Dietary Inflammatory Index and Its Association with the Prevalence of Coronary Heart Disease among 45,306 US Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Information
2.3. Definition of CHD
2.4. Covariates
2.5. Statistical Methods
3. Results
3.1. Characteristics of the Study Population
3.2. Association of DII and Prevalence of CHD
3.3. Subgroup Analysis of DII and the Risk of CHD
3.4. Association of DII and HEI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H.; Chiou, J. Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients 2021, 13, 2878. [Google Scholar] [CrossRef] [PubMed]
- Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell 2022, 185, 1630–1645. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, P.H.; von Känel, R. Psychological Stress, Inflammation, and Coronary Heart Disease. Curr. Cardiol. Rep. 2017, 19, 111. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Cuevas, J.; Santos, A.; Armendariz-Borunda, J. Pathophysiological Molecular Mechanisms of Obesity: A Link between MAFLD and NASH with Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22, 11629. [Google Scholar] [CrossRef]
- Kase, N.G.; Gretz Friedman, E.; Brodman, M.; Kang, C.; Gallagher, E.J.; LeRoith, D. The midlife transition and the risk of cardiovascular disease and cancer Part I: Magnitude and mechanisms. Am. J. Obstet. Gynecol. 2020, 223, 820–833. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Liu, Y.; Wang, L.; Yang, R.; Li, Z.; Gao, S.; Li, L.; Yu, C. Relationship Between Monocyte-to-Lymphocyte Ratio as Well as Other Leukocyte-Derived Ratios and Carotid Plaques in Patients with Coronary Heart Disease: A RCSCD-TCM Study. J. Inflamm. Res. 2022, 15, 5141–5156. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, H.; Dong, B.; Yang, J.; Kou, L.; Qin, Q. Correlation between platelet-derived growth factor-B gene polymorphism and coronary heart disease. J. Clin. Lab. Anal. 2022, 36, e24683. [Google Scholar] [CrossRef]
- Sletten, A.C.; Peterson, L.R.; Schaffer, J.E. Manifestations and mechanisms of myocardial lipotoxicity in obesity. J. Intern. Med. 2018, 284, 478–491. [Google Scholar] [CrossRef] [Green Version]
- Machate, D.J.; Figueiredo, P.S.; Marcelino, G.; Guimarães, R.d.C.A.; Hiane, P.A.; Bogo, D.; Pinheiro, V.A.Z.; Oliveira, L.C.S.d.; Pott, A. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int. J. Mol. Sci. 2020, 21, 4093. [Google Scholar] [CrossRef]
- Delarue, J. Dietary fatty acids and CHD: From specific recommendations to dietary patterns. Nutr. Res. Rev. 2021, 34, 240–258. [Google Scholar] [CrossRef]
- Ishihara, J.; Iso, H.; Inoue, M.; Iwasaki, M.; Okada, K.; Kita, Y.; Kokubo, Y.; Okayama, A.; Tsugane, S. Intake of folate, vitamin B6 and vitamin B12 and the risk of CHD: The Japan Public Health Center-Based Prospective Study Cohort I. J. Am. Coll. Nutr. 2008, 27, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and Developing a Literature-derived, Population-based Dietary Inflammatory Index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieujean, S.; Caron, B.; Haghnejad, V.; Jouzeau, J.-Y.; Netter, P.; Heba, A.-C.; Ndiaye, N.C.; Moulin, D.; Barreto, G.; Danese, S.; et al. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int. J. Mol. Sci. 2022, 23, 7611. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Shi, S.; Jiang, Y.; Chen, K.; Liao, Y.; Huang, R.; Huang, K. Association of Sarcopenia with Ideal Cardiovascular Health Metrics among US Adults: A Cross-sectional Study of NHANES Data from 2011 to 2018. BMJ Open 2022, 12, e061789. [Google Scholar] [CrossRef]
- Lee, Y.; Ye, M.; Tully, J.; Salah, S.; Kerob, D.; Abuabara, K. The Impact of Dermatitis on Health-Related Quality of Life: Data from the National Health and Nutrition Examination Survey (NHANES). J. Eur. Acad. Dermatol. Venereol. 2022; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, N.; Wang, H.; Su, W.; Song, Q.; Liang, Q.; Sun, C.; Liang, M.; Ding, X.; Lowe, S.; et al. Exploratory Analysis of the Association between Pyrethroid Exposure and Rheumatoid Arthritis among US Adults: 2007–2014 Data Analysis from the National Health and Nutrition Examination Survey (NHANES). Environ. Sci. Pollut. Res. Int. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)-Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Tabung, F.; Hébert, J.R. A Population-based Dietary Inflammatory Index Predicts Levels of C-reactive Protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr. 2014, 17, 1825–1833. [Google Scholar] [CrossRef] [Green Version]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Z. Red Blood Cell Folate Concentrations and Coronary Heart Disease Prevalence: A Cross-Sectional Study Based on 1999-2012 National Health and Nutrition Examination Survey. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1015–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelijveld, N.; Benedict, R.K.; Wrottesley, S.V.; Bhutta, Z.A.; Borghi, E.; Cole, T.J.; Croft, T.; Frongillo, E.A.; Hayashi, C.; Namaste, S.; et al. Towards Standardised and Valid Anthropometric Indicators of Nutritional Status in Middle Childhood and Adolescence. Lancet Child Adolesc. Health 2022, 6, 738–746. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. [Google Scholar] [CrossRef] [PubMed]
- Bordon, Y. Macrophages: Shaping Good Eating Habits. Nat. Rev. Immunol. 2016, 16, 719. [Google Scholar] [CrossRef]
- Huda, M.N.; Salvador, A.C.; Barrington, W.T.; Gacasan, C.A.; D’Souza, E.M.; Deus Ramirez, L.; Threadgill, D.W.; Bennett, B.J. Gut Microbiota and Host Genetics Modulate the Effect of Diverse Diet Patterns on Metabolic Health. Front. Nutr. 2022, 9, 896348. [Google Scholar] [CrossRef]
- Nickerson, K.P.; Homer, C.R.; Kessler, S.P.; Dixon, L.J.; Kabi, A.; Gordon, I.O.; Johnson, E.E.; de la Motte, C.A.; McDonald, C. The Dietary Polysaccharide Maltodextrin Promotes Salmonella Survival and Mucosal Colonization in Mice. PLoS ONE 2014, 9, e101789. [Google Scholar] [CrossRef] [Green Version]
- Serino, M. Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections. J. Mol. Biol. 2018, 430, 581–590. [Google Scholar] [CrossRef]
- Barry, D.; Ellul, S.; Watters, L.; Lee, D.; Haluska, R.; White, R. The ketogenic diet in disease and development. Int. J. Dev. Neurosci. 2018, 68, 53–58. [Google Scholar] [CrossRef]
- Wright, C.; Simone, N.L. Obesity and tumor growth: Inflammation, immunity, and the role of a ketogenic diet. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 294–299. [Google Scholar] [CrossRef]
- Turner-McGrievy, G.; Wirth, M.D.; Hill, K.L.; Dear, E.R.; Hébert, J.R. Examining commonalities and differences in food groups, nutrients, and diet quality among popular diets. Clin. Nutr. ESPEN 2021, 41, 377–385. [Google Scholar] [CrossRef]
- Sreeja, S.R.; Lee, H.Y.; Kwon, M.; Shivappa, N.; Hebert, J.R.; Kim, M.K. Dietary Inflammatory Index and Its Relationship with Cervical Carcinogenesis Risk in Korean Women: A Case-Control Study. Cancers 2019, 11, 1108. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Miao, Q.; Walker, M.; Hébert, J.R.; Aronson, K.J. Association Between a Dietary Inflammatory Index and Prostate Cancer Risk in Ontario, Canada. Nutr. Cancer 2017, 69, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A New Dietary Inflammatory Index Predicts Interval Changes in Serum High-sensitivity C-Reactive Protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaba, P.; Gersh, B.J.; Muller, J.; Narula, J.; Stone, G.W. Evolving Concepts of The Vulnerable Atherosclerotic Plaque and The Vulnerable Patient: Implications for Patient Care and Future Research. Nat. Rev. Cardiol. 2022; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Björkerud, S.; Björkerud, B. Apoptosis Is Abundant In Human Atherosclerotic Lesions, Especially In Inflammatory Cells (Macrophages and T Cells), and May Contribute to the Accumulation of Gruel and Plaque Instability. Am. J. Pathol. 1996, 149, 367–380. [Google Scholar] [PubMed]
- Luo, J.; Chen, S.; Wang, L.; Zhao, X.; Piao, C. Pharmacological Effects of Polydatin in the Treatment of Metabolic Diseases: A Review. Phytomedicine 2022, 102, 154161. [Google Scholar] [CrossRef]
- Gao, C.; Fei, X.; Wang, M.; Chen, Q.; Zhao, N. Cardamomin Protects from Diabetes-induced Kidney Damage through Modulating PI3K/AKT and JAK/STAT Signaling Pathways in Rats. Int. Immunopharmacol. 2022, 107, 108610. [Google Scholar] [CrossRef]
- Xie, S.; Li, X.; Xie, H. Etomidate Affects Spatial Learning and Memory and Neuronal Apoptosis of Rats via MAPK/ERK Pathway. Am. J. Transl. Res. 2022, 14, 5823–5832. [Google Scholar]
- Basta, G.; Schmidt, A.M.; De Caterina, R. Advanced Glycation End Products and Vascular Inflammation: Implications for Accelerated Atherosclerosis in Diabetes. Cardiovasc. Res. 2004, 63, 582–592. [Google Scholar] [CrossRef]
- Menotti, A.; Puddu, P.E.; Maiani, G.; Catasta, G. Lifestyle Behaviour and Lifetime Incidence of Heart Diseases. Int. J. Cardiol. 2015, 201, 293–299. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, W.; Zhu, X.; Wu, J.; Wu, X. Organophosphorus Insecticides Exposure and Sex Hormones in General U.S. Population: A Cross-sectional Study. Environ Res. 2022, 215, 114384. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wang, C.; Wu, J.; Chen, S.; Mao, W.; Chen, Y.; Chen, M. Dietary Copper Intake and the Prevalence of Kidney Stones among Adult in the United States: A Propensity Score Matching Study. Front. Public Health 2022, 10, 973887. [Google Scholar] [CrossRef]
- Nan, Y.; Yang, J.; Ma, L.; Jin, L.; Bai, Y. Associations of Nickel Exposure and Kidney Function in U.S. Adults, NHANES 2017-2018. J. Trace Elem. Med. Biol. 2022, 74, 127065. [Google Scholar] [CrossRef] [PubMed]
- Walli-Attaei, M.; Rosengren, A.; Rangarajan, S.; Breet, Y.; Abdul-Razak, S.; Sharief, W.A.; Alhabib, K.F.; Avezum, A.; Chifamba, J.; Diaz, R.; et al. Metabolic, Behavioural, and Psychosocial Risk Factors and Cardiovascular Disease in Women Compared with Men in 21 High-income, Middle-income, and Low-income Countries: An Analysis of the PURE Study. Lancet 2022, 400, 811–821. [Google Scholar] [CrossRef]
- Gholamalizadeh, M.; Rastgoo, S.; Doaei, S.; Vahid, F.; Malmir, H.; Ashoori, N.; Jarrahi, A.M. Index of Nutritional Quality (INQ) and the Risk of Obesity in Male Adolescents: A Case-Control Study. Biol. Trace Elem. Res. 2021, 199, 1701–1706. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Qiao, Y.; Xiong, S.; Liu, S.; Ke, C.; Shen, Y. Association between Dietary Quality and Prediabetes based on the Diet Balance Index. Sci. Rep. 2020, 10, 3190. [Google Scholar] [CrossRef]
Variables | Overall (n = 45,306) | Non-CHD (n = 43,731) | CHD (n = 1575) | p-Value |
---|---|---|---|---|
Age, years | 47.00 (33.00, 61.00) | 46.00 (32.00, 61.00) | 66.00 (60.00, 73.00) | <0.001 *** |
Sex—male, n (%) | 21,857 (48.2) | 20,782 (47.5) | 1075 (68.3) | <0.001 *** |
Race, n (%) | ||||
Non-Hispanic white | 19,322 (42.6) | 18,400 (42.1) | 922 (58.5) | <0.001 *** |
Non-Hispanic black | 9821 (21.7) | 9578 (21.9) | 243 (15.4) | |
Mexican American | 8310 (18.3) | 8108 (18.5) | 202 (12.8) | |
Other Hispanic | 3818 (8.4) | 3719 (8.5) | 99 (6.3) | |
Other | 4035 (8.9) | 3926 (9.0) | 109 (6.9) | |
Smoking, n (%) | 9991 (22.1) | 9675 (22.1) | 316 (20.1) | 0.055 |
Drinking, n (%) | 12,903 (30.8) | 12,266 (30.3) | 637 (44.2) | <0.001 *** |
Education level, n (%) | ||||
Below high school | 5069 (11.2) | 4807 (11.0) | 262 (16.6) | <0.001 *** |
High school | 17,237 (38.1) | 16,594 (38.0) | 643 (40.8) | |
Above high school | 22,964 (50.7) | 22,294 (51.0) | 670 (42.5) | |
BMI, kg/m2 | 28.03 (24.38, 32.57) | 28.00 (24.30, 32.50) | 29.28 (25.90, 33.70) | <0.001 *** |
SBP, mmHg | 120.00 (110.00, 133.00) | 120.00 (110.00, 132.00) | 128.00 (116.00, 142.00) | <0.001 *** |
DBP, mmHg | 71.00 (63.00, 78.00) | 71.00 (64.00, 78.00) | 68.00 (60.00, 76.00) | <0.001 *** |
HBP, n (%) | 18,255 (40.3) | 16,984 (38.8) | 1271 (80.7) | <0.001 *** |
Income > 20,000 USD | 31,976 (73.8) | 30,975 (74.1) | 1001 (66.2) | <0.001 *** |
FBG, mmol/L | 5.50 (5.11, 6.05) | 5.50 (5.08, 6.05) | 6.12 (5.50, 7.27) | <0.001 *** |
FBI, mmol/L | 59.22 (37.80, 96.60) | 58.74 (37.50, 95.94) | 72.33 (46.35, 119.34) | <0.001 *** |
HbA1c, % | 5.50 (5.20, 5.80) | 5.40 (5.20, 5.80) | 5.80 (5.50, 6.70) | <0.001 *** |
TG, mmol/L | 1.22 (0.84, 1.82) | 1.21 (0.84, 1.81) | 1.46 (1.00, 2.16) | 0.286 |
TC, mmol/L | 4.99 (4.32, 5.74) | 5.02 (4.34, 5.74) | 4.50 (3.83, 5.33) | <0.001 *** |
HDL-C, mmol/L | 1.29 (1.06, 1.60) | 1.29 (1.08, 1.60) | 1.14 (0.98, 1.40) | <0.001 *** |
LDL-C, mmol/L | 2.92 (2.35, 3.57) | 2.95 (2.38, 3.57) | 2.43 (1.89, 3.08) | <0.001 *** |
Alt, u | 21.00 (16.00, 29.00) | 21.00 (16.00, 29.00) | 21.00 (17.00, 28.00) | 0.304 * |
Ast, u | 22.00 (19.00, 27.00) | 22.00 (19.00, 27.00) | 23.00 (20.00, 28.00) | 0.001 *** |
RBC, ×109/L | 4.68 (4.35, 5.03) | 4.68 (4.35, 5.03) | 4.63 (4.27, 4.97) | 0.001 *** |
WBC, ×109/L | 7.00 (5.70, 8.40) | 7.00 (5.70, 8.40) | 7.10 (5.90, 8.60) | 0.015*** |
PLT, ×106/L | 247.00 (209.00, 291.00) | 248.00 (210.00, 292.00) | 217.00 (180.25, 266.00) | <0.001 *** |
Monocyte, ×109/L | 0.50 (0.40, 0.70) | 0.50 (0.40, 0.60) | 0.60 (0.50, 0.70) | <0.001 *** |
LY, ×109/L | 2.10 (1.70, 2.50) | 2.10 (1.70, 2.50) | 1.90 (1.50, 2.40) | <0.001 *** |
NE, ×109/L | 4.00 (3.10, 5.20) | 4.00 (3.10, 5.20) | 4.20 (3.30, 5.40) | <0.001 *** |
Hemoglobin, g/L | 14.20 (13.10, 15.20) | 14.20 (13.10, 15.20) | 14.20 (13.12, 15.10) | 0.54 |
eGFR, ml/min/1.73m2 | 97.44 (81.89, 112.60) | 98.17 (82.95, 113.05) | 75.77 (60.20, 89.05) | <0.001 *** |
DII | 1.74 (0.21, 2.94) | 1.73 (0.21, 2.93) | 1.96 (0.40, 3.13) | <0.001 *** |
HEI-2015 | 49.59 (40.58, 59.28) | 49.54 (40.53, 59.22) | 51.50 (41.96, 61.19) | <0.001 *** |
DM, n (%) | 7403 (16.9) | 6706 (15.8) | 697 (44.3) | <0.001 *** |
Angina, n (%) | 1091 (2.4) | 577 (1.3) | 514 (33.3) | <0.001 *** |
Heart attack, n (%) | 1682 (3.7) | 863 (2.0) | 819 (52.3) | <0.001 *** |
HF, n (%) | 1189 (2.6) | 693 (1.6) | 496 (32.1) | <0.001 *** |
Stroke, n (%) | 1462 (3.2) | 1212 (2.8) | 250 (15.9) | <0.001 *** |
Variables | Overall (n = 45,023) | Non-CHD (n = 43,768) | CHD (n = 1255) | p-Value |
---|---|---|---|---|
DII | 1.74 (0.21, 2.94) | 1.73 (0.21, 2.93) | 1.96 (0.40, 3.13) | <0.001 *** |
Carbohydrate | −0.01 (−0.02, 0.02) | −0.01 (−0.02, 0.02) | −0.01 (−0.02, 0.01) | <0.001 *** |
Protein | −0.06 (−0.10, 0.08) | −0.06 (−0.10, 0.08) | −0.08 (−0.10, 0.01) | <0.001 *** |
Total fat | 0.28 (0.28, 0.28) | 0.28 (0.28, 0.28) | 0.28 (0.28, 0.28) | <0.001 *** |
Fiber | 0.01 (−0.23, 0.27) | 0.01 (−0.23, 0.27) | −0.10 (−0.26, 0.20) | <0.001 *** |
Cholesterol | 0.00 (−0.01, 0.01) | 0.00 (−0.01, 0.01) | 0.00 (−0.01, 0.01) | <0.001 *** |
Saturated fat | 0.43 (−0.25, 0.63) | 0.43 (−0.25, 0.63) | 0.45 (−0.17, 0.64) | 0.004 ** |
MUFA | −0.08 (−0.11, 0.11) | −0.07 (−0.11, 0.11) | −0.10 (−0.11, 0.10) | <0.001 *** |
PUFA | −0.20 (−0.34, 0.19) | −0.20 (−0.34, 0.19) | −0.28 (−0.36, 0.02) | <0.001 *** |
Niacin | −0.01 (−0.05, 0.03) | −0.01 (−0.05, 0.03) | −0.01 (−0.05, 0.03) | <0.001 *** |
Vitamin A | −0.10 (−0.33, 0.25) | −0.10 (−0.33, 0.25) | 0.04 (−0.30, 0.28) | <0.001 *** |
Thiamin | 0.27 (0.12, 0.34) | 0.27 (0.12, 0.34) | 0.27 (0.14, 0.34) | <0.001 *** |
Riboflavin | 0.03 (−0.03, 0.07) | 0.03 (−0.03, 0.07) | 0.04 (−0.03, 0.07) | 0.021 * |
Vitamin B6 | −0.08 (−0.30, 0.13) | −0.09 (−0.30, 0.13) | −0.03 (−0.27, 0.16) | <0.001 *** |
Vitamin B12 | 0.36 (−0.02, 0.41) | 0.36 (−0.02, 0.41) | 0.37 (0.04, 0.41) | 0.045 * |
Vitamin C | 0.44 (0.30, 36.95) | 0.44 (0.30, 36.81) | 0.44 (0.32, 41.34) | <0.001 *** |
Vitamin D | 0.37 (−0.23, 0.42) | 0.37 (−0.23, 0.42) | 0.40 (−0.07, 0.42) | <0.001 *** |
Vitamin E | 0.00 (−0.02, 0.03) | 0.00 (−0.02, 0.03) | −0.01 (−0.03, 0.02) | 0.003 ** |
Iron | 0.01 (−0.30, 0.27) | 0.01 (−0.30, 0.27) | 0.10 (−0.27, 0.28) | <0.001 *** |
Magnesium | 0.13 (−0.14, 0.30) | 0.12 (−0.14, 0.30) | 0.17 (−0.08, 0.32) | <0.001 *** |
Zinc | −0.15 (−0.19, −0.01) | −0.15 (−0.19, −0.01) | −0.13 (−0.19, 0.03) | <0.001 *** |
Selenium | 0.18 (0.11, 0.19) | 0.18 (0.11, 0.19) | 0.19 (0.13, 0.19) | 0.012 * |
Folic acid | −0.04 (−0.08, 0.03) | −0.04 (−0.08, 0.03) | −0.05 (−0.08, 0.02) | 0.001 ** |
β-Carotene | 0.07 (−0.08, 0.16) | 0.07 (−0.08, 0.16) | 0.09 (−0.04, 0.17) | <0.001 *** |
Caffeine | 0.54 (0.38, 0.56) | 0.54 (0.38, 0.56) | 0.54 (0.40, 0.56) | 0.081 |
Alcohol | 0.08 (0.08, 0.08) | 0.08 (0.08, 0.08) | 0.08 (0.08, 0.08) | <0.001 *** |
Energy | −0.04 (−0.17, 0.16) | −0.04 (−0.17, 0.17) | −0.12 (−0.18, 0.07) | <0.001 *** |
n3 fatty acids | 0.29 (0.28, 0.30) | 0.29 (0.28, 0.30) | 0.29 (0.28, 0.30) | <0.001 *** |
n6 fatty acids | −0.07 (−0.14, 0.02) | −0.07 (−0.14, 0.02) | −0.04 (−0.12, 0.04) | <0.001 *** |
Nonadjusted Model | Model I | Model II | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
DII | 1.09 (1.05, 1.14) | <0.001 *** | 1.17 (1.11, 1.22] | <0.001 *** | 1.08 (1.03, 1.14)) | 0.005 |
Q1 | Reference | - | Reference | - | Reference | - |
Q2 | 0.99 (0.87, 1.12) | 0.849 | 1.05 (0.93, 1.2) | 0.512 | 0.98 (0.86, 1.11) | 0.776 |
Q3 | 1.14 (1.01, 1.29) | 0.067 * | 1.3 (1.15, 1.48) | <0.001 *** | 1.15 (1.01, 1.31) | 0.041 * |
Q4 | 1.26 (1.12, 1.42) | 0.001 ** | 1.48 (1.31, 1.68) | <0.001 *** | 1.24 (1.09, 1.41) | 0.007 ** |
Nonadjusted Model | Model I | Model II | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
DII | 1.1 (1.07, 1.13) | <0.001 *** | 1.09 (1.06, 1.12) | <0.001 *** | 1.05 (1.02, 1.08) | 0.005 ** |
Q1 | Reference | - | Reference | - | Reference | - |
Q2 | 1.07 (0.94, 1.21) | 0.39 | 1.07 (0.93, 1.22) | 0.424 | 1 (0.87, 1.14) | 0.028 * |
Q3 | 1.33 (1.17, 1.51) | <0.001 *** | 1.33 (1.16, 1.52) | <0.001 *** | 1.2 (1.05, 1.37) | 0.003 ** |
Q4 | 1.56 (1.37, 1.78) | <0.001 *** | 1.5 (1.3, 1.74) | <0.001 *** | 1.3 (1.12, 1.5) | <0.001 *** |
HEI | 1.01 (1.00, 1.02) | <0.001 *** | 1.00 (0.99, 1.00) | 0.977 | 1 (1.00, 1.01) | 0.418 |
Q1 | Reference | - | Reference | - | Reference | - |
Q2 | 1.15 (1.00, 1.31) | 0.07 | 0.98 (0.86, 1.12) | 0.78 | 1 (0.88, 1.15) | 0.975 |
Q3 | 1.31 (1.15, 1.49) | <0.001 *** | 0.98 (0.85, 1.12) | 0.771 | 1.02 (0.89, 1.18) | 0.777 |
Q4 | 1.65 (1.45, 1.89) | <0.001 *** | 1.04 (0.9, 1.2) | 0.666 | 1.11 (0.96, 1.29) | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Shi, Y.; Kong, C.; Zhang, J.; Chen, S. Dietary Inflammatory Index and Its Association with the Prevalence of Coronary Heart Disease among 45,306 US Adults. Nutrients 2022, 14, 4553. https://doi.org/10.3390/nu14214553
Wu L, Shi Y, Kong C, Zhang J, Chen S. Dietary Inflammatory Index and Its Association with the Prevalence of Coronary Heart Disease among 45,306 US Adults. Nutrients. 2022; 14(21):4553. https://doi.org/10.3390/nu14214553
Chicago/Turabian StyleWu, Lida, Yi Shi, Chaohua Kong, Junxia Zhang, and Shaoliang Chen. 2022. "Dietary Inflammatory Index and Its Association with the Prevalence of Coronary Heart Disease among 45,306 US Adults" Nutrients 14, no. 21: 4553. https://doi.org/10.3390/nu14214553
APA StyleWu, L., Shi, Y., Kong, C., Zhang, J., & Chen, S. (2022). Dietary Inflammatory Index and Its Association with the Prevalence of Coronary Heart Disease among 45,306 US Adults. Nutrients, 14(21), 4553. https://doi.org/10.3390/nu14214553