S.E. | p Value | Adjusted R2 | 95% CI | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
IL-6 | IL12 (pg/mL) | 0.895 | 0.274 | 0.002 | 0.974 | 0.340 | 1.450 |
Dopamin (ng/mL) | 0.340 | 0.140 | 0.020 | 0.056 | 0.624 | ||
Leptin (ng/mL) | 23.143 | 10.650 | 0.036 | 1.543 | 44.742 | ||
Leptin | IL12 (pg/mL) | 0.016 | 0.003 | 0.000 | 0.982 | 0.009 | 0.022 |
IL6 (pg/mL) | 0.005 | 0.002 | 0.009 | 0.001 | 0.009 | ||
Serotonin (ng/mL) | −0.007 | 0.002 | 0.005 | −0.013 | −0.002 | ||
BW | 0.003 | 0.001 | 0.029 | 0.000 | 0.005 |
Parameters | Groups | AUC | Cut-Off Value | Sensitivity % | Specificity % | p Value | 95% CI |
---|---|---|---|---|---|---|---|
Serotonin (ng/mL) | Control | 55.000 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
MPE-treated | 1.000 | 53.500 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Curcuma-treated | 1.000 | 51.500 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Synergistic-treated | 0.840 | 51.000 | 80.0% | 80.0% | 0.076 | 0.580–1.100 | |
Dopamin (ng/mL) | Control | 60.500 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
MPE-treated | 1.000 | 67.000 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Curcuma-treated | 0.960 | 53.000 | 100.0% | 80.0% | 0.016 | 0.843–1.077 | |
Synergistic-treated | 0.700 | 60.000 | 100.0% | 60.0% | 0.296 | 0.337–1.063 | |
Glutamate (ng/mL) | Control | 49.500 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
MPE-treated | 0.800 | 47.165 | 80.0% | 100.0% | 0.117 | 0.449–1.151 | |
Curcuma-treated | 0.800 | 49.000 | 80.0% | 100.0% | 0.117 | 0.449–1.151 | |
Synergistic-treated | 0.840 | 44.000 | 80.0% | 80.0% | 0.076 | 0.580–1.100 | |
IL12 (pg/mL) | Control | 91.910 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
MPE-treated | 1.000 | 79.765 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Curcuma-treated | 1.000 | 80.550 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Synergistic-treated | 1.000 | 72.495 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
IL6 (pg/mL) | Control | 180.995 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
MPE-treated | 1.000 | 145.125 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Curcuma-treated | 1.000 | 147.960 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Synergistic-treated | 1.000 | 134.970 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Leptin (ng/mL) | Control | 2.240 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
MPE-treated | 1.000 | 1.775 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Curcuma-treated | 1.000 | 1.980 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Synergistic-treated | 1.000 | 1.510 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
BMI | Control | 0.705 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
MPE-treated | 1.000 | 0.695 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Curcuma-treated | 1.000 | 0.755 | 100.0% | 100.0% | 0.009 | 1.000–1.000 | |
Synergistic-treated | 1.000 | 0.660 | 100.0% | 100.0% | 0.009 | 1.000–1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labban, R.S.M.; Alfawaz, H.A.; Amina, M.; Bhat, R.S.; Hassan, W.M.; El-Ansary, A. Synergism between Extracts of Garcinia mangostana Pericarp and Curcuma in Ameliorating Altered Brain Neurotransmitters, Systemic Inflammation, and Leptin Levels in High-Fat Diet-Induced Obesity in Male Wistar Albino Rats. Nutrients 2022, 14, 4630. https://doi.org/10.3390/nu14214630
Labban RSM, Alfawaz HA, Amina M, Bhat RS, Hassan WM, El-Ansary A. Synergism between Extracts of Garcinia mangostana Pericarp and Curcuma in Ameliorating Altered Brain Neurotransmitters, Systemic Inflammation, and Leptin Levels in High-Fat Diet-Induced Obesity in Male Wistar Albino Rats. Nutrients. 2022; 14(21):4630. https://doi.org/10.3390/nu14214630
Chicago/Turabian StyleLabban, Ranyah Shaker M., Hanan A. Alfawaz, Musarat Amina, Ramesa Shafi Bhat, Wail M. Hassan, and Afaf El-Ansary. 2022. "Synergism between Extracts of Garcinia mangostana Pericarp and Curcuma in Ameliorating Altered Brain Neurotransmitters, Systemic Inflammation, and Leptin Levels in High-Fat Diet-Induced Obesity in Male Wistar Albino Rats" Nutrients 14, no. 21: 4630. https://doi.org/10.3390/nu14214630