Effect of Epidermal Growth Factor in Human Milk and Maternal Diet on Late-Onset Breast Milk Jaundice: A Case-Control Study in Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Subjects
2.2. Data Collection
2.3. Milk Specimen Collection, Processing and Milk EGF Assays
2.4. Statistical Analysis
2.5. Sample Size Estimate
3. Results
3.1. Participants
3.2. Comparison of Maternal Diets
3.3. Status of Breastfeeding and Growth
3.4. Nutrient Concentration in Breast Milk
3.5. EGF Concentration in Breast Milk
3.6. Association between Breast Milk Concentrations and the TcB Value
3.7. Association between Dietary Food Intake and the TcB Value
3.8. Association between Dietary Food Intake and EGF Concentration in Breast Milk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arena, A.J. Breastfeeding in the “global strategy for infant and young child feeding”. An. Pediatr. 2003, 58, 208–210. [Google Scholar]
- Wu, J.M. Research on the Status of Maternal Perception of the Coparenting Relationship and Its Correlation with Breastfeeding in Beijing; Peking Union Medical College: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Bratton, S.; Cantu, R.M.; Stern, M. Breast Milk Jaundice. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Muchowski, K.E. Evaluation and treatment of neonatal hyperbilirubinemia. Am. Fam. Physician 2014, 89, 873–878. [Google Scholar] [PubMed]
- Belfort, M.B.; Anderson, P.J.; Nowak, V.A.; Lee, K.J.; Molesworth, C.; Thompson, D.K.; Doyle, L.W.; Inder, T.E. Breast Milk Feeding, Brain Development, and Neurocognitive Outcomes: A 7-Year Longitudinal Study in Infants Born at Less than 30 Weeks’ Gestation. J. Pediatr. 2016, 177, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawod, B.; Marshall, J.S. Cytokines and Soluble Receptors in Breast Milk as Enhancers of Oral Tolerance Development. Front. Immunol. 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prameela, K.K. Breastfeeding during breast milk jaundice—A pathophysiological perspective. Med. J. Malays. 2019, 74, 527–533. [Google Scholar]
- Ullah, S.; Rahman, K.; Hedayati, M. Hyperbilirubinemia in Neonates: Types, Causes, Clinical Examinations, Preventive Measures and Treatments: A Narrative Review Article. Iran J. Public Health 2016, 45, 558–568. [Google Scholar]
- Wilkins, T.; Sams, R.; Carpenter, M. Hepatitis B: Screening, Prevention, Diagnosis, and Treatment. Am. Fam. Physician 2019, 99, 314–323. [Google Scholar]
- Kumral, A.; Ozkan, H.; Duman, N.; Yesilirmak, D.C.; Islekel, H.; Ozalp, Y. Breast milk jaundice correlates with high levels of epidermal growth factor. Pediatr. Res. 2009, 66, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Ruan, J.; Zhong, B. Progress in human epidermal growth factor research. Sheng Wu Gong Cheng Xue Bao 2020, 36, 2813–2823. [Google Scholar]
- Puccio, F.; Lehy, T. Oral administration of epidermal growth factor in suckling rats stimulates cell DNA synthesis in fundic and antral gastric mucosae as well as in intestinal mucosa and pancreas. Regul. Pept. 1988, 20, 53–64. [Google Scholar] [CrossRef]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Jiang, J.; Wu, K.; Li, D. Epidermal growth factor and transforming growth factor-alpha in human milk of different lactation stages and different regions and their relationship with maternal diet. Food Funct. 2018, 9, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Apaydin, K.; Ermis, B.; Arasli, M.; Tekin, I.; Ankarali, H. Cytokines in human milk and late-onset breast milk jaundice. Pediatr. Int. 2012, 54, 801–805. [Google Scholar] [CrossRef]
- Xiao, L.L.; Zhang, X.F.; Wang, X.Y. Changes in epidermal growth factor concentrations in neonates with late-onset breast milk jaundice after stopping breast feeding. Zhongguo Dang Dai Er Ke Za Zhi 2013, 15, 1079–1081. [Google Scholar]
- Weng, Y.H.; Chiu, Y.W.; Cheng, S.W. Breast milk jaundice and maternal diet with chinese herbal medicines. Evid. Based Complement. Alternat. Med. 2012, 2012, 150120. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.X.; Wang, X.L.; Leong, P.M.; Zhang, H.M.; Yang, X.G.; Kong, L.Z.; Zhai, F.Y.; Cheng, Y.Y.; Guo, J.S.; Su, Y.X. New Chinese dietary guidelines: Healthy eating patterns and food-based dietary recommendations. Asia Pac. J. Clin. Nutr. 2018, 27, 908–913. [Google Scholar]
- Yan, Z.L.F. Correlation of epidermal growth factor and β-glucuronide glucosidase with breast milk jaundice. Mod. Pract. Med. 2014, 26, 808–809. [Google Scholar]
- Soldi, A.; Tonetto, P.; Varalda, A.; Bertino, E. Neonatal jaundice and human milk. J. Matern. Fetal Neonatal Med. 2011, 24 (Suppl. S1), 85–87. [Google Scholar] [CrossRef]
- Oka, Y.; Ghishan, F.K.; Greene, H.L.; Orth, D.N. Effect of mouse epidermal growth factor/urogastrone on the functional maturation of rat intestine. Endocrinology 1983, 112, 940–944. [Google Scholar] [CrossRef]
- Pollack, P.F.; Goda, T.; Colony, P.C.; Edmond, J.; Thornburg, W.; Korc, M.; Koldovský, O. Effects of enterally fed epidermal growth factor on the small and large intestine of the suckling rat. Regul. Pept. 1987, 17, 121–132. [Google Scholar] [CrossRef]
- Opleta, K.; O’Loughlin, E.V.; Shaffer, E.A.; Hayden, J.; Hollenberg, M.; Gall, D.G. Effect of epidermal growth factor on growth and postnatal development of the rabbit liver. Am. J. Physiol. 1987, 253, G622–G626. [Google Scholar] [CrossRef] [PubMed]
- Winkvist, A.; Habicht, J.P.; Rasmussen, K.M. Linking maternal and infant benefits of a nutritional supplement during pregnancy and lactation. Am. J. Clin. Nutr. 1998, 68, 656–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovelady, C.A. The impact of energy restriction and exercise in lactating women. Adv. Exp. Med. Biol. 2004, 554, 115–120. [Google Scholar]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Innis, S.M. Impact of maternal diet on human milk composition and neurological development of infants. Am. J. Clin. Nutr. 2014, 99, 734S–741S. [Google Scholar] [CrossRef] [Green Version]
- Keikha, M.; Bahreynian, M.; Saleki, M.; Kelishadi, R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Systematic Review. Breastfeed Med. 2017, 12, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wu, Y.S.; Shen, J.Y.; Yang, Z.B.; Shen, H.X.; Yao, M.; Yu, C.H. Walnut oil promotes healing of wounds and skin defects in rats via regulating the NF-kB pathway. Pharmazie 2018, 73, 721–724. [Google Scholar]
- Bevan, B.R.; Holton, J.B. Inhibition of bilirubin conjugation in rat liver slices by free fatty acids, with relevance to the problem of breast milk jaundice. Clin. Chim. Acta 1972, 41, 101–107. [Google Scholar] [CrossRef]
- Vieira, A.M.; de Almeida Brasiel, P.G.; Ferreira, M.S.; Mateus, K.; Figueiredo, M.S.; Lisboa, P.C.; de Moura, E.G.; do Amaral Corrêa, J.O.; Lopes, F.C.F.; da Silva, P.H.F.; et al. Maternal soybean diet during lactation alters breast milk composition and programs the lipid profile in adult male rat offspring. Endocrine 2018, 60, 272–281. [Google Scholar] [CrossRef]
- Grant, D.J.; Bell, D.A. Bilirubin UDP-glucuronosyltransferase 1A1 gene polymorphisms: Susceptibility to oxidative damage and cancer? Mol. Carcinog. 2000, 29, 198–204. [Google Scholar] [CrossRef]
- Rahkonen, P.; Heinonen, K.; Pesonen, A.K.; Lano, A.; Autti, T.; Puosi, R.; Huhtala, E.; Andersson, S.; Metsäranta, M.; Räikkönen, K. Mother-child interaction is associated with neurocognitive outcome in extremely low gestational age children. Scand. J. Psychol. 2014, 55, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Vaillancourt, C.; Maes, M.; Reiter, R.J. Breastfeeding and the gut-brain axis: Is there a role for melatonin? Biomol. Concepts 2017, 8, 185–195. [Google Scholar] [CrossRef] [PubMed]
Characteristics | BMJ (n = 29) | Control (n = 65) | χ2/t Value | p Value | |
---|---|---|---|---|---|
Maternal age(year) # | 33.17 ± 4.21 | 34.40 ± 3.53 | −1.45 | 0.15 | |
BMI # | 23.91 ± 3.36 | 24.30 ± 2.92 | −0.57 | 0.57 | |
Gestational age(week) # | 39.14 ± 1.07 | 39.49 ± 0.87 | −1.64 | 0.11 | |
Delivery + | Vaginal | 21 (72.4%) | 45 (69.2%) | 0.06 | 0.80 |
Cesarean | 8 (27.6%) | 20 (30.8%) | |||
Parity + | 1 | 16 (55.2%) | 32 (49.2%) | 1.37 | 0.73 |
2 | 8 (27.6%) | 22 (33.8%) | |||
3 | 5 (17.2%) | 9 (13.9%) | |||
4 | 0 (0.0%) | 2 (3.1%) | |||
Pregnancy complications + | Yes | 14 (48.3%) | 17 (26.2%) | 4.03 | 0.06 |
No | 15 (51.7%) | 46 (70.8%) | |||
Infant gender + | Male | 17 (58.6%) | 32 (49.2%) | 0.96 | 0.33 |
Female | 12 (41.4%) | 33 (50.8%) | |||
Birth length(cm) # | 49.62 ± 2.01 | 50.41 ± 1.54 | −1.87 | 0.07 | |
Birth weight(g) # | 3281.21 ± 457.50 | 3472.14 ± 460.87 | −1.85 | 0.07 | |
1-min Apgar Score # | 9.93 ± 0.26 | 9.94 ± 0.30 | −0.08 | 0.93 | |
5-min Apgar Score # | 9.97 ± 0.19 | 10 ± 0.00 | −1.00 | 0.33 |
Mean ± SD | t Value | p Value | ||
---|---|---|---|---|
BMJ Group | Control Group | |||
Energy (kcal/d) | 1863.34 ± 904.98 | 2261.43 ± 1443.45 | −1.045 | 0.303 |
Protein (g/d) | 80.79 ± 49.98 | 91.60 ± 52.13 | −0.670 | 0.507 |
Fats (g/d) | 84.50 ± 22.85 | 113.98 ± 89.81 | −1.423 | 0.163 |
Carbohydrates (g/d) | 202.85 ± 166.21 | 226.78 ± 136.69 | −0.497 | 0.622 |
Dietary fiber (g/d) | 11.47 ± 5.85 | 13.78 ± 5.68 | −1.268 | 0.213 |
Calcium (mg/d) | 624.20 ± 279.41 | 944.78 ± 678.33 | −1.954 | 0.058 |
Iron (mg/d) | 19.90 ± 10.75 | 24.58 ± 13.84 | −1.196 | 0.239 |
Zinc (mg/d) | 12.12 ± 8.67 | 14.06 ± 9.07 | −0.693 | 0.493 |
Selenium (μg/d) | 51.10 ± 27.11 | 64.81 ± 36.80 | −1.342 | 0.188 |
Copper (mg/d) | 1.95 ± 1.12 | 2.07 ± 0.81 | −0.387 | 0.701 |
Manganese (mg/d) | 3.87 ± 6.14 | 3.53 ± 2.36 | 0.236 | 0.815 |
Magnesium (mg/d) | 356.72 ± 258.71 | 364.53 ± 184.73 | −0.110 | 0.913 |
Sodium (mg/d) | 2825.82 ± 656.49 | 3238.30 ± 2128.54 | −0.828 | 0.416 |
Potassium (mg/d) | 2440.76 ± 1116.17 | 2737.27 ± 111965 | −0.839 | 0.407 |
Phosphorus (mg/d) | 1121.04 ± 596.07 | 1388.09 ± 815.63 | −1.182 | 0.244 |
Iodine (μg/d) | 87.02 ± 96.53 | 88.98 ± 73.47 | −0.072 | 0.943 |
Vitamin A (μgRAE/d) | 982.92 ± 487.66 | 1275.13 ± 621.87 | −1.654 | 0.106 |
Vitamin E (mg/d) | 28.53 ± 7.84 | 29.68 ± 8.84 | −0.436 | 0.665 |
Vitamin B1 (mg/d) | 1.00 ± 0.52 | 1.24 ± 0.75 | −1.206 | 0.235 |
Vitamin B2 (mg/d) | 1.30 ± 0.50 | 1.83 ± 1.11 | −1.975 | 0.056 |
Vitamin C (mg/d) | 94.00 ± 48.70 | 120.89 ± 55.26 | −1.633 | 0.111 |
Niacin (mgNE/d) | 15.89 ± 11.09 | 18.66 ± 16.33 | −0.627 | 0.535 |
Folate (μg/d) | 378.35 ± 165.63 | 465.55 ± 230.80 | −1.373 | 0.178 |
Water (g/d) | 861.59 ± 302.19 | 1233.46 ± 662.91 | −2.283 | 0.028 |
Mean ± SD | t Value | p Value | ||
---|---|---|---|---|
BMJ Group | Control Group | |||
Protein (g/100 mL) | 0.887 ± 0.23 | 0.979 ± 0.16 | −1.473 | 0.149 |
Fat (g/100 mL) | 4.167 ± 1.30 | 4.10 ± 0.74 | 0.194 | 0.848 |
Lactose (g/100 mL) | 7.239 ± 1.86 | 7.98 ± 1.35 | −1.454 | 0.154 |
Minerals (g/100 mL) | 0.217 ± 0.06 | 0.240 ± 0.04 | −1.537 | 0.133 |
Water (g/100 mL) | 87.49 ± 2.07 | 86.70 ± 1.82 | 1.293 | 0.204 |
Density (g/100 mL) | 1.025 ± 0.01 | 1.028 ± 0.01 | −1.432 | 0.160 |
Energy (kcal/100 mL) | 70.00 ± 11.67 | 72.77 ± 9.67 | −0.818 | 0.419 |
Model 1 a | Model 2 b | ||||||
---|---|---|---|---|---|---|---|
β | 95% CI | p | β | 95% CI | p | ||
EGF | −0.33 | (−0.16, 0.03) | 0.004 | EGF | −0.27 | (−0.16, −0.00) | 0.04 |
— | Maternal age | −0.29 | (−0.55, −0.03) | 0.03 |
Food | Model 1 a | Food | Model 2 b | ||||
---|---|---|---|---|---|---|---|
β | 95% CI | p | β | 95% CI | p | ||
Cooking oil | −0.27 | (−6.43, −0.38) | 0.03 | Soybean and soybean products | −0.34 | (−2.07, −0.24) | 0.02 |
EGF | Model 1 a | ||
---|---|---|---|
β | 95% CI | p | |
Cooking oil | 0.38 | (5.75, 35.36) | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Cui, M.; Liu, X.; Zhao, S.; Liu, P.; Wang, L. Effect of Epidermal Growth Factor in Human Milk and Maternal Diet on Late-Onset Breast Milk Jaundice: A Case-Control Study in Beijing. Nutrients 2022, 14, 4587. https://doi.org/10.3390/nu14214587
Guo Q, Cui M, Liu X, Zhao S, Liu P, Wang L. Effect of Epidermal Growth Factor in Human Milk and Maternal Diet on Late-Onset Breast Milk Jaundice: A Case-Control Study in Beijing. Nutrients. 2022; 14(21):4587. https://doi.org/10.3390/nu14214587
Chicago/Turabian StyleGuo, Qianying, Mingxuan Cui, Xinran Liu, Shilong Zhao, Peng Liu, and Linlin Wang. 2022. "Effect of Epidermal Growth Factor in Human Milk and Maternal Diet on Late-Onset Breast Milk Jaundice: A Case-Control Study in Beijing" Nutrients 14, no. 21: 4587. https://doi.org/10.3390/nu14214587
APA StyleGuo, Q., Cui, M., Liu, X., Zhao, S., Liu, P., & Wang, L. (2022). Effect of Epidermal Growth Factor in Human Milk and Maternal Diet on Late-Onset Breast Milk Jaundice: A Case-Control Study in Beijing. Nutrients, 14(21), 4587. https://doi.org/10.3390/nu14214587