Marine Oil from C. finmarchicus Enhances Glucose Homeostasis and Liver Insulin Resistance in Obese Prediabetic Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Monitoring of Dietary Intake and Physical Activity
2.3. Anthropometric Measurements and Body Composition
2.4. Blood Collection and Analysis of Glucose Metabolism Markers
2.5. Analysis of Omega-3 Fatty Acid Content of Total Fatty Acids in Red Blood Cells
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Markers of Glucose Metabolism and Inflammation
3.3. Omega-3 Fatty Acid Content of Red Blood Cells
3.4. Dietary Intake and Physical Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | t | CO (n = 25) Calanus Oil | p (n = 18) Placebo Group | pa t0 vs. t12 | pa t0, t12, t16 | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Weight (kg) | 0 | 93.0 | 19.7 | 95.8 | 19.3 | 0.686 | 0.840 |
12 | 92.8 | 18.9 | 95.6 | 20.2 | |||
16 | 92.8 | 19.1 | 95.6 | 20.6 | |||
BMI (kg/m2) | 0 | 30.9 | 5.21 | 32.9 | 5.32 | 0.761 | 0.951 |
12 | 30.9 | 5.08 | 32.8 | 5.45 | |||
16 | 30.9 | 5.13 | 32.8 | 5.61 | |||
Phase angle | 0 | 5.25 | 0.56 | 5.21 | 0.47 | 0.389 | 0.385 |
12 | 5.23 | 0.57 | 5.29 | 0.65 | |||
16 | 5.30 | 0.65 | 5.41 | 0.58 | |||
LBM (kg) | 0 | 58.9 | 15.03 | 59.8 | 14.60 | 0.193 | 0.313 |
12 | 58.7 | 14.12 | 58.9 | 15.06 | |||
16 | 58.5 | 14.25 | 59.7 | 14.92 | |||
BCM (kg) | 0 | 28.4 | 7.91 | 28.6 | 7.19 | 0.436 | 0.168 |
12 | 28.1 | 6.98 | 28.4 | 7.92 | |||
16 | 28.3 | 7.40 | 29.3 | 8.26 | |||
FM (kg) | 0 | 34.2 | 10.18 | 35.9 | 10.35 | 0.249 | 0.245 |
12 | 34.1 | 9.76 | 36.7 | 10.01 | |||
16 | 34.3 | 9.82 | 35.9 | 10.72 | |||
TBL (L) | 0 | 43.1 | 10.99 | 43.8 | 10.68 | 0.102 | 0.355 |
12 | 42.8 | 10.34 | 43.1 | 11.02 | |||
16 | 42.9 | 10.41 | 43.7 | 10.94 |
Parameter | t | CO (n = 25) Calanus Oil | p (n = 18) Placebo Group | pa t0 vs. t12 | pa t0, t12, t16 | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Energy intake (kcal/d) | 0 | 2091 | 373 | 2279 | 690 | 0.053 | 0.141 |
12 | 2161 | 443 | 1943 * b | 542 | |||
16 | 2057 | 528 | 2127 | 650 | |||
Protein (%E/d) | 0 | 15.6 | 2.4 | 16.9 | 4.9 | 0.540 | 0.696 |
12 | 15.6 | 2.6 | 17.8 | 5.9 | |||
16 | 16.2 | 3.0 | 16.9 | 5.2 | |||
Fat (%E/d) | 0 | 38.1 | 6.3 | 37.6 | 11.0 | 0.600 | 0.399 |
12 | 37.2 | 6.7 | 39.5 | 6.9 | |||
16 | 40.7 | 7.6 | 38.7 | 9.3 | |||
CHO (%/d) | 0 | 40.8 | 6.2 | 39.2 | 9.4 | 0.806 | 0.510 |
12 | 39.9 | 6.6 | 37.5 | 9.9 | |||
16 | 36.5 | 6.6 | 41.4 | 7.6 | |||
Fibre (g/d) | 0 | 22.4 | 6.4 | 25.5 | 10.4 | 0.313 | 0.407 |
12 | 24.2 | 11.1 | 23.0 | 9.3 | |||
16 | 20.7 | 5.9 | 20.6 | 8.0 | |||
SFA (g/d) | 0 | 27.0 | 9.1 | 28.1 | 10.0 | 0.217 | 0.256 |
12 | 24.1 | 8.5 | 19.4 * b | 8.6 | |||
16 | 23.8 | 9.0 | 25.2 | 13.2 | |||
MUFA (g/d) | 0 | 20.8 | 8.9 | 23.8 | 10.5 | 0.425 | 0.702 |
12 | 18.2 | 6.8 | 18.4 | 7.6 | |||
16 | 18.9 | 7.5 | 18.2 | 9.6 | |||
PUFA (g/d) | 0 | 10.7 | 5.0 | 9.6 | 4.1 | 0.171 | |
12 | 7.5 | 3.8 | 9.6 | 6.5 | 0.258 | ||
16 | 8.4 | 4.2 | 8.5 | 4.6 | |||
DHA (g/d) | 0 | 0.29 | 0.36 | 0.32 | 0.35 | 0.373 | |
12 | 0.16 | 0.23 | 0.29 | 0.55 | 0.706 | ||
16 | 0.30 | 0.30 | 0.46 | 0.66 | |||
EPA (g/d) | 0 | 0.21 | 0.32 | 0.43 | 0.61 | 0.730 | 0.915 |
12 | 0.09 | 0.16 | 0.17 | 0.33 | |||
16 | 0.18 | 0.25 | 0.39 | 0.53 |
References
- Diagnosis and classification of diabetes mellitus. Diabetes Care 2008, 31 (Suppl. 1), S55–S60. [CrossRef] [Green Version]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef] [PubMed]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- 2. Classification and Diagnosis of Diabetes. Diabetes Care 2017, 40, S11–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, M.; Abdul-Ghani, M.; DeFronzo, R.A.; Manco, M.; Sesti, G.; Fiorentino, T.V.; Ceriello, A.; Rhee, M.; Phillips, L.S.; Chung, S.; et al. Review of methods for detecting glycemic disorders. Diabetes Res. Clin. Pract. 2020, 165, 108233. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Santaguida, P.; Raina, P.; Morrison, K.M.; Balion, C.; Hunt, D.; Yazdi, H.; Booker, L. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: A systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 2007, 78, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Nasr, G.; Sliem, H. Silent myocardial ischemia in prediabetics in relation to insulin resistance. J. Cardiovasc. Dis. Res. 2010, 1, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Kris-Etherton, P.M.; Harris, K.A. Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults. Curr. Atheroscler. Rep. 2008, 10, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.M.; Myung, S.-K.; Lee, Y.J.; Seo, H.G. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: A meta-analysis of randomized, double-blind, placebo-controlled trials. Arch. Intern. Med. 2012, 172, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Marik, P.E.; Varon, J. Omega-3 dietary supplements and the risk of cardiovascular events: A systematic review. Clin. Cardiol. 2009, 32, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manuelli, M.; della Guardia, L.; Cena, H. Enriching Diet with n-3 PUFAs to Help Prevent Cardiovascular Diseases in Healthy Adults: Results from Clinical Trials. Int. J. Mol. Sci. 2017, 18, 1552. [Google Scholar] [CrossRef] [Green Version]
- Derosa, G.; Cicero, A.F.G.; D’Angelo, A.; Borghi, C.; Maffioli, P. Effects of n-3 pufas on fasting plasma glucose and insulin resistance in patients with impaired fasting glucose or impaired glucose tolerance. BioFactors 2016, 42, 316–322. [Google Scholar] [CrossRef]
- Albracht-Schulte, K.; Kalupahana, N.S.; Ramalingam, L.; Wang, S.; Rahman, S.M.; Robert-McComb, J.; Moustaid-Moussa, N. Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J. Nutr. Biochem. 2018, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Akinkuolie, A.O.; Ngwa, J.S.; Meigs, J.B.; Djoussé, L. Omega-3 polyunsaturated fatty acid and insulin sensitivity: A meta-analysis of randomized controlled trials. Clin. Nutr. 2011, 30, 702–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tocher, D.R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015, 449, 94–107. [Google Scholar] [CrossRef]
- Schots, P.C.; Pedersen, A.M.; Eilertsen, K.-E.; Olsen, R.L.; Larsen, T.S. Possible Health Effects of a Wax Ester Rich Marine Oil. Front. Pharmacol. 2020, 11, 961. [Google Scholar] [CrossRef]
- Lee, R.F.; Hagen, W.; Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 2006, 307, 273–306. [Google Scholar] [CrossRef]
- Mounien, L.; Tourniaire, F.; Landrier, J.-F. Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effects. Nutrients 2019, 11, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakutani, R.; Hokari, S.; Nishino, A.; Ichihara, T.; Sugimoto, K.; Takaha, T.; Kuriki, T.; Maoka, T. Effect of Oral Paprika Xanthophyll Intake on Abdominal Fat in Healthy Overweight Humans: A Randomized, Double-blind, Placebo-controlled Study. J. Oleo Sci. 2018, 67, 1149–1162. [Google Scholar] [CrossRef] [Green Version]
- Canas, J.A.; Lochrie, A.; McGowan, A.G.; Hossain, J.; Schettino, C.; Balagopal, P.B. Effects of Mixed Carotenoids on Adipokines and Abdominal Adiposity in Children: A Pilot Study. J. Clin. Endocrinol. Metab. 2017, 102, 1983–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höper, A.C.; Salma, W.; Khalid, A.M.; Hafstad, A.D.; Sollie, S.J.; Raa, J.; Larsen, T.S.; Aasum, E. Oil from the marine zooplankton Calanus finmarchicus improves the cardiometabolic phenotype of diet-induced obese mice. Br. J. Nutr. 2013, 110, 2186–2193. [Google Scholar] [CrossRef] [Green Version]
- Tande, K.S.; Vo, T.D.; Lynch, B.S. Clinical safety evaluation of marine oil derived from Calanus finmarchicus. Regul. Toxicol. Pharmacol. 2016, 80, 25–31. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Ghani, M.A.; Matsuda, M.; Balas, B.; De Fronzo, R.A. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 2007, 30, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef]
- International Diabetes Federation (IDF). International Diabetes Federation Diabetic Atlas 2015, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Beulens, J.; Rutters, F.; Rydén, L.; Schnell, O.; Mellbin, L.; Hart, H.E.; Vos, R.C. Risk and management of pre-diabetes. Eur. J. Prev. Cardiol. 2019, 26, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Maurizi, G.; della Guardia, L.; Maurizi, A.; Poloni, A. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J. Cell. Physiol. 2018, 233, 88–97. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Erion, D.M.; Shulman, G.I. Diacylglycerol-mediated insulin resistance. Nat. Med. 2010, 16, 400–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čížková, T.; Štěpán, M.; Daďová, K.; Ondrůjová, B.; Sontáková, L.; Krauzová, E.; Matouš, M.; Koc, M.; Gojda, J.; Kračmerová, J.; et al. Exercise Training Reduces Inflammation of Adipose Tissue in the Elderly: Cross-Sectional and Randomized Interventional Trial. J. Clin. Endocrinol. Metab. 2020, 105, e4510–e4526. [Google Scholar] [CrossRef]
- Kjøbsted, R.; Hingst, J.R.; Fentz, J.; Foretz, M.; Sanz, M.-N.; Pehmøller, C.; Shum, M.; Marette, A.; Mounier, R.; Treebak, J.T.; et al. AMPK in skeletal muscle function and metabolism. FASEB J. 2018, 32, 1741–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niederberger, E.; King, T.S.; Russe, O.Q.; Geisslinger, G. Activation of AMPK and its Impact on Exercise Capacity. Sports Med. 2015, 45, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Barosa, C.; Jones, J.; Dube, S.; Carter, R.; Basu, A.; Rizza, R.A. Pathogenesis of prediabetes: Role of the liver in isolated fasting hyperglycemia and combined fasting and postprandial hyperglycemia. J. Clin. Endocrinol. Metab. 2013, 98, E409–E417. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Almanza, M.; Cámara-Gómez, R.; Merino-Torres, J.F. Obesidad y diabetes mellitus tipo 2: También unidas en opciones terapéuticas. Endocrinol. Diabetes Y Nutr. 2019, 66, 140–149. [Google Scholar] [CrossRef]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Calder, P.C. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: Concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 2020, 178, 105–123. [Google Scholar] [CrossRef]
- Pingali, U.; Nutalapati, C.; Illendulla, V.S. Evaluation of the Effect of Fish Oil Alone and in Combination with a Proprietary Chromium Complex on Endothelial Dysfunction, Systemic Inflammation and Lipid Profile in Type 2 Diabetes Mellitus—A Randomized, Double-Blind, Placebo-Controlled Clinical Study, Diabetes. Metab. Syndr. Obes. Targets Ther. 2020, 13, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Mazaherioun, M.; Djalali, M.; Koohdani, F.; Javanbakht, M.H.; Zarei, M.; Beigy, M.; Ansari, S.; Rezvan, N.; Saedisomeolia, A. Beneficial Effects of n-3 Fatty Acids on Cardiometabolic and Inflammatory Markers in Type 2 Diabetes Mellitus: A Clinical Trial. Med. Princ. Pract. 2017, 26, 535–541. [Google Scholar] [CrossRef]
- Lin, N.; Shi, J.-J.; Li, Y.-M.; Zhang, X.-Y.; Chen, Y.; Calder, P.C.; Tang, L.-J. What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic mellitus populations?: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis. 2016, 15, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anbazhagan, A.N.; Priyamvada, S.; Gujral, T.; Bhattacharyya, S.; Alrefai, W.A.; Dudeja, P.K.; Borthakur, A. A novel anti-inflammatory role of GPR120 in intestinal epithelial cells, American journal of physiology. Cell Physiol. 2016, 310, C612–C621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, D.-S. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol. Asp. Med. 2018, 64, 92–108. [Google Scholar] [CrossRef]
- Kushner, I.; Samols, D.; Magrey, M. A unifying biologic explanation for “high-sensitivity” C-reactive protein and “low-grade” inflammation. Arthritis Care Res. 2010, 62, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Wasserfurth, P.; Nebl, J.; Schuchardt, J.P.; Müller, M.; Boßlau, T.K.; Krüger, K.; Hahn, A. Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers-A Pilot Study. Nutrients 2020, 12, 2139. [Google Scholar] [CrossRef]
- Daďová, K.; Petr, M.; Šteffl, M.; Sontáková, L.; Chlumský, M.; Matouš, M.; Štich, V.; Štěpán, M.; Šiklová, M. Effect of Calanus Oil Supplementation and 16 Week Exercise Program on Selected Fitness Parameters in Older Women. Nutrients 2020, 12, 481. [Google Scholar] [CrossRef] [Green Version]
- Gellert, S.; Schuchardt, J.P.; Hahn, A. Low long chain omega-3 fatty acid status in middle-aged women. Prostaglandins Leukot. Essent. Fat. Acids 2017, 117, 54–59. [Google Scholar] [CrossRef]
- Schmidt, S.; Stahl, F.; Mutz, K.-O.; Scheper, T.; Hahn, A.; Schuchardt, J.P. Different gene expression profiles in normo- and dyslipidemic men after fish oil supplementation: Results from a randomized controlled trial. Lipids Health Dis. 2012, 11, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, H.; Yanai, H.; Ito, K.; Tomono, Y.; Koikeda, T.; Tsukahara, H.; Tada, N. Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis 2010, 209, 520–523. [Google Scholar] [CrossRef]
- Xia, W.; Tang, N.; Kord-Varkaneh, H.; Low, T.Y.; Tan, S.C.; Wu, X.; Zhu, Y. The effects of astaxanthin supplementation on obesity, blood pressure, CRP, glycemic biomarkers, and lipid profile: A meta-analysis of randomized controlled trials. Pharmacol. Res. 2020, 161, 105113. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Li, Y.; Xia, S.; Wei, Y.; Yang, L.; Wang, D.; Ye, J.; Li, H.; Yuan, J.; et al. A combination of omega-3 and plant sterols regulate glucose and lipid metabolism in individuals with impaired glucose regulation: A randomized and controlled clinical trial. Lipids Health Dis. 2019, 18, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Components | g/100 g CO | mg/2 g CO | |
---|---|---|---|
MUFA | 9.7 | 194 | |
PUFA | 26.2 | 524 | |
Omega-3 fatty acids | 25.0 | 500 | |
ALA | 1.4 | 28 | |
SDA | 8.4 | 168 | |
EPA | 6.9 | 138 | |
DHA | 6.4 | 128 | |
Omega-6 fatty acids | 1.1 | 22 | |
LA | 0.7 | 14 | |
ARA | 0.2 | 4 | |
Fatty alcohols | 28.8 | 576 | |
Sterols | 0.35 | 7 | |
Astaxanthin | 0.1 | 2 |
Parameter | CO (n = 25) Calanus Oil | p (n = 18) Placebo Group | p * | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Sex (f/m) | 18/7 | - | 13/5 | - | 0.98 |
Age (years) | 59.56 | 9.51 | 61.78 | 7.61 | 0.42 |
Height (cm) | 173.1 | 10.00 | 170.2 | 8.24 | 0.32 |
Body weight (kg) | 92.98 | 19.61 | 94.9 | 19.14 | 0.94 |
BMI (kg/m2) | 30.95 | 5.21 | 32.64 | 5.27 | 0.58 |
Waist circumference (cm) | 101.52 | 15.51 | 104.67 | 12.92 | 0.87 |
Hip circumference (cm) | 115.20 | 9.83 | 116.11 | 9.52 | 0.76 |
WHR | 0.88 | 0.10 | 0.90 | 0.08 | 0.41 |
SBP (mmHg) | 136.32 | 16.42 | 134.56 | 15.13 | 0.72 |
DBP (mmHg) | 83.04 | 9.96 | 83.56 | 8.47 | 0.86 |
Pulse (bpm) | 68.16 | 11.76 | 62.83 | 6.59 | 0.09 |
Total cholesterol (mmol/L) | 5.48 | 1.14 | 5.18 | 0.91 | 0.37 |
HDL-cholesterol (mmol/L) | 1.49 | 0.44 | 1.36 | 0.34 | 0.28 |
LDL-cholesterol (mmol/L) | 3.74 | 1.00 | 3.52 | 0.90 | 0.48 |
TAG (mmol/L) | 1.52 | 0.66 | 1.38 | 0.77 | 0.52 |
Parameter | t | CO (n = 25) Calanus Oil | p (n = 18) Placebo Group | pa t0 vs. t12 | pa t0, t12, t16 | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Fasting Glucose [mmol/L] | 0 | 6.1 | 0.03 | 6.0 | 0.34 | 0.437 | 0.717 |
12 | 5.9 * b | 0.47 | 5.9 | 0.44 | |||
16 | 5.9 * b | 0.43 | 5.9 | 0.49 | |||
Fasting Insulin [mU/L] | 0 | 15.8 | 6.21 | 14.3 | 7.64 | 0.014 | 0.050 |
12 | 12.9 * b | 5.80 | 16.5 | 13.66 | |||
16 | 14.0 | 7.06 | 14.4 | 10.74 | |||
HOMA-Index | 0 | 4.38 | 1.66 | 3.89 | 2.03 | 0.028 | 0.094 |
12 | 3.48 * b | 1.54 | 4.57 | 3.97 | |||
16 | 3.83 | 1.94 | 3.94 | 3.05 | |||
HbA1c [%] | 0 | 5.33 | 0.36 | 5.42 | 0.41 | 0.331 | 0.362 |
12 | 5.41 | 0.28 | 5.61 | 0.30 | |||
16 | 5.48 | 0.23 | 5.58 | 0.37 | |||
2 h plasma glucose (mmol/L) | 0 | 6.6 | 1.26 | 5.9 | 0.98 | 0.964 | 0.948 |
12 | 6.1 | 1.13 | 5.4 | 0.97 | |||
16 | 5.9 | 1.44 | 5.4 | 1.21 | |||
AUC-Glucose0–2h | 0 | 955 | 158 | 927 | 127 | 0.949 | 0.953 |
12 | 917 | 203 | 892 | 143 | |||
16 | 876 | 176 | 862 | 133 | |||
AUC-Insulin0–2h | 0 | 8845 | 3572 | 8303 | 4070 | 0.837 | 0.841 |
12 | 8900 | 3556 | 8493 | 3638 | |||
16 | 8926 | 3960 | 7687 | 3519 | |||
HIRI † | 0 | 5.62 | 2.48 | 4.38 | 1.24 | 0.021 | 0.058 |
12 | 4.56 * b | 2.44 | 4.60 | 1.59 | |||
16 | 5.06 | 2.55 | 4.06 | 1.38 | |||
MISI ‡ | 0 | 0.158 | 0.12 | 0.174 | 0.13 | 0.748 | 0.927 |
12 | 0.175 | 0.12 | 0.190 | 0.11 | |||
16 | 0.157 | 0.08 | 0.182 | 0.11 | |||
CRP (mg/L) | 0 | 2.81 | 3.71 | 3.88 | 2.54 | 0.728 | 0.478 |
12 | 2.58 | 2.55 | 3.42 | 2.59 | |||
16 | 2.98 | 3.71 | 3.06 | 1.89 |
Parameter | t | CO (n = 25) Calanus Oil | p (n = 18) Placebo Group | pa t0 vs. t12 | pa t0, t12, t16 | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
ALA (C18:3n-3) | 0 | 0.15 | 0.04 | 0.17 | 0.05 | ||
12 | 0.16 | 0.06 | 0.17 | 0.06 | 0.389 | 0.216 | |
16 | 0.16 | 0.06 | 0.19 | 0.06 | |||
SDA (C18:4n-3) | 0 | 0.047 | 0.011 | 0.041 | 0.016 | 0.160 | 0.087 |
12 | 0.054 * b | 0.013 | 0.043 | 0.012 | |||
16 | 0.054 | 0.011 | 0.050 | 0.015 | |||
EPA (C20:5n-3) | 0 | 0.99 | 0.33 | 1.23 | 0.62 | <0.001 | <0.001 |
12 | 1.40 ** b | 0.44 | 1.05 | 0.48 | |||
16 | 1.39 ** b | 0.40 | 1.09 | 0.51 | |||
DHA (C22:6n-3) | 0 | 5.46 | 1.14 | 6.14 | 1.47 | <0.001 | <0.001 |
12 | 6.31 ** b | 1.24 | 5.84 | 1.42 | |||
16 | 6.34 ** b | 1.17 | 5.84 | 1.51 | |||
Omega-3 Index | 0 | 6.45 | 1.37 | 7.37 | 1.96 | <0.001 | <0.001 |
12 | 7.71 ** b | 0.54 | 6.89 ** b | 1.78 | |||
16 | 7.72 ** b | 1.43 | 6.94 ** b | 1.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burhop, M.; Schuchardt, J.P.; Nebl, J.; Müller, M.; Lichtinghagen, R.; Hahn, A. Marine Oil from C. finmarchicus Enhances Glucose Homeostasis and Liver Insulin Resistance in Obese Prediabetic Individuals. Nutrients 2022, 14, 396. https://doi.org/10.3390/nu14020396
Burhop M, Schuchardt JP, Nebl J, Müller M, Lichtinghagen R, Hahn A. Marine Oil from C. finmarchicus Enhances Glucose Homeostasis and Liver Insulin Resistance in Obese Prediabetic Individuals. Nutrients. 2022; 14(2):396. https://doi.org/10.3390/nu14020396
Chicago/Turabian StyleBurhop, Milena, Jan Philipp Schuchardt, Josefine Nebl, Mattea Müller, Ralf Lichtinghagen, and Andreas Hahn. 2022. "Marine Oil from C. finmarchicus Enhances Glucose Homeostasis and Liver Insulin Resistance in Obese Prediabetic Individuals" Nutrients 14, no. 2: 396. https://doi.org/10.3390/nu14020396
APA StyleBurhop, M., Schuchardt, J. P., Nebl, J., Müller, M., Lichtinghagen, R., & Hahn, A. (2022). Marine Oil from C. finmarchicus Enhances Glucose Homeostasis and Liver Insulin Resistance in Obese Prediabetic Individuals. Nutrients, 14(2), 396. https://doi.org/10.3390/nu14020396