Association between Elevated Iodine Intake and IQ among School Children in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Measures
2.3. Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georgieff, M.K.; Ramel, S.E.; Cusick, S.E. Nutritional influences on brain development. Acta Paediat. 2018, 107, 1310–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- Redman, K.; Ruffman, T.; Fitzgerald, P.; Skeaff, S. Iodine deficiency and the brain: Effects and mechanisms. Crit. Rev. Food Sci. Nutr. 2016, 56, 2695–2713. [Google Scholar] [CrossRef] [PubMed]
- Farebrother, J.; Zimmermann, M.B.; Andersson, M. Excess iodine intake: Sources, assessment, and effects on thyroid function. Ann. N. Y. Acad. Sci. 2019, 1446, 44–65. [Google Scholar] [CrossRef]
- Protzko, J. Raising IQ among school-aged children: Five meta-analyses and a review of randomized controlled trials. Dev. Rev. 2017, 46, 81–101. [Google Scholar] [CrossRef]
- Gordon, R.C.; Rose, M.C.; Skeaff, S.A.; Gray, A.R.; Morgan, K.M.D.; Ruffman, T. Iodine supplementation improves cognition in mildly iodine-deficient children. Am. J. Clin. Nutr. 2009, 90, 1264–1271. [Google Scholar] [CrossRef] [Green Version]
- Lam, L.F.; Lawlis, T.R. Feeding the brain—The effects of micronutrient interventions on cognitive performance among school-aged children: A systematic review of randomized controlled trials. Clin. Nutr. 2017, 36, 1007–1014. [Google Scholar] [CrossRef]
- Santos, J.A.R.; Christoforou, A.; Trieu, K.; McKenzie, B.L.; Downs, S.; Billot, L.; Webster, J.; Li, M. Iodine fortification of foods and condiments, other than salt, for preventing iodine deficiency disorders (Review). Cochrane Database Syst. Rev. 2019, 2, CD010734. [Google Scholar]
- Leung, A.M.; Braverman, L.E. Consequences of excess iodine. Nat. Rev. Endocrinol. 2014, 10, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; de Benoist, B.; Delange, F.; Zupan, J. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: Conclusions and recommendations of the Technical Consultation. WHO Secr. Public Health Nutr. 2007, 10, 1606–1611. [Google Scholar]
- WHO; UNICEF; ICCIDD. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination, 3rd ed.; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Iodine Global Network. Global Scorecard of Iodine Nutrition in 2021 in the General Population Based on School-Age Children; Iodine Global Network: Ottawa, ON, Canada, 2021; Available online: https://www.ign.org/cm_data/IGN_Global_Scorecard_2021_7_May_2021.pdf (accessed on 4 October 2022).
- Kerver, J.M.; Pearce, E.N.; Ma, T.; Gentchev, M.; Elliott, M.R.; Paneth, N. Prevalence of inadequate and excessive iodine intake in a US pregnancy cohort. Am. J. Obstet. Gynecol. 2021, 224, e1–e82. [Google Scholar] [CrossRef]
- Bath, S.C.; Steer, C.D.; Golding, J.; Emmett, P.; Rayman, M.P. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: Results from the AVON longitudinal study of parents and children (ALSPAC). Lancet 2013, 382, 331–337. [Google Scholar] [CrossRef]
- Santiago-Fernandez, P.; Torres-Barahona, R.; Muela-Martínez, J.A.; Rojo-Martinez, G.; García-Fuentes, E.; Garriga, M.J.; León, A.G.; Soriguer, F. Intelligence quotient and iodine intake: A cross-sectional study in children. J. Clin. Endocrinol. Metab. 2004, 89, 3851–3857. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wan, S.; Zhang, L.; Li, B.; He, Y.; Shen, H.; Liu, L. A meta-analysis of the effect of iodine excess on the intellectual development of children in areas with high iodine levels in their drinking water. Biol. Trace Elem. Res. 2022, 200, 1580–1590. [Google Scholar] [CrossRef]
- Apirajkamol, N.; Panamonta, O.; Panamonta, M. Increased levels of median urinary iodine excretion of primary school children in the suburban area, Khon Kaen, Thailand. Southeast Asian J. Trop. Med. Public Health 2016, 47, 101–108. [Google Scholar]
- Cui, Y.; Yu, J.; Zhang, B.; Guo, B.; Gao, T.; Liu, H. The relationships between thyroid-stimulating hormone and/or dopamine levels in peripheral blood and IQ in children with different urinary iodine concentrations. Neurosci. Lett. 2020, 729, 134981. [Google Scholar] [CrossRef]
- Gao, T.-S.; Teng, W.-P.; Shan, Z.-Y.; Jin, Y.; Guan, H.-X.; Teng, X.-C.; Yang, F.; Wang, W.-B.; Shi, X.-G.; Tong, Y.-J.; et al. Effect of different iodine intake on schoolchildren’s thyroid diseases and intelligence in rural areas. Chin. Med. J. 2004, 117, 1518–1522. [Google Scholar]
- Perignon, M.; Fiorentino, M.; Kuong, K.; Burja, K.; Parker, M.; Sisokhom, S.; Chamnan, C.; Berger, J.; Wieringa, F.T. Stunting, poor iron status and parasite infection are significant risk factors for lower cognitive performance in Cambodian school-aged children. PLoS ONE 2014, 9, e112605. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cui, Y.; Chen, C.; Duan, Y.; Wu, Y.; Li, W.; Zhang, D.; Li, F.; Hou, C. Stopping the supply of iodized salt alone is not enough to make iodine nutrition suitable for children in higher water iodine areas: A cross-sectional study in Northern China. Ecotoxicol. Environ. Saf. 2020, 188, 109930. [Google Scholar] [CrossRef]
- Limbert, E.; Prazeres, S.; São Pedro, M.; Madureira, D.; Miranda, A.; Ribeiro, M.; Carrilho, F.; Jácome de Castro, J.; Lopes, M.S.; Cardoso, J.; et al. Iodine intake in Portuguese school children. Acta Med. Port 2012, 25, 29–36. [Google Scholar]
- Leite, J.C.; Keating, E.; Pestana, D.; Fernandes, V.C.; Maia, M.L.; Norberto, S.; Pinto, E.; Moreira-Rosário, A.; Sintra, D.; Moreira, B.; et al. Iodine status and iodised salt consumption in Portuguese school-aged children: The Iogeneration Study. Nutrients 2017, 9, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, I.; Coelho, I.; Castanheira, I.; Calhau, M.A.; Albuquerque, J.M.; Breda, J. Scientific Update on the Iodine Content of Portuguese Foods; World Health Organization: Copenhagen, Denmark, 2018; Available online: https://www.euro.who.int/__data/assets/pdf_file/0009/392877/iodine-portugal.pdf (accessed on 1 October 2022).
- Carvalho, I.P.; Costa, A.; Silva, S.; Moreira, B.; Almeida, A.; Moreira-Rosário, A.; Guerra, A.; Peixoto, B.; Delerue-Matos, C.; Sintra, D.; et al. Children’s performance on Raven’s Coloured Progressive Matrices in Portugal: The Flynn effect. Intelligence 2020, 82, 101485. [Google Scholar] [CrossRef]
- Zimmermann, M.B. Iodine deficiency. Endocr. Rev. 2009, 30, 376–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization, International Atomic Energy Agency & Food and Agriculture Organization of the United Nations. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; Available online: https://apps.who.int/iris/handle/10665/37931 (accessed on 17 June 2022).
- Rasmussen, L.B.; Ovesen, L.; Christiansen, E. Day-to-day and within-day variation in urinary iodine excretion. Eur. J. Clin. Nutr. 1999, 53, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.; Karmisholt, J.; Pedersen, K.M.; Laurberg, P. Reliability of studies of iodine intake and recommendations for number of samples in groups and in individuals. Br. J. Nutr. 2008, 99, 813–818. [Google Scholar] [CrossRef]
- Knudsen, N.; Christiansen, E.; Brandt-Christensen, M.; Nygaard, B.; Perrild, H. Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys? Evaluation of three different estimates of iodine excretion based on casual urine samples and comparison to 24 h values. Eur. J. Clin. Nutr. 2000, 54, 361–363. [Google Scholar] [CrossRef] [Green Version]
- CDC. Iodine and Mercury in Urine: Nhanes 2011–2012: Method 3002.1. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/uiouhg_g_met_iodine_mercury.pdf (accessed on 6 December 2016).
- Coelho, C.M.; Guimarães, J.; Bracchi, I.; Moreira, N.X.; Pinheiro, C.; Ferreira, P.; Pestana, D.; Barreiros Mota, I.; Cortez, A.; Prucha, C.; et al. Noncompliance to iodine supplementation recommendation is a risk factor for iodine insufficiency in Portuguese pregnant women: Results from the IoMum cohort. J. Endocrinol. Investig. 2022, 45, 1865–1874. [Google Scholar] [CrossRef]
- Raven, J.; Raven, J.C.; Court, J.H. Manual for Raven’s Progressive Matrices and Vocabulary Scales. Section 1: General Overview; Harcourt Assessment: San Antonio, TX, USA, 2003. [Google Scholar]
- Weiss, L.G. Considerations on the Flynn effect. J. Psychoeduc. Assess. 2010, 28, 482–493. [Google Scholar] [CrossRef]
- Brouwers, S.A.; van de Vijver, F.J.R.; van Hemert, D.A. Variation in Raven’s Progressive Matrices scores across time and place. Learn. Individ. Differ. 2009, 19, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-L.; Lam, L.T.; Zeng, Q.; Han, S.-Q.; Fu, G.; Hou, C.-C. Effects of drinking water with high iodine concentration on the intelligence of children in Tianjin, China. J. Public Health 2009, 31, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.B.; Connolly, K.; Bozo, M.; Bridson, J.; Rohner, F.; Grimci, L. Iodine supplementation improves cognition in iodine-deficient schoolchildren in Albania: A randomized, controlled, double-blind study. Am. J. Clin. Nutr. 2006, 83, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C. Manual RCPM-P, Matrizes Progressivas de Raven—Escala Colorida (Versão Paralela); Cegoc-TEA: Lisboa, Portugal, 2009. [Google Scholar]
- Simões, M.R. Investigações no Âmbito da Aferição Nacional do Teste das Matrizes Progressivas Coloridas de Raven (M.P.C.R.) [Research in the Context of the National Standardization of Raven’s Coloured Progressive Matrices (RCPM)]; Fundação Calouste Gulbenkian: Lisboa, Portugal, 2000. [Google Scholar]
- Bath, S.C.; Combet, E.; Scully, P.; Zimmermann, M.B.; Hampshire-Jones, K.H.; Rayman, M.P. A multi-centre pilot study of iodine status in UK schoolchildren, aged 8–10 years. Eur. J. Nutr. 2015, 55, 2001–2009. [Google Scholar] [CrossRef] [Green Version]
- Brooks-Gunn, J.; Furstenberg, F.F., Jr. The children of adolescent mothers: Physical, academic, and psychological outcomes. Dev. Rev. 1986, 6, 224–251. [Google Scholar] [CrossRef]
- Cave, S.N.; Wright, M.; von Stumm, S. Change and stability in the association of parents’ education with children’s intelligence. Intelligence 2022, 90, 101597. [Google Scholar] [CrossRef]
- Demmelmair, H.; Øyen, J.; Pickert, T.; Rauh-Pfeiffer, A.; Stormark, K.M.; Graff, I.E.; Lie, Ø.; Kjellevold, M.; Koletzko, B. The effect of Atlantic salmon consumption on the cognitive performance of preschool children—A randomized controlled trial. Clin. Nutr. 2019, 38, 2558–2568. [Google Scholar] [CrossRef]
Iodine Status | Subdivided High Iodine Status | ||||||
---|---|---|---|---|---|---|---|
<250 µg/g | ≥250 µg/g | p1 | <250 µg/g | 250–399 µg/g | ≥400 µg/g | p1 | |
Below-average IQ | 848/1749 (48%) | 121/216 (56%) | 0.037 | 848/1749 (48%) | 96/178 (54%) | 25/38 (66%) | 0.047 |
Below-Average IQ | ||||||
---|---|---|---|---|---|---|
Unadjusted Model (N = 1965) | Adjusted Model 1 (N = 1814) | Adjusted Model 2 (N = 1552) | ||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Iodine status ≥ 250 µg/g | 1.35 (1.02–1.80) | 0.037 | 1.46 (1.07–1.98) | 0.016 | 1.55 (1.11–2.17) | 0.011 |
Male gender | 1.14 (0.94–1.38) | 0.187 | 1.22 (0.99–1.50) | 0.065 | ||
Number of siblings ≥ 2 | 1.21 (0.94–1.55) | 0.143 | 1.22 (0.92–1.61) | 0.170 | ||
Mother’s younger age at delivery | 1.03 (1.02–1.05) | 0.000 | 1.03(1.01–1.05) | 0.006 | ||
Mother’s lower education level | 1.09 (1.05–1.13) | 0.000 | 1.08 (1.03–1.12) | 0.001 | ||
Father’s lower education level | 1.07 (1.03–1.11) | 0.000 | 1.07 (1.03–1.12) | 0.001 | ||
Lower socioeconomic score | 1.02 (0.81–1.29) | 0.857 | 1.01 (0.78–1.31) | 0.946 | ||
Difficult atmosphere at home | 0.95 (0.75–1.21) | 0.664 | 0.92 (0.70–1.20) | 0.523 | ||
Living away from the Coast | 1.34 (1.10–1.64) | 0.004 | 1.31 (1.05–1.63) | 0.016 | ||
Birth weight < 2500 g | 0.89 (0.58–1.36) | 0.591 | ||||
Weeks of gestation < 37 | 1.02 (0.71–1.48) | 0.906 | ||||
Child not breastfed | 1.06 (0.78–1.42) | 0.720 | ||||
Mother not using supplements in pregnancy/breastfeeding | 1.01 (0.79–1.29) | 0.950 | ||||
Mother using alcohol in pregnancy/breastfeeding | 0.79 (0.55–1.14) | 0.203 | ||||
Child not using supplements currently | 0.80 (0.51–1.25) | 0.332 | ||||
Fish intake < 3 times per week | 1.37 (1.10–1.71) | 0.006 | ||||
Shellfish intake < 1 time per month | 0.89 (0.63–1.25) | 0.490 |
Below-Average IQ | ||||
---|---|---|---|---|
Adjusted Model 2 (N = 1552) | ||||
OR (95% CI) | p | |||
Iodine status | 0.037 | |||
<50 µg/g a | n = 85 | 1.15 (0.73–1.82) | 0.557 | |
250–399 µg/g a | n = 141 | 1.42 (0.98–2.04) | 0.061 | |
≥400 µg/g a | n = 29 | 2.61 (1.15–5.95) | 0.022 | |
Male gender | 1.22 (0.99–1.51) | 0.063 | ||
Number of siblings ≥ 2 | 1.21 (0.91–1.60) | 0.186 | ||
Mother’s younger age at delivery | 1.03 (1.01–1.05) | 0.006 | ||
Mother’s lower education level | 1.08 (1.03–1.12) | 0.001 | ||
Father’s lower education level | 1.07 (1.03–1.12) | 0.001 | ||
Lower socioeconomic score | 1.01 (0.78–1.31) | 0.937 | ||
Difficult atmosphere at home | 0.92 (0.70–1.19) | 0.519 | ||
Living away from the Coast | 1.32 (1.06–1.64) | 0.014 | ||
Birth weight < 2500 g | 0.88 (0.58–1.35) | 0.559 | ||
Weeks of gestation < 37 | 1.02 (0.71–1.48) | 0.900 | ||
Child not breastfed | 1.05 (0.78–1.41) | 0.757 | ||
Mother not using supplements in pregnancy/breastfeeding | 1.01 (0.78–1.29) | 0.958 | ||
Mother using alcohol in pregnancy/breastfeeding | 0.79 (0.55–1.14) | 0.207 | ||
Child not using supplements currently | 0.81 (0.52–1.26) | 0.345 | ||
Fish intake < 3 times per week | 1.36 (1.09–1.70) | 0.007 | ||
Shellfish intake < 1 time per month | 0.88 (0.62–1.24) | 0.463 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, I.P.; Peixoto, B.; Caldas, J.C.; Costa, A.; Silva, S.; Moreira, B.; Almeida, A.; Moreira-Rosário, A.; Guerra, A.; Delerue-Matos, C.; et al. Association between Elevated Iodine Intake and IQ among School Children in Portugal. Nutrients 2022, 14, 4493. https://doi.org/10.3390/nu14214493
Carvalho IP, Peixoto B, Caldas JC, Costa A, Silva S, Moreira B, Almeida A, Moreira-Rosário A, Guerra A, Delerue-Matos C, et al. Association between Elevated Iodine Intake and IQ among School Children in Portugal. Nutrients. 2022; 14(21):4493. https://doi.org/10.3390/nu14214493
Chicago/Turabian StyleCarvalho, Irene P., Bruno Peixoto, José Carlos Caldas, Ana Costa, Sofia Silva, Bárbara Moreira, Agostinho Almeida, André Moreira-Rosário, António Guerra, Cristina Delerue-Matos, and et al. 2022. "Association between Elevated Iodine Intake and IQ among School Children in Portugal" Nutrients 14, no. 21: 4493. https://doi.org/10.3390/nu14214493
APA StyleCarvalho, I. P., Peixoto, B., Caldas, J. C., Costa, A., Silva, S., Moreira, B., Almeida, A., Moreira-Rosário, A., Guerra, A., Delerue-Matos, C., Sintra, D., Pestana, D., Pinto, E., Mendes, F. C., Martins, I., Leite, J. C., Fontoura, M., Maia, M. L., Queirós, P., ... Calhau, C. (2022). Association between Elevated Iodine Intake and IQ among School Children in Portugal. Nutrients, 14(21), 4493. https://doi.org/10.3390/nu14214493