Rationalisation of the UK Nutrient Databank for Incorporation in a Web-Based Dietary Recall for Implementation in the UK National Diet and Nutrition Survey Rolling Programme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rationalisation of the UK NDB
- Individual recipes reported in NDNS RP year 2017 were assigned to a generic dish based on name of recipe (data were compiled in a Microsoft (MS) Access Database). For example, all varieties of fried bacon such as “bacon fried in sunflower oil” and “bacon fried in olive oil” were grouped into “bacon fried”. This exercise used recipe data from only one year of NDNS RP as the ingredients of recipes were more easily identifiable in the NDNS year 2017 dataset due to coding approaches.
- Common ingredients and median energy content of each dish group (e.g. varieties of fried bacon) were matched to a food code available in the extensive NDB or to a new food code created for the rationalised NDB (see Table S1b for illustration example on the list of fried bacon reported in NDNS year 2017 which were ultimately matched to a single fried bacon food code).The rationalisation exercise was designed to produce a rationalised NDB for the UK, comprising a comprehensive list of current foods each corresponding to an associated nutrient composition code. In parallel with 2019–2020 NDNS data collection using https://intake24.org/ (Software Version 3: Intake24 [UK] Cambridge 2019, accessed on 27 June 2022), data checks were performed on collected dietary intake data in order to review and monitor suitability and coverage of food codes and to identify further refinements.
2.2. Evaluation of Rationalisation
2.3. Statistical Analysis for the Evaluation
3. Results
3.1. Rationalisation and Update of NDB
3.2. Evaluation of Change in Dietary Data Output
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arab, L.; Wesseling-Perry, K.; Jardack, P.; Henry, J.; Winter, A. Eight self-administered 24-hour dietary recalls using the Internet are feasible in African Americans and Whites: The energetics study. J. Am. Diet. Assoc. 2010, 110, 857–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.; Simpson, E.; Poliakov, I.; Matthews, J.N.; Olivier, P.; Adamson, A.J.; Foster, E. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11-24 Year-Old. Nutrients 2016, 8, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, M.C.; Albar, S.A.; Morris, M.A.; Mulla, U.Z.; Hancock, N.; Evans, C.E.; Alwan, N.A.; Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; et al. Development of a UK Online 24-h Dietary Assessment Tool: myfood24. Nutrients 2015, 7, 4016–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-hour dietary recall (ASA24): A resource for researchers, clinicians, and educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touvier, M.; Kesse-Guyot, E.; Méjean, C.; Pollet, C.; Malon, A.; Castetbon, K.; Hercberg, S. Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. Br. J. Nutr. 2011, 105, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Timon, C.M.; van den Barg, R.; Blain, R.J.; Kehoe, L.; Evans, K.; Walton, J.; Flynn, A.; Gibney, E.R. A review of the design and validation of web- and computer-based 24-h dietary recall tools. Nutr. Res. Rev. 2016, 29, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Conway, J.M.; Ingwersen, L.A.; Vinyard, B.T.; Moshfegh, A.J. Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am. J. Clin. Nutr. 2003, 77, 1171–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, S.A.J.; Conrad, J.; Hierath, L.; Hancock, N.; Beer, S.; Cade, J.E.; Nöthlings, U. Adaptation and Evaluation of Myfood24-Germany: A Web-Based Self-Administered 24-h Dietary Recall for the German Adult Population. Nutrients 2020, 12, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, T.P.; Hull, S.G.; McNutt, S.; Mittl, B.; Islam, N.; Guenther, P.M.; Thompson, F.E.; Potischman, N.A.; Subar, A.F. Challenges in converting an interviewer-administered food probe database to self-administration in the National Cancer Institute Automated Self-administered 24-Hour Recall (ASA24). J. Food Compos. Anal. 2009, 22, S48–S51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food Standards Agency (FSA); Public Health England (PHE). NDNS: Results from Years 9 to 11 (2016 to 2017 and 2018 to 2019). Available online: https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019 (accessed on 25 August 2022).
- Steer, T.; Roberts, C.; Amoutzopoulos, B.; Farooq, A.; Page, P. Selection of an automated dietary assessment tool for use in the UK National Diet and Nutrition Survey (NDNS) Rolling Programme (RP). In Proceedings of the International Conference on Diet & Activity Methods (eICDAM), Online, 8–12 February 2021; p. 79. [Google Scholar]
- Simpson, E.; Bradley, J.; Poliakov, I.; Jackson, D.; Olivier, P.; Adamson, A.J.; Foster, E. Iterative Development of an Online Dietary Recall Tool: INTAKE24. Nutrients 2017, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Public Health England (PHE). Composition of Foods Integrated Dataset (CoFID). Available online: https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid (accessed on 25 August 2022).
- Public Health England (PHE). Sugar Reduction and Wider Reformulation. Available online: https://www.gov.uk/government/collections/sugar-reduction (accessed on 24 December 2018).
- Public Health England (PHE); Food Standards Agency (FSA). Appendix R Main and Subsidiary Food Groups and Disaggregation Categories. Available online: https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019 (accessed on 25 August 2022).
- Fitt, E.; Cole, D.; Ziauddeen, N.; Pell, D.; Stickley, E.; Harvey, A.; Stephen, A.M. DINO (Diet In Nutrients Out)—An integrated dietary assessment system. Public Health Nutr. 2015, 18, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, K.; Hennessy, Á.; Walton, J.; Timon, C.; Gibney, E.; Flynn, A. Development and evaluation of a concise food list for use in a web-based 24-h dietary recall tool. J. Nutr. Sci. 2017, 6, e46. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2 ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0-8058-0283-5. [Google Scholar]
- Scientific Advisory Committee on Nutrition (SACN). Carbohydrates and Health; Public Health England: London, UK, 2015. [Google Scholar]
- Scientific Advisory Committee on Nutrition (SACN). Saturated Fats and Health; Public Health England: London, UK, 2019. [Google Scholar]
- Department of Health Committee on the Medical Aspects of Food Policy. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom; Department of Health Committee on the Medical Aspects of Food Policy: London, UK, 1991. [Google Scholar]
- National Health Service (NHS). 5 A Day. Available online: https://www.nhs.uk/live-well/eat-well/5-a-day/ (accessed on 30 August 2022).
- Bawajeeh, A.; Kalendar, S.; Scarpa, G.; Hancock, N.; Beer, S.; Gibson, L.; Williams, G.; Dashti, B.; Albar, S.; Ensaff, H.; et al. Development of an Arabic food composition database for use in an Arabic online dietary assessment tool (myfood24). J. Food Compos. Anal. 2021, 102, 104047. [Google Scholar] [CrossRef]
- Scarpa, G.; Berrang-Ford, L.; Bawajeeh, A.O.; Twesigomwe, S.; Kakwangire, P.; Peters, R.; Beer, S.; Williams, G.; Zavaleta-Cortijo, C.; Namanya, D.B.; et al. Developing an online food composition database for an Indigenous population in south-western Uganda. Public Health Nutr. 2021, 24, 2455–2464. [Google Scholar] [CrossRef] [PubMed]
- Adler, M.; Rhodes, D.; Moshfegh, A. Discontinued codes in the USDA Food and Nutrient Database for Dietary Studies. J. Food Compos. Anal. 2017, 64, 104–106. [Google Scholar] [CrossRef]
- The U.S. Department of Agriculture (USDA). 2013-2014 Food and Nutrient Database for Dietary Studies Files at a Glance. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/fndds/2013_2014_FNDDS_Glance.pdf (accessed on 25 August 2022).
- Public Health England (PHE); Food Standards Agency (FSA). Evaluation of Change in Dietary Methodology in NDNS Rolling Programme: Stage 1. Available online: https://www.gov.uk/government/publications/evaluation-of-change-in-dietary-methodology-in-ndns-rolling-programme-stage-1 (accessed on 25 August 2022).
- Cade, J.; Hancock, N.; Carter, M.; McLoughlin, C.; Wark, P.; Hatherley, A.; Steen, E.; Ryecroft, C.; Alwan, N.; Morris, M. PP38 Development of a new UK food composition database. J. Epidemiol. Community Health 2014, 68, A62–A63. [Google Scholar] [CrossRef]
Baseline 1 (n = 132,052, 100%) | Single Food Replacement only (n = 26,958, 20%) | Recipe 2 Replacement only (n = 32,693, 25%) | Sandwich Replacement 3 (n = 5694, 4%) | ||||
---|---|---|---|---|---|---|---|
Macronutrient | Mean | Mean | Diff. | Mean | Diff. | Mean | Diff. |
Energy (kcal) | 1610 | 1606 | −4 | 1637 | 27 | 1605 | −5 |
Protein (g) | 64.4 | 65.0 | 0.6 | 65.8 | 1.4 | 64.7 | 0.3 |
Carbohydrate (g) | 202 | 200 | −2 | 202 | 0 | 202 | 0 |
Total fat (g) | 61.6 | 61.5 | −0.1 | 63.9 | 2.3 | 60.8 | −0.8 |
Fibre (g) | 16.8 | 16.7 | −0.1 | 16.7 | −0.1 | 16.9 | 0.1 |
Food | |||||||
Meat (g) | 83.7 | 84.4 | 0.7 | 87.6 | 3.9 | 84.3 | 0.6 |
Fruit & vegetable (g) | 252 | 252 | 0 | 243 | −9 | 250 | −2 |
Fish (g) | 16.6 | 16.7 | 0.1 | 17.5 | 0.9 | 16.5 | −0.1 |
Extensive NDB (n = 5933) | Rationalised NDB (n = 2481) | ||||||
---|---|---|---|---|---|---|---|
Nutrient | Mean | SD | Mean | SD | % Diff. 1 | p-Value | Cohen’s d |
Energy (kcal) | 1610 | 497 | 1627 | 505 | 1.1 | <0.01 | 0.03 |
Energy (kJ) | 6776 | 2088 | 6845 | 2119 | 1.0 | <0.01 | 0.03 |
Protein (g) | 64.4 | 22.4 | 66.4 | 23.3 | 3.1 | <0.01 | 0.09 |
Protein (%TE) | 16.2 | 3.90 | 16.5 | 3.90 | 1.9 | <0.01 | 0.08 |
Carbohydrate (g) | 202 | 64.8 | 202 | 64.8 | 0.0 | 0.98 | 0.00 |
Carbohydrate (%TE) | 47.4 | 7.20 | 46.9 | 6.90 | −1.1 | <0.01 | −0.07 |
Free sugars (g) | 46.9 | 29.4 | 45.5 | 28.6 | −2.8 | <0.01 | 0.05 |
Free sugars (%TE) | 10.7 | 5.40 | 10.3 | 5.20 | −3.7 | <0.01 | 0.07 |
Total fat (g) | 61.6 | 23.5 | 62.6 | 23.5 | 1.6 | <0.01 | 0.04 |
Total fat (%TE) | 34.2 | 6.00 | 34.4 | 5.60 | 0.6 | <0.01 | 0.04 |
Saturated fat (g) | 23.2 | 10.3 | 23.2 | 9.90 | −0.4 | 0.62 | 0.00 |
Saturated fat (%TE) | 12.9 | 3.60 | 12.8 | 3.30 | −0.8 | <0.01 | 0.04 |
Fibre (g) | 16.8 | 7.00 | 17.0 | 6.90 | 1.2 | <0.01 | 0.03 |
Vitamin B1 (mg) | 1.39 | 0.51 | 1.44 | 0.53 | 3.6 | <0.01 | 0.10 |
Vitamin B2 (mg) | 1.48 | 0.69 | 1.49 | 0.73 | 0.7 | 0.54 | 0.01 |
Calcium (mg) | 779 | 305 | 786 | 307 | 0.9 | <0.01 | 0.02 |
Magnesium (mg) | 227 | 85.0 | 230 | 83.4 | 1.3 | <0.01 | 0.03 |
Phosphorous (mg) | 1095 | 363 | 1116 | 367 | 1.9 | <0.01 | 0.06 |
Zinc (mg) | 7.23 | 2.65 | 7.33 | 2.77 | 1.4 | <0.01 | 0.04 |
Iron (mg) | 9.06 | 3.58 | 9.19 | 3.65 | 1.4 | <0.01 | 0.04 |
Potassium (mg) | 2461 | 837 | 2483 | 836 | 0.9 | <0.01 | 0.03 |
Vitamin E (mg) | 8.65 | 3.60 | 9.19 | 3.78 | 6.2 | <0.01 | 0.15 |
Niacin (mg) | 29.9 | 12.0 | 30.9 | 12.5 | 3.3 | <0.01 | 0.09 |
Sodium (mg) | 1790 | 695 | 1796 | 691 | 0.3 | 0.57 | 0.01 |
Logged nutrient 2 | GM | 25%–75% | GM | 25%−75% | % Diff 1 | p-value | Cohen’s d |
Vitamin A (µg) | 589 | 379–906 | 599 | 391–890 | 1.7 | 0.06 | 0.02 |
Vitamin D (µg) | 2.05 | 1.31–3.40 | 2.24 | 1.45–3.73 | 9.6 | <0.01 | 0.12 |
Vitamin B6 (mg) | 1.40 | 1.09–1.81 | 1.43 | 1.12–1.83 | 2.4 | <0.01 | 0.05 |
Vitamin B12 (µg) | 3.95 | 2.85–5.50 | 4.06 | 2.95–5.67 | 2.7 | <0.01 | 0.05 |
Folate (µg) | 187 | 140–250 | 190 | 143–252 | 1.4 | <0.01 | 0.03 |
Vitamin C (mg) | 65.4 | 44.2–102 | 66.2 | 46.1–104 | 1.2 | 0.05 | 0.02 |
Food | Mean | SD | Mean | SD | % Diff. 1 | p-value | Cohen’s d |
Meat (g) | 83.7 | 56.1 | 88.5 | 59.8 | 5.7 | <0.01 | 0.08 |
Fruit & vegetable (g) | 252 | 175 | 241 | 165 | −4.4 | <0.01 | 0.06 |
Fruit & vegetable (portions) 3 | 4.00 | 2.40 | 3.80 | 2.30 | −5.0 | <0.01 | 0.09 |
Fish (g) | 16.6 | 25.0 | 17.5 | 27.3 | 5.4 | <0.01 | 0.03 |
Nutrient | Proportion in the Same Tertile (%) | Cohen’s κ |
---|---|---|
Energy (kcal) | 90.1 | 0.83 |
Energy (kJ) | 90.2 | 0.85 |
Protein (g) | 88.8 | 0.83 |
Protein (%TE) | 78.7 | 0.68 |
Carbohydrate (g) | 91.6 | 0.87 |
Carbohydrate (%TE) | 78.3 | 0.67 |
Free sugars (g) | 89.1 | 0.84 |
Free sugars (%TE) | 85.8 | 0.79 |
Total fat (g) | 82.7 | 0.74 |
Total fat (%TE) | 73.4 | 0.60 |
Saturated fat (g) | 83.9 | 0.76 |
Saturated fat (%TE) | 78.4 | 0.68 |
Fibre (g) | 88.3 | 0.82 |
Vitamin B1 (mg) | 83.0 | 0.74 |
Vitamin B2 (mg) | 87.7 | 0.82 |
Calcium (mg) | 85.6 | 0.78 |
Magnesium (mg) | 89.7 | 0.85 |
Phosphorous (mg) | 89.3 | 0.84 |
Zinc (mg) | 87.2 | 0.81 |
Iron (mg) | 85.8 | 0.79 |
Potassium (mg) | 89.5 | 0.84 |
Vitamin E (mg) | 73.6 | 0.60 |
Niacin (mg) | 84.6 | 0.77 |
Sodium (mg) | 79.9 | 0.70 |
Vitamin A (µg) | 78.8 | 0.68 |
Vitamin D (µg) | 73.6 | 0.60 |
Vitamin B6 (mg) | 80.3 | 0.71 |
Vitamin B12 (µg) | 83.7 | 0.76 |
Folate (µg) | 83.4 | 0.75 |
Vitamin C (mg) | 85.0 | 0.77 |
Food | ||
Meat (g) | 86.9 | 0.80 |
Fruit & vegetable (g) | 90.4 | 0.86 |
Fruit & vegetable (portions) 1 | 87.3 | 0.81 |
Fish (g) | 96.8 | 0.93 |
% Meeting Recommendations Using Extensive Food Database | % Meeting Recommendations Using Rationalised Food Database | % Classified into the Same Category | Cohen’s κ | |
---|---|---|---|---|
Carbohydrate (≥47 %TE) | 57.0 | 54.4 | 88.5 | 0.77 |
Free sugars (≤5 %TE) | 11.4 | 13.6 | 95.5 | 0.79 |
Total fat (≥20 ≤35 %TE) | 53.3 | 54.4 | 82.6 | 0.65 |
Saturated fat (≤10 %TE) | 21.5 | 21.6 | 89.6 | 0.69 |
Fibre (≥15–30 %TE 1) | 9.2 | 9.7 | 97.3 | 0.84 |
Fruit & vegetable 2 (≥5 portions) | 29.0 | 25.4 | 95.2 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoutzopoulos, B.; Steer, T.; Roberts, C.; Collins, D.; Trigg, K.; Barratt, R.; Abraham, S.; Cole, D.J.; Mulligan, A.; Foreman, J.; et al. Rationalisation of the UK Nutrient Databank for Incorporation in a Web-Based Dietary Recall for Implementation in the UK National Diet and Nutrition Survey Rolling Programme. Nutrients 2022, 14, 4551. https://doi.org/10.3390/nu14214551
Amoutzopoulos B, Steer T, Roberts C, Collins D, Trigg K, Barratt R, Abraham S, Cole DJ, Mulligan A, Foreman J, et al. Rationalisation of the UK Nutrient Databank for Incorporation in a Web-Based Dietary Recall for Implementation in the UK National Diet and Nutrition Survey Rolling Programme. Nutrients. 2022; 14(21):4551. https://doi.org/10.3390/nu14214551
Chicago/Turabian StyleAmoutzopoulos, Birdem, Toni Steer, Caireen Roberts, David Collins, Kirsty Trigg, Rachel Barratt, Suzanna Abraham, Darren James Cole, Angela Mulligan, Jackie Foreman, and et al. 2022. "Rationalisation of the UK Nutrient Databank for Incorporation in a Web-Based Dietary Recall for Implementation in the UK National Diet and Nutrition Survey Rolling Programme" Nutrients 14, no. 21: 4551. https://doi.org/10.3390/nu14214551
APA StyleAmoutzopoulos, B., Steer, T., Roberts, C., Collins, D., Trigg, K., Barratt, R., Abraham, S., Cole, D. J., Mulligan, A., Foreman, J., Farooq, A., & Page, P. (2022). Rationalisation of the UK Nutrient Databank for Incorporation in a Web-Based Dietary Recall for Implementation in the UK National Diet and Nutrition Survey Rolling Programme. Nutrients, 14(21), 4551. https://doi.org/10.3390/nu14214551