Sheep Milk Symbiotic Ice Cream: Effect of Inulin and Apple Fiber on the Survival of Five Probiotic Bacterial Strains during Simulated In Vitro Digestion Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ice Cream Manufacture
- Sheep milk (89%) with sugar (11%);
- Sheep milk (85%), sugar (11%), inulin (4%);
- Sheep milk (85%), sugar (11%), inulin (1.5%), apple fiber (2.5%);
- Sheep milk (85%), sugar (11%), apple fiber (4%).
2.3. In Vitro Digestion Process
2.4. Microbiological Analysis
2.5. Statistical Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ares, G.; Giménez, A.; Gámbaro, A. Consumer-perceived healthiness and willingness to try functional milk desserts. Influence of ingredient, ingredient name and health claim. Food Qual. Prefer. 2009, 20, 50–56. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Naumovski, N.; Ajlouni, S. Non-bovine milk products as emerging probiotic carriers: Recent developments and innovations. Curr. Opin. Food Sci. 2018, 22, 109–114. [Google Scholar] [CrossRef]
- Rasika, D.M.D.; Munasinghe, M.A.D.D.; Vidanarachchi, J.K.; da Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Probiotics and prebiotics in non-bovine milk. Adv. Food Nutr. Res. 2020, 94, 339–384. [Google Scholar] [CrossRef]
- Chia, J.; Burrow, K.; Carne, A.; McConnell, M.; Samuelsson, L.; Day, L.; Young, W.; Bekhit, A.E.-D. Minerals in Sheep milk. In Nutrients in Milk and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier Publishing: London, UK, 2017; pp. 345–363. [Google Scholar] [CrossRef]
- Dominguez, D.C. Calcium signalling in bacteria. Mol. Microbiol. 2004, 54, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Purwandari, U.; Vasiljevic, T. Microbial growth, EPS concentration and textural properties of fermented milk supplemented with calcium and whey protein analysed using response surface methodology. Int. Food Res. J. 2012, 19, 85–93. [Google Scholar]
- Ng, I.S.; Xue, C. Enhanced exopolysaccharide production and biological activity of Lactobacillus rhamnosus ZY with calcium and hydrogen peroxide. Process Biochem. 2017, 52, 295–304. [Google Scholar] [CrossRef]
- Pu, M.; Storms, E.; Chodur, D.M.; Rowe-Magnus, D.A. Calcium-dependent site-switching regulates expression of the atypical iam pilus locus in Vibrio vulnificus. Environ. Microbiol. 2020, 22, 4167–4182. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Joint Expert Consultation Report: Evaluations of Health and Nutritional Properties of Probiotics in Food Including Powder Milk and Live Lactic Acid Bacteria, Cordoba, Argentina. 2001. Available online: http://www.fao.org/documents/pub_dett.asp?lang=en&pub_id=61756/ (accessed on 27 September 2022).
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Berni Canani, R.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Dale, H.F.; Rasmussen, S.H.; Asiller, Ö.Ö.; Lied, G.A. Probiotics in irritable bowel syndrome: An up-to-date systematic review. Nutrients 2019, 11, 2048. [Google Scholar] [CrossRef] [Green Version]
- Barichella, M.; Pacchetti, C.; Bolliri, C.; Cassani, E.; Lorio, L.; Pusani, C.; Pinelli, G.; Privitera, G.; Cesari, I.; Faierman, S.A.; et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT. Neurology 2016, 87, 1274–1280. [Google Scholar] [CrossRef]
- Toejing, P.; Khampithum, N.; Sirilun, S.; Chaiyasut, C.; Lailerd, N. Influence of Lactobacillus paracasei HII01 Supplementation on Glycemia and Inflammatory biomarkers in Type 2 Diabetes: A randomized clinical trial. Foods 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Ye, M.; Luo, F.; Hu, B.; Wang, A.; Chen, J.; Yan, J.; He, Z.; Chen, F.; Qian, C.; et al. Probiotics treatment improves cognitive impairment in patients and animals: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 120, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Paliwoda, A.; Nowak, A. Czynniki warunkujące zdolności adhezyjne bakterii z rodzaju Lactobacillus (In Polish). Factors determing the adhesive capacity of Lactobacillus bacteria. Post. Mikrobiol.-Adv. Microbiol. 2017, 56, 196–204. [Google Scholar] [CrossRef]
- Umu, Ö.C.O.; Rudi, K.; Diep, D.B. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb. Ecol. Health Dis. 2017, 28, 1348886. [Google Scholar] [CrossRef] [Green Version]
- Gajewska, J.; Błaszczyk, M.K. Probiotyczne Bakterie fermentacji mlekowej (LAB) (In Polish). Probiotic Lactic Fermentation Bacteria (LAB). Post. Mikrobiol. 2012, 51, 55–65. [Google Scholar]
- Castro-Bravo, N.; Wells, J.M.; Margolles, A.; Ruas-Madiedo, P. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front. Microbiol. 2018, 9, 2426. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Verma, V.; Nagpal, R.; Kumar, A.; Gautam, S.K.; Behare, P.V.; Grover, C.R.; Aggarwal, P.K. Effect of probiotic fermented milk and chlorophyllin on gene expressions and genotoxicity during AFB1-induced hepatocellular carcinoma. Gene 2011, 490, 54–59. [Google Scholar] [CrossRef]
- Haskard, C.; Binnion, C.; Ahokas, J. Czynniki wpływające na sekwestrację aflatoksyny przez Lactobacillus rhamnosus GG (In Polish). Factors affecting aflatoxin sequestration by Lactobacillus rhamnosus GG. Chem. Biol. Interact. 2000, 128, 39–49. [Google Scholar] [CrossRef]
- Femia, A.P.; Luceri, C.; Dolara, P.; Giannini, A.; Biggeri, A.; Salvadori, M.; Clune, Y.; Collins, K.J.; Paglierani, M.; Caderni, G. Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis 2002, 23, 1953–1960. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, R.; Kumar, A.; Kumar, M.; Behare, P.V.; Jain, S.; Yadav, H. Probiotics, their health benefits and applications for developing healthier foods: A review. FEMS Microbiol. Lett. 2012, 334, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.I.A.; Gibson, G.R. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 2002, 68, 4689–4693. [Google Scholar] [CrossRef]
- Ishimwe, N.; Daliri, E.B.; Lee, B.H.; Fang, F.; Du, G. The perspective on cholesterol-lowering mechanisms of probiotics. Mol. Nutr. Food Res. 2015, 59, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Kolaček, S.; Hojsak, I.; Berni-Canani, R.; Guarino, A.; Indrio, F.; Orel, R.; Pot, B.; Shamir, R.; Szajewska, H.; Vandenplas, Y.; et al. Commercial Probiotic Products: A Call for Improved Quality Control. A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auclair, J.; Frappier, M.; Millette, M. Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, and Lactobacillus rhamnosus CLR2 (Bio-K+): Characterization, Manufacture, Mechanisms of Action, and Quality Control of a Specific Probiotic Combination for Primary Prevention of Clostridium difficile Infection. Clin. Infect. Dis. 2015, 60, 135–143. [Google Scholar] [CrossRef]
- Grześkowiak, Ł.; Isolauri, E.; Salminen, S.; Gueimonde, M. Manufacturing process influences properties of probiotic bacteria. Br. J. Nutr. 2011, 105, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Nivoliez, A.; Camares, O.; Paquet-Gachinat, M.; Bornes, S.; Forestier, C.; Veisseire, P. Influence of manufacturing processes on in vitro properties of the probiotic strain Lactobacillus rhamnosus Lcr35®. J. Biotechnol. 2012, 160, 236–241. [Google Scholar] [CrossRef]
- König, H.; Berkelmann-Löhnertz, B. Maintenance of wine-associated microorganisms. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Gottfried, U., Fröhlich, J., Eds.; Springer: Cham, Switzerland, 2017; pp. 549–572. [Google Scholar]
- Śliżewska, K.; Chlebicz-Wójcik, A. Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid Fermentation Medium. Biology 2020, 9, 423. [Google Scholar] [CrossRef]
- Oliveira, R.P.S.; Perego, P.; Converti, A.; Oliveira, M.N. Growth and acidification performance of probiotics in pure culture and co-culture with Streptococcus thermophilus: The effect of inulin. LWT Food Sci. Technol. 2009, 42, 1015–1021. [Google Scholar] [CrossRef]
- Mohammadi, R.; Mortazavian, A.M.; Khosrokhavar, R.; Cruz da Gomes, A. Probiotic ice cream: Viability of probiotic bacteria and sensory properties. Ann. Microbiol. 2011, 61, 411–424. [Google Scholar] [CrossRef]
- Hekmat, S.; McMahon, D. Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in ice cream for use as a probiotic food. J. Dairy Sci. 1992, 75, 1415–1422. [Google Scholar] [CrossRef]
- Kailasapathy, K.; Sultana, K. Survival of β-D-galactosidase activity of encapsulated and free Lactobacillus acidophilus and Bifidobacterium lactis in ice cream. Aust. J. Dairy Technol. 2003, 58, 223–227. [Google Scholar]
- Muninathan, C.; Guruchandran, S.; Viswanath Kalyan, A.J.; Ganesan, N.D. Microbial exopolysaccharides: Role in functional food engineering and gut-health management. Int. J. Food Sci. Technol. 2021, 57, 27–34. [Google Scholar] [CrossRef]
- Lee, Y.K.; Salminen, S. Handbook of Probiotics and Prebiotics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 535–581. [Google Scholar] [CrossRef]
- Sangami, R.; Sri, S.R. Emerging trends in improving viability, advanced stability techniques and health claims of healthy microbiome—The probiotics. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Ranadhera, S.; Evans, C.; Adams, M.C.; Baines, K.S. In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Res. Int. 2012, 49, 619–625. [Google Scholar] [CrossRef]
- Carvalho Lima, K.G.; Kruger, M.F.; Behrens, J.; Destro, M.T.; Landgraf, M.; Franco, B.D.G.M. Evaluation of culture media for enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the presence of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. LWT–Food Sci. Technol. 2009, 42, 491–495. [Google Scholar] [CrossRef]
- Qi, X.; Al-Ghazzewi, F.H.; Tester, R.F. Dietary fiber, gastric emptying, and carbohydrate digestion: A mini-review. Starch-Stärke 2018, 70, 1700346. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Zhang, L.; Lai, P.F.H.; Tian, Y.; Cui, S.W.; Ai, L. Effects of soluble dietary fibers on the viscosity property and digestion kinetics of corn starch digesta. Food Chem. 2021, 338, 127825. [Google Scholar] [CrossRef]
- Pabari, K.; Pithva, S.; Kothari, C.; Purama, R.K.; Kondepudi, K.K.; Vyas, B.R.M.; Kothari, R.; Ambalam, P. Evaluation of Probiotic Properties and Prebiotic Utilization Potential of Weissella paramesenteroides Isolated From Fruits. Probiotics Antimicrob. Proteins 2020, 12, 1126–1138. [Google Scholar]
- Cai, Y.; Folkerts, J.; Folkerts, G.; Maurer, M.; Braber, S. Microbiota-dependent and -independent effects of dietary fibre on human health. Br. J. Pharmacol. 2020, 177, 1363–1381. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.M.R.; Ahmed, W.; Iqbal, S.; Javed, M.; Rashid, S.; Haq, U.L. Prebiotics and iron bioavailability? Unveiling the hidden association—A review. Trends Food. Sci. Technol. 2021, 110, 584–590. [Google Scholar] [CrossRef]
- Rossi, M.; Corradini, C.; Amaretti, A.; Nicolini, M.; Pompei, A.; Zano, N.S.; Matteuzzi, D. Fermentation of Fructooligosaccharides and Inulin by Bifidobacteria: A Comparative Study of Pure and Fecal Cultures. Appl. Environ. Microb. 2005, 71, 10. [Google Scholar] [CrossRef] [PubMed]
- Tarifa, M.C.; Piqueras, C.M.; Genovese, D.B.; Brugnoni, L.I. Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in pectin and pectin-inulin microgel particles: Effect on bacterial survival under storage conditions. Int. J. Biol. Macromol. 2021, 179, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Balivo, A.; Salvati, A.; Sacchi, R. Functional ice cream health benefits and sensory implications. Food Res. Int. 2022, 161, 111858. [Google Scholar] [CrossRef] [PubMed]
- Man, S.; Liu, T.; Yao, Y.; Lu, Y.; Ma, L.; Lu, F. Friend or foe? The roles of inulin-type fructans. Carbohydr. Polym. 2021, 15, 117155. [Google Scholar] [CrossRef]
- Jacobsen, N.M.Y.; Caglayan, I.; Caglayan, A.; Bar-Shalom, D.; Mullertz, A. Achieving delayed release of freeze-dried probiotic strains by extrusion, spheronization and fluid bed coating—Evaluated using a three-step in vitro model. Int. J. Pharm. 2020, 591, 120022. [Google Scholar] [CrossRef]
- Mituniewicz-Małek, A.; Ziarno, M.; Dmytrów, I.; Balejko, J. Short Communication: Effect of the Addition of Bifidobacterium Monocultures on the Physical, Chemical, and Sensory Characteristics of Fermented Goat Milk. J. Dairy Sci. 2017, 100, 6972–6979. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, M.; Znamirowska, A.; Pawlos, M.; Buniowska, M. The Use of Olkuska Sheep Milk for the Production of Symbiotic Dairy Ice Cream. Animals 2022, 12, 70. [Google Scholar] [CrossRef]
- Buniowska, M.; Carbonell-Capella, J.M.; Frigola, A.; Esteve, M.J. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with Stevia rebaudiana. Food Chem. 2017, 221, 1834–1842. [Google Scholar] [CrossRef]
- Silva, C.C.; da Silva Barros, E.L.; Verruck, S.; Maran, B.M.; Canella, M.H.M.; Esmerino, E.A.; Ramon Silva, R.; Prudencio, E.S. How ice cream manufactured with concentrated milk serves as a protective probiotic carrier? An in vitro gastrointestinal assay. Food Sci. Technol. 2022, 42, 28621. [Google Scholar] [CrossRef]
- Znamirowska, A.; Szajnar, K.; Pawlos, M. Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules 2021, 26, 6187. [Google Scholar] [CrossRef] [PubMed]
- Szosland-Fałtyn, A.M. Lody probiotyczne–zdrowe łakocie. (In Polish). Probiotic ice cream–healthy treats. Przemysł Spożywczy 2007, 5, 42–44. [Google Scholar]
- Ahmad, I.; Khalique, A.; Shahid, M.Q.; Ahid Rashid, A.; Faiz, F.; Ikram, M.A.; Ahmed, S.; Imran, M.; Khan, M.A.; Nadeem, M.; et al. Studying the Influence of Apple Peel Polyphenol Extract Fortification on the Characteristics of Probiotic Yoghurt. Plants 2020, 9, 77. [Google Scholar] [CrossRef]
- Melchior, S.; Marino, M.; Innocente, N.; Calligaris, S.; Nicoli, M.C. Effect of different biopolymer-based structured systems on the survival of probiotic strains during storage and in vitro digestion. J Sci. Food Agric. 2020, 100, 3902–3909. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C.; Zhang, H.; Hossen Md, A.; Sameen, D.E.; Dai, J.; Qin, W.; Liu, Y.; Li, S. In vitro digestion of sodium alginate/pectin co-encapsulated Lactobacillus bulgaricus and its application in yogurt bilayer beads. Int. J. Biol. Macromol. 2021, 193, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Venema, K.; Verhoeven, J.; Verbruggen, S.; Espinosa, L.; Courau, S. Probiotic survival during a multi-layered tablet development as tested in a dynamic, computer-controlled in vitro model of the stomach and small intestine (TIM-1). Lett. Appl. Microbiol. 2019, 69, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Amund, O.D. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria. Can. J. Microbiol. 2016, 62, 715–725. [Google Scholar] [CrossRef]
- Tannock, G.W. A special fondness for lactobacilli. Appl. Environ. Microbiol. 2004, 70, 3189–3194. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett. Appl. Microbiol. 1998, 27, 183–185. [Google Scholar] [CrossRef]
- Wu, C.H.; Hsueh, Y.H.; Kuo, J.M.; Liu, S.J. Characterization of a Potential Probiotic Lactobacillus brevis RK03 and Efficient Production of γ-Aminobutyric Acid in Batch Fermentation. Int. J. Mol. Sci. 2018, 19, 143. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, B.M.; Stanton, C.; Fitzgerald, G.; Ross, R.P. Life under stress: The probiotic stress response and how it may be manipulated. Curr. Pharm. Des. 2008, 14, 1382–1399. [Google Scholar] [CrossRef] [PubMed]
- Wesche, A.M.; Gurtler, J.B.; Marks, B.P.; Ryser, E.T. Stress, sublethal injury, resuscitation, and virulence of bacterial food pathogens. J. Food Prot. 2009, 72, 1121–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 2005, 71, 3060–3067. [Google Scholar] [CrossRef] [PubMed]
- Fortier, L.C.; Tourdot-Maréchal, R.; Diviès, C.; Lee, B.H.; Guzzo, J. Induction of Oenococcus oeni H+-ATPase activity and mRNA transcription under acidic conditions. FEMS Microbiol. Lett. 2003, 222, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Verruck, S.; de Carvalho-Wolf, M.; Rodrigues, L.G.; Amante, E.R.; Werneck-Vieira, C.R.; de Mello-Castanho, R.D.A.; Schwinden-Prudencio, E. Survival of Bifidobacterium BB-12 microencapsulated with full-fat goat’s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Rumin. Res. 2017, 153, 48–56. [Google Scholar] [CrossRef]
- Liu, H.; Gong, J.; Chabot, D.; Miller, S.S.; Cui, S.W.; Ma, J.; Zhong, F.; Wang, Q. Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food Hydrocoll. 2016, 54, 328–337. [Google Scholar] [CrossRef]
- Afzaal, M.; Khan, A.U.; Saeed, F.; Arshad, M.S.; Khan, M.A.; Saeed, M.; Maan, A.A.; Khan, M.K.; Ismail, Z.; Ahmed, A.; et al. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream. Food Sci. Nutr. 2020, 8, 1649–1656. [Google Scholar] [CrossRef] [Green Version]
- Krasaekoopt, W.; Watcharapoka, S. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT–Food Sci. Technol. 2014, 57, 761–766. [Google Scholar] [CrossRef]
- Ozkan, E.R.; Demirci, T.; Ozturk, H.I.; Akin, N. Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. J. Sci. Food Agric. 2021, 101, 2799–2808. [Google Scholar] [CrossRef]
- Jensen, H.; Grimmer, S.; Naterstad, K.; Axelsson, L. In vitro testing of commercial and potential probiotic lactic acid bacteria. Int. J. Food Microbiol. 2012, 1, 216–222. [Google Scholar] [CrossRef]
- Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol. Biol. Rev. 2008, 72, 728–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouwehand, A.C.; Salminen, S. Invitro adhesion assays for probiotics and their invivo relevance: A review. Microb. Ecol. 2003, 15, 175–184. [Google Scholar] [CrossRef]
- Ruas-Madiero, P.; Gueimonde, M.; Arigoni, F.; de los Reyes-Gavilan, C.G.; Margolles, A. Bile Affects the Synthesis of Exopolysaccharides by Bifidobacterium animalis. Appl. Environ. Microb. 2009, 4, 1204–1207. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Sánchez, B.; Ruas-Madiedo, P.; Reyes-Gavilán, C.G.; Margolles, A. Cell envelope changes in Bifidobacterium animalis ssp. lactis as a response to bile. FEMS Microbiol. Lett. 2007, 274, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Aboulfazli, F.; Baba, A.S. Effect of Vegetable Milk on Survival of Probiotics in Fermented Ice Cream under Gastrointestinal Conditions. Food Sci. Technol. Res. 2015, 21, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Prasad, D. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 2005, 103, 109–115. [Google Scholar] [CrossRef]
- Furtado, G.F.; Almeida, F.S.; Sato, A.C.K.; Hubinger, M.D. Model infant formulas: Influence of types of whey proteins and lipid composition on the in vitro static digestion behavior. Food Res. Inter. 2022, 161, 111835. [Google Scholar] [CrossRef]
- Aprikian, O.; Levrat-Verny, M.A.; Besson, C.; Busserolles, J.; Rémésy, C.; Demigné, C. Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol-fed rats. Food Chem. 2001, 75, 445–452. [Google Scholar] [CrossRef]
- Munarin, F.; Tanzi, M.C.; Petrini, P. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol. 2012, 51, 681–689. [Google Scholar] [CrossRef]
- Shinohara, K.; Ohashi, Y.; Kawasumi, K.; Terada, A.; Fujisawa, T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe 2010, 16, 510–515. [Google Scholar] [CrossRef]
- Krasaekoopt, W.; Bhandari, B.; Deeth, H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 2004, 14, 737–743. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Y.; Polk, D.B.; Tomasula, P.M.; Yan, F.; Liu, L. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. J. Control. Release 2016, 28, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascale, N.; Gu, F.; Larsen, N.; Jespersen, L.; Respondek, F. The Potential of Pectins to Modulate the Human Gut Microbiota Evaluated by In Vitro Fermentation: A Systematic Review. Nutrients 2022, 14, 3629. [Google Scholar] [CrossRef] [PubMed]
- Gerez, C.L.; de Valdes, G.F.; Gigante, M.L.; Grosso, C.R.F. Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett. Appl. Microbiol. 2012, 54, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Gebara, C.; Chaves, K.S.; Ribeiro, M.C.E.; Souza, F.N.; Grosso, C.R.F.; Gigante, M.L. Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Res. Int. 2013, 51, 872–878. [Google Scholar] [CrossRef] [Green Version]
- Kadlec, R.; Jakubec, M. The effect of prebiotics on adherence of probiotics. J. Dairy Sci. 2014, 97, 1983–1990. [Google Scholar] [CrossRef] [Green Version]
- Laparra, J.M.; Sanz, Y. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett. Appl. Microbiol. 2009, 49, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Tuomola, E.M.; Salminen, S.J. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 1998, 41, 45–51. [Google Scholar] [CrossRef]
- Lim, S.M.; Ahn, D.H. Factors affecting adhesion of lactic acid bacteria to Caco-2 cells and inhibitory effect on infection of Salmonella typhimurium. J. Microbiol. Biotechnol. 2012, 22, 1731–1739. [Google Scholar] [CrossRef] [Green Version]
- Collado, M.C.; Surono, I.; Meriluoto, J.; Salminen, S. Indigenous dadih lactic acid bacteria: Cell-surface properties and interactions with pathogens. Food Microbiol. Safety 2007, 3, 89–93. [Google Scholar] [CrossRef]
- Nikolic, M.; Jovcic, B.; Kojic, M.; Topisirovic, L. Surface properties of Lactobacillus and Leuconostoc isolates from homemade cheeses showing auto-aggregation ability. Eur. Food Res. Technol. 2010, 231, 925–931. [Google Scholar] [CrossRef]
Bacterial Strain | Control Group | Group with 4% Inulin | Group with 2.5% Inulin and 1.5% Apple Fiber | Group with 4% Fiber |
---|---|---|---|---|
Lacticaseibacilluscasei 431 | CLC | ILC | IFLC | FLC |
Lactobacillus acidophilus LA-5 | CLA | ILA | IFLA | FLA |
Lacticaseibacillus paracasei L-26 | CLP | ILP | IFLP | FLP |
Lacticaseibacillusrhamnosus | CLR | ILR | IFLR | FLR |
Bifidobacterium animalis ssp. lactis BB-12 | CBB12 | IBB12 | IFBB12 | FBB12 |
Group of Ice Cream | Viable Counts of Probiotic Bacteria in Ice Cream, Log cfu g−1 | Survival Rate, % | |||
---|---|---|---|---|---|
Before Digestion | Simulated In Vitro Digestion Stage | ||||
Oral | Stomach | Small Intestine | |||
CLC | 12.18 cB ± 0.40 | 12.12 cB ± 0.39 | 7.98 bA ± 0.57 | 6.94 aA ± 0.12 | 56.97 |
ILC | 12.14 cB ± 0.32 | 12.03 cB ± 0.34 | 8.84 bB ± 0.27 | 7.81 aC ± 0.28 | 64.33 |
IFLC | 12.57 cB ± 0.37 | 12.13 cB ± 0.26 | 9.47 bC ± 0.32 | 7.39 aB ± 0.18 | 58.79 |
FLC | 11.80 cA ± 0.33 | 11.48 cA ± 0.13 | 8.15 bAB ± 0.52 | 7.65 aBC ± 0.16 | 64.83 |
CLA | 10.73 cA ± 0.73 | 10.05 cA ± 0.10 | 5.01 aA± 0.15 | 8.88 bD ± 0.21 | 82.75 |
ILA | 10.24 bA ± 0.46 | 10.20 bA ± 0.44 | 5.26 aA ± 0.58 | 5.16 aA ± 0.23 | 50.39 |
IFLA | 11.46 cB ± 0.61 | 11.22 cB ± 0.46 | 8.06 bC ± 0.24 | 7.02 aB ± 0.79 | 61.25 |
FLA | 11.85 cB ± 0.96 | 11.78 cB ± 0.61 | 6.84 aB ± 0.29 | 8.49 bC ± 0.17 | 71.64 |
CBB12 | 11.47 cA ± 0.57 | 11.34 cA ± 0.51 | 8.48 bA ± 0.21 | 5.83 aA ± 0.14 | 50.82 |
IBB12 | 11.13 cA ± 0.56 | 10.83 cA ± 0.47 | 9.27 bB ± 0.22 | 8.09 aC ± 0.10 | 72.68 |
IFBB12 | 11.00 cA ± 0.35 | 10.61 cA ± 0.26 | 9.28 bB ± 0.18 | 5.91 aA ± 0.09 | 53.72 |
FBB12 | 11.17 cA ± 0.45 | 11.13 cA ± 0.69 | 8.66 bA ± 0.24 | 6.32 aB ± 0.16 | 56.58 |
CLP | 11.28 cA ± 0.59 | 11.31 cA ± 0.58 | 5.04 aA ± 0.44 | 6.31 bA ± 0.39 | 55.93 |
ILP | 11.37 bA ± 0.89 | 11.39 bA ± 0.50 | 5.74 aB ± 0.27 | 6.16 aA ± 0.31 | 54.17 |
IFLP | 11.28 bA ± 0.60 | 11.19 bA ± 0.48 | 5.79 aB ± 0.22 | 6.11 aA ± 0.23 | 54.16 |
FLP | 11.37 cA ± 0.88 | 11.35 cA ± 0.75 | 6.47 aC ± 0.27 | 7.64 bB ± 0.15 | 67.19 |
CLR | 10.99 cA ± 0.42 | 10.98 cA ± 0.33 | 4.79 aA ± 0.24 | 5.21 bA ± 0.10 | 47.40 |
ILR | 11.21 cA ± 0.36 | 11.12 cA ± 0.63 | 4.74 aA ± 0.21 | 6.53 bC ± 0.19 | 58.25 |
IFLR | 11.21 cA ± 0.38 | 11.11 cA ± 0.45 | 4.54 aA ± 0.30 | 6.50 bC ± 0.39 | 57.98 |
FLR | 11.25 cA ± 0.53 | 11.20 cA ± 0.29 | 4.77 aA ± 0.14 | 5.73 bB ± 0.26 | 50.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, M.; Znamirowska-Piotrowska, A.; Buniowska-Olejnik, M.; Pawlos, M. Sheep Milk Symbiotic Ice Cream: Effect of Inulin and Apple Fiber on the Survival of Five Probiotic Bacterial Strains during Simulated In Vitro Digestion Conditions. Nutrients 2022, 14, 4454. https://doi.org/10.3390/nu14214454
Kowalczyk M, Znamirowska-Piotrowska A, Buniowska-Olejnik M, Pawlos M. Sheep Milk Symbiotic Ice Cream: Effect of Inulin and Apple Fiber on the Survival of Five Probiotic Bacterial Strains during Simulated In Vitro Digestion Conditions. Nutrients. 2022; 14(21):4454. https://doi.org/10.3390/nu14214454
Chicago/Turabian StyleKowalczyk, Magdalena, Agata Znamirowska-Piotrowska, Magdalena Buniowska-Olejnik, and Małgorzata Pawlos. 2022. "Sheep Milk Symbiotic Ice Cream: Effect of Inulin and Apple Fiber on the Survival of Five Probiotic Bacterial Strains during Simulated In Vitro Digestion Conditions" Nutrients 14, no. 21: 4454. https://doi.org/10.3390/nu14214454
APA StyleKowalczyk, M., Znamirowska-Piotrowska, A., Buniowska-Olejnik, M., & Pawlos, M. (2022). Sheep Milk Symbiotic Ice Cream: Effect of Inulin and Apple Fiber on the Survival of Five Probiotic Bacterial Strains during Simulated In Vitro Digestion Conditions. Nutrients, 14(21), 4454. https://doi.org/10.3390/nu14214454