Food Insecurity and Associated Factors in Brazilian Undergraduates during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design and Participants
2.3. Food Insecurity
2.4. Self-Referred Changes in Weight and Diet Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Characterization of the Studied Undergraduates
3.2. Food Security
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Glossary on Right to Food. In State Food Agriculture Food Aid Food Security; FAO: Rome, Italy, 2009; p. 138. [Google Scholar]
- Leung, C.W.; Epel, E.S.; Willett, W.C.; Rimm, E.B.; Laraia, B.A. Household food insecurity is positively associated with depression among low-income supplemental nutrition assistance program participants and income-eligible nonparticipants. J. Nutr. 2015, 145, 3, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Muldoon, K.A.; Duff, P.K.; Fielden, S.; Anema, A. Food insufficiency is associated with psychiatric morbidity in a nationally representative study of mental illness among food insecure Canadians. Soc. Psychiatry Psychiatr. Epidemiol. 2013, 48, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.D.; Widome, R.; Nettleton, J.A.; Pereira, M.A. Food Security and Metabolic Syndrome in U.S. Adults and Adolescents: Findings From the National Health and Nutrition Examination Survey, 1999–2006. Ann. Epidemiol. 2010, 20, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Seligman, H.K.; Laraia, B.A.; Kushel, M.B. Food insecurity is associated with chronic disease among low-income nhanes participants. J. Nutr. 2010, 140, 304–310. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- De Carvalho, C.A.; Viola, P.C.A.F.; Sperandio, N. How is Brazil facing the crisis of Food and Nutrition Security during the COVID-19 pandemic? Public Health Nutr. 2021, 24, 561–564. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/table (accessed on 22 August 2021).
- Pereira, M.; Oliveira, A.M. Poverty and food insecurity may increase as the threat of COVID-19 spreads. Public Health Nutr. 2020, 23, 3236–3240. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Silva, R.C.; Peireira, M.; Campelo, T.; Aragão, E.; Guimarões, J.M.M.; Ferreira, A.J.F.; Barreto, M.L.; Santos, S.M.C. Covid-19 pandemic implications for food and nutrition security in Brazil. Ciência Saúde Coletiva 2020, 25, 3421–3430. [Google Scholar] [CrossRef]
- Alpino, T.M.A.; Santos, C.R.B.; Barros, D.C.; de Freitas, C.M. COVID-19 and food and nutritional (in)security: Action by the Brazilian Federal Government during the pandemic, with budget cuts and institutional dismantlement. Cad. Saúde Pública 2020, 36, 1–16. [Google Scholar] [CrossRef]
- Koo, J.R.; Cook, A.R.; Park, M.; Sun, Y.; Sun, H.; Lim, J.T.; Tam, C.; Dickens, B. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study. Lancet Infect. Dis. 2020, 20, 678–688. [Google Scholar] [CrossRef] [Green Version]
- Davitt, E.D.; Heer, M.M.; Winham, D.M.; Knoblauch, S.T.; Shelley, M.C. Effects of covid-19 on university student food security. Nutrients 2021, 13, 1932. [Google Scholar] [CrossRef] [PubMed]
- Soldavini, J.; Andrew, H.; Berner, M. Characteristics associated with changes in food security status among college students during the COVID-19 pandemic. Transl. Behav. Med. 2021, 11, 295–304. [Google Scholar] [CrossRef]
- de Araujo, T.A.; de Medeiros, L.A.; Vasconcelos, D.B.; Dutra, L.V. (In)segurança alimentar e nutricional de residentes em moradia estudantil durante a pandemia do covid-19. Segurança Aliment. Nutr. 2021, 28, 1–9. [Google Scholar] [CrossRef]
- Bruening, M.; Argo, K.; Payne-Sturges, D.; Laska, M.N. The Struggle Is Real: A Systematic Review of Food Insecurity on Postsecondary Education Campuses. J. Acad. Nutr. Diet. 2017, 117, 1767–1791. [Google Scholar] [CrossRef] [PubMed]
- Nagata, J.M.; Palar, K.; Gooding, H.C.; Garber, A.K.; Bibbins-Domingo, K.; Weiser, S.D. Food Insecurity and Chronic Disease in US Young Adults: Findings from the National Longitudinal Study of Adolescent to Adult Health. J. Gen. Intern. Med. 2019, 34, 2756–2762. [Google Scholar] [CrossRef]
- Niles, M.T.; Bertmann, F.; Belarmino, E.H.; Wentworth, T.; Biehl, E.; Neff, R. The early food insecurity impacts of COVID-19. Nutrients 2020, 12, 2096. [Google Scholar] [CrossRef] [PubMed]
- Owens, M.R.; Brito-Silva, F.; Kirkland, T.; Moore, C.E.; Davis, K.E.; Patterson, M.A.; Miketinas, D.C.; Tucker, W.J. Prevalence and social determinants of food insecurity among college students during the COVID-19 pandemic. Nutrients 2020, 12, 2515. [Google Scholar] [CrossRef]
- Payne-Sturges, D.C.; Tjaden, A.; Caldeira, K.M.; Vincent, K.B.; Arria, A.M. Student Hunger on Campus: Food Insecurity Among College Students and Implications for Academic Institutions. Am. J. Health Promot. 2018, 32, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Reeder, N.; Tapanee, P.; Persell, A.; Tolar-Peterson, T. Food insecurity, depression, and race: Correlations observed among college students at a university in the Southeastern United States. Int. J. Environ. Res. Public Health 2020, 17, 8268. [Google Scholar] [CrossRef]
- Willis, D.E. Feeding inequality: Food insecurity, social status and college student health. Sociol. Health Illn. 2021, 43, 220–237. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, J.A.; Leung, C.W. Food insecurity and COVID-19: Disparities in early effects for us adults. Nutrients 2020, 12, 1648. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Pesquisa Nacional Por Amostra de Domicílios: Segurança Alimentar, 2013; IBGE: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Segall-Corrêa, A.M.; Marin-León, L.; Melgar-Quiñonez, H.; Pérez-Escamilla, R. Refinement of the Brazilian Household Food Insecurity Measurement Scale: Recommendation for a 14-item EBIA. Rev. Nutr. Campinas 2014, 27, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, M.S.; Jacob, M.C.M.; Ferreira, M.A.F.; Vale, D.; Mirabal, I.R.B.; Lyra, C.O. Food and nutritional insecurity in Brazil and its correlation with vulnerability markers. Cienc. Saude Coletiva 2020, 25, 3833–3846. [Google Scholar] [CrossRef] [PubMed]
- Morais, D.D.C.; Sperandio, N.; Dutra, L.V.; Carmo, S. Indicadores socioeconômicos, nutricionais e de percepção de insegurança alimentar e nutricional em famílias rurais. Segurança Aliment. Nutr. 2018, 25, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, T.C.; Abranches, M.V.; Lana, R.M. Food (in)security in Brazil in the context of the SARS-CoV-2 pandemic. Cad. Saude Publica 2020, 36, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RedePENSSAN. VIGISAN Inquérito Nacional Sobre Insegurança Alimentar no Contexto da Pandemia da Covid-19 no Brasil; Rede Brasileira de Pesquisa em Soberania e Segurança Alimentar e Nutricional: Brazil, 2021; pp. 1–66. ISBN 9786587504193. Available online: https://pesquisassan.net.br/ (accessed on 19 December 2021).
- Coates, J.; Frongilo, E.A.; Rogers, B.L.; Webb, P.; Wilde, P.E.; Houser, R. Commonalities in the Experience of Household Food Insecurity across Cultures: What Are Measures Missing? J. Nutr. 2006, 136, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Pesquisa Nacional Por Amostra de Domicílios: Segurança Alimentar, 2004; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brasil, 2006; pp. 1–140. ISBN 8524038705. [Google Scholar]
- Swindale, A.; Bilinsky, P. Development of a Universally Applicable Household Food Insecurity Measurement Tool: Process, Current Status, and Outstanding Issues. J. Nutr. 2006, 136, 1449–1452. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.S.S.; Araújo, P.H.M.; de Andrade, D.F.; Louzada, M.L.C.L.; de Assis, M.A.A.; Slater, B. Duas evidências de validade da ESQUADA e níveis de qualidade da dieta dos brasileiros. Rev. Saude Publica 2021, 55, 1–14. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Pesquisa de Orçamentos Familiares 2017–2018: Avaliação Nutricional da Disponibilidade Domiciliar de Alimentos no Brasil; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2020; pp. 1–65. ISBN 9788524045264. [Google Scholar]
- ANDIFES; FONAPRACE. V Pesquisa Nacional de perfil Socioeconômico e Cultural dos (as) Graduandos (as) das IFES-2018. Associação Nacional dos Dirigentes das Instituições Federais Ensino Superior (ANDIFES); Fórum Nacional de Pró-reitores de Assuntos Comunitários e Estudantis (FONAPRACE): Brasília, Brazil, 2019; pp. 1–318. Available online: https://www.andifes.org.br/wp-content/uploads/2021/07/Clique-aqui-para-acessar-o-arquivo-completo.-1.pdf. (accessed on 31 August 2021).
- Galindo, E.; Teixeira, M.A.; de Araújo, M.; Motta, R.; Pessoa, M.; Mendes, L.; Rennó, L. Efeitos da pandemia na alimentação e na situação da segurança alimentar no Brasil. Food for Justice: Power, Politics, and Food Inequalities in a Bioeconomy, Berlin. 2021. e-ISBN: 978-3-96110-370-6. Available online: https://refubium.fu-berlin.de/bitstream/handle/fub188/29813/WP_%234_final_version.pdf?sequence=2 (accessed on 19 December 2021). [CrossRef]
- Baccarin, J.G.; de Oliveira, J.A. Inflação de alimentos no Brasil em período da pandemia da COVID 19, continuidade e mudanças. Segur. Aliment. Nutr. 2021, 28, 1–14. [Google Scholar] [CrossRef]
- Matias, S.L.; Rodriguez-Jordan, J.; McCoin, M. Integrated Nutrition and Culinary Education in Response to Food Insecurity in a Public University. Nutrients 2021, 13, 2304. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.C.L.; Adams, J. Association between home food preparation skills and behaviour, and consumption of ultra-processed foods: Cross-sectional analysis of the UK National Diet and nutrition survey (2008–2009). Int. J. Behav. Nutr. Phys. Act. 2017, 14, 68. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Moubarac, J.C.; Levy, R.B.; Canella, D.S.; Louzada, M.L.C.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riddle, E.S.; Niles, M.T.; Nickerson, A. Prevalence and factors associated with food insecurity across an entire campus population. PLoS ONE 2020, 15, e0237637. [Google Scholar] [CrossRef] [PubMed]
- de Boni, R.B. Web surveys in the time of COVID-19. Cad. Saude Publica 2020, 36, 7. [Google Scholar] [CrossRef]
- Morais, A.H.D.A.; Aquino, J.D.S.; da Silva-Maia, J.K.; Vale, S.H.D.L.; Maciel, B.L.L.; Passos, T.S. Nutritional status, diet and viral respiratory infections: Perspectives for SARS-CoV-2. Br. J. Nutr. 2021, 125, 851–862. [Google Scholar] [CrossRef] [PubMed]
Variables | Total | Acre | Mato Grosso | Paraná | Rio Grande do Norte | São Paulo | p-Value |
---|---|---|---|---|---|---|---|
Age, median (Q1–Q3) | 22.0 (20.0–26.0) | 22.0 (20.0–25.0) | 25.0 (21.8–36.3) | 22.0 (20.0–26.0) | 24.0 (21.0–29.3) | 22.0 (20.0–25.0) | <0.001 1 |
Sex, n (%) | |||||||
Male | 1596 (33.4) | 219 (32.2) | 51 (34.9) | 313 (32.0) | 307 (35.0) | 706 (33.7) | 0.634 2 |
Female | 3179 (66.6) | 462 (67.8) | 95 (65.1) | 665 (68.0) | 571 (65.0) | 1386 (66.3) | |
Total | 4775 (100.0) | 681 (100.0) | 146 (100.0) | 978 (100.0) | 878 (100.0) | 2092 (100.0) | |
Race, n (%) | |||||||
Asiatic | 165 (3.5) | 10 (1.5) | 2 (1.4) | 30 (3.1) | 4 (0.5) | 119 (5.7) | <0.001 2 |
White | 2914 (61.0) | 158 (23.2) | 82 (56.2) | 761 (77.8) | 444 (50.6) | 1469 (70.2) | |
Indigenous | 15 (0.3) | 7 (1.0) | 0 (0.0) | 0 (0.0) | 2 (0.2) | 6 (0.3) | |
Brown | 1326 (27.8) | 416 (61.1) | 52 (35.6) | 142 (14.5) | 346 (39.4) | 370 (17.7) | |
Black | 333 (7.0) | 77 (11.3) | 10 (6.8) | 41 (4.2) | 82 (9.3) | 123 (5.9) | |
NI/NWI | 22 (0.5) | 13 (1.9) | 0 (0.0) | 4 (0.4) | 0 (0.0) | 5 (0.2) | |
Total | 4775 (100.0) | 681 (100.0) | 146 (100.0) | 978 (100.0) | 878 (100.0) | 2092 (100.0) | |
Family income in minimum wages, n (%) 3 | |||||||
None | 130 (2.7) | 30 (4.4) | 5 (3.4) | 8 (0.8) | 47 (5.4) | 40 (1.9) | <0.001 2 |
0–1 | 704 (14.7) | 242 (35.5) | 24 (16.4) | 92 (9.4) | 198 (22.6) | 148 (7.1) | |
1–3 | 1471 (30.8) | 209 (30.7) | 33 (22.6) | 329 (33.6) | 326 (37.1) | 574 (27.4) | |
3–6 | 1034 (21.7) | 82 (12.0) | 22 (15.1) | 259 (26.5) | 177 (20.2) | 494 (23.6) | |
6–9 | 524 (11.0) | 41 (6.0) | 20 (13.7) | 114 (11.7) | 57 (6.5) | 292 (14.0) | |
9–12 | 330 (6.9) | 16 (2.3) | 20 (13.7) | 76 (7.8) | 28 (3.2) | 190 (9.1) | |
12–15 | 220 (4.6) | 11 (1.6) | 11 (7.5) | 48 (4.9) | 19 (2.2) | 131 (6.3) | |
>15 | 323 (6.8) | 11 (1.6) | 11 (7.5) | 52 (5.3) | 26 (3.0) | 223 (10.7) | |
NI/NWI | 39 (0.8) | 39 (5.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Total | 4775 (100.0) | 681 (100.0) | 146 (100.0) | 978 (100.0) | 878 (100.0) | 2092 (100.0) | |
Income change during the pandemic, n (%) | |||||||
No | 1975 (41.4) | 296 (43.5) | 79 (54.1) | 398 (40.7) | 329 (37.5) | 873 (41.7) | <0.001 2 |
Yes, for more | 464 (9.7) | 81 (11.9) | 10 (6.8) | 98 (10.0) | 103 (11.7) | 172 (8.2) | |
Yes, for less | 2291 (48.0) | 265 (38.9) | 51 (34.9) | 482 (49.3) | 446 (50.8) | 1047 (50.0) | |
NI/NWI | 45 (0.9) | 39 (5.7) | 6 (4.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Total | 4775 (100.0) | 681 (100.0) | 146 (100.0) | 978 (100.0) | 878 (100.0) | 2092 (100.0) | |
Weight change during the pandemic, n (%) | |||||||
No | 583 (12.6) | 78 (11.9) | 27 (19.4) | 129 (13.6) | 71 (8.4) | 278 (13.6) | <0.001 2 |
Yes, for less | 1273 (27.4) | 182 (27.7) | 34 (24.5) | 249 (26.3) | 229 (27.1) | 579 (28.2) | |
Yes, for more | 2578 (55.6) | 384 (58.4) | 74 (53.2) | 511 (54.0) | 524 (62.0) | 1085 (52.9) | |
NI/NWI | 204 (4.4) | 14 (2.1) | 4 (2.9) | 57 (6.0) | 21 (2.5) | 108 (5.3) | |
Total | 4638 (100.0) | 658 (100.0) | 139 (100.0) | 946 (100.) | 845 (100.0) | 2050 (100.0) | |
ESQUADA classification, n (%) | |||||||
Very poor | 64 (1.4) | 13 (1.9) | 1 (0.7) | 13 (1.3) | 10 (1.1) | 27 (1.3) | <0.001 2 |
Poor | 402 (8.5) | 50 (7.4) | 8 (5.5) | 80 (8.2) | 88 (10.1) | 176 (8.5) | |
Good | 2463 (52.0) | 391 (58.1) | 66 (45.5) | 535 (55.2) | 472 (54.3) | 999 (48.2) | |
Very good | 1755 (37.1) | 217 (32.2) | 69 (47.6) | 337 (34.7) | 295 (33.9) | 837 (40.4) | |
Excellent | 48 (1.0) | 2 (0.3) | 1 (0.7) | 5 (0.5) | 5 (0.6) | 35 (1.7) | |
Total | 4732 (100.0) | 673 (100.0) | 145 (100.0) | 970 (100.0) | 870 (100.0) | 2074 (100.0) |
Variables | Total | Food Security | Mild Food Insecurity | Moderate Food Insecurity | Severe Food Insecurity | Chi-Square Test, p-Value |
---|---|---|---|---|---|---|
Race, n (%) | ||||||
Asiatic | 165 (3.5) | 124 (4.2) | 32 (2.5) | 6 (1.6) | 3 (1.4) | <0.001 |
White | 2914 (61.0) | 2030 (69.2) | 644 (51.1) | 151 (41.3) | 89 (41.6) | |
Indigenous | 15 (0.3) | 6 (0.2) | 5 (0.4) | 3 (0.8) | 1 (0.5) | |
Brown | 1326 (27.8) | 625 (21.3) | 454 (36.0) | 154 (42.1) | 93 (43.5) | |
Black | 333 (7.0) | 135 (4.6) | 121 (9.6) | 49 (13.4) | 28 (13.1) | |
NI/NWI | 22 (0.5) | 14 (0.5) | 5 (0.4) | 3 (0.8) | 0 (0.0) | |
Total | 4775 (100.0) | 2934 (100.0) | 1261 (100.0) | 366 (100.0) | 214 (100.0) | |
Family income change during the pandemic, n (%) | ||||||
No | 1975 (41.4) | 1448 (49.4) | 388 (30.8) | 87 (23.8) | 52 (24.3) | <0.001 |
Yes, for more | 464 (9.7) | 268 (9.1) | 119 (9.4) | 49 (13.4) | 28 (13.1) | |
Yes, for less | 2291 (48.0) | 1198 (40.8) | 738 (58.5) | 223 (60.9) | 132 (61.7) | |
NI/NWI | 45 (0.9) | 20 (0.7) | 16 (1.3) | 7 (1.9) | 2 (0.9) | |
Total | 4775 (100.0) | 2934 (100.0) | 1261 (100.0) | 366 (100.0) | 214 (100.0) | |
Weight change during the pandemic, n (%) | ||||||
No | 583 (12.6) | 409 (14.3) | 129 (10.6) | 26 (7.4) | 19 (9.3) | <0.001 |
Yes, for less | 1273 (27.4) | 783 (27.3) | 315 (25.9) | 97 (27.8) | 78 (38.2) | |
Yes, for more | 2578 (55.6) | 1550 (54.0) | 720 (59.2) | 209 (59.9) | 99 (48.5) | |
NI/NWI | 204 (4.4) | 127 (4.4) | 52 (4.3) | 17 (4.9) | 8 (3.9) | |
Total | 4638 (100.0) | 2869 (100.0) | 1216 (100.0) | 349 (100.0) | 204 (100.0) | |
ESQUADA classification, n (%) | ||||||
Very poor | 64 (1.4) | 32 (1.1) | 22 (1.8) | 5 (1.4) | 5 (2.4) | <0.001 |
Poor | 402 (8.5) | 232 (8.0) | 112 (9.0) | 31 (8.5) | 27 (12.8) | |
Good | 2463 (52.0) | 1412 (48.5) | 717 (57.5) | 228 (62.6) | 106 (50.2) | |
Very good | 1755 (37.1) | 1195 (41.1) | 389 (31.2) | 98 (26.9) | 73 (34.6) | |
Excellent | 48 (1.0) | 39 (1.3) | 7 (0.6) | 2 (0.5) | 0 (0.0) | |
Total | 4732 (100.0) | 2910 (100.0) | 1247 (100.0) | 364 (100.0) | 211 (100.0) |
Food Insecurity | ||||
---|---|---|---|---|
Indepenent Variables | OR (95% CI) | p-Value | AOR (95% CI) | p-Value |
Race | ||||
White | − | − | ||
Asiatic | 0.76 (0.53–1.09) | 0.136 | 0.80 (0.55–1.17) | 0.252 |
Indigenous | 3.45 (1.22–9.71) | 0.019 | 2.57 (0.81–8.15) | 0.107 |
Brown | 2.58 (2.25–2.94) | <0.001 | 1.93 (1.67–2.24) | <0.001 |
Black | 3.37 (2.67–4.25) | <0.001 | 2.89 (2.27–3.68) | <0.001 |
Income change during the pandemic | ||||
No | − | − | ||
Yes, for more | 2.01 (1.63–2.48) | <0.001 | 1.83 (1.47–2.28) | <0.001 |
Yes, for less | 2.51 (2.20–2.85) | <0.001 | 2.78 (2.43–3.18) | <0.001 |
Weight change during the pandemic | ||||
No | − | − | ||
Yes, for less | 1.47 (1.19–1.82) | <0.001 | 1.44 (1.16–1.79) | 0.001 |
Yes, for more | 1.56 (1.28–1.89) | <0.001 | 1.36 (1.11–1.67) | 0.003 |
ESQUADA classification | ||||
Very poor | − | − | ||
Poor | 0.73 (0.43–1.24) | 0.249 | 0.73 (0.41–1.29) | 0.276 |
Good | 0.74 (0.45–1.22) | 0.244 | 0.72 (0.42–1.23) | 0.230 |
Very good | 0.47 (0.28–0.77) | 0.003 | 0.46 (0.27–0.79) | 0.005 |
Excellent | 0.23 (0.10–0.55) | 0.001 | 0.26 (0.11–0.65) | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, B.L.L.; Lyra, C.d.O.; Gomes, J.R.C.; Rolim, P.M.; Gorgulho, B.M.; Nogueira, P.S.; Rodrigues, P.R.M.; da Silva, T.F.; Martins, F.A.; Dalamaria, T.; et al. Food Insecurity and Associated Factors in Brazilian Undergraduates during the COVID-19 Pandemic. Nutrients 2022, 14, 358. https://doi.org/10.3390/nu14020358
Maciel BLL, Lyra CdO, Gomes JRC, Rolim PM, Gorgulho BM, Nogueira PS, Rodrigues PRM, da Silva TF, Martins FA, Dalamaria T, et al. Food Insecurity and Associated Factors in Brazilian Undergraduates during the COVID-19 Pandemic. Nutrients. 2022; 14(2):358. https://doi.org/10.3390/nu14020358
Chicago/Turabian StyleMaciel, Bruna Leal Lima, Clélia de Oliveira Lyra, Jéssica Raissa Carlos Gomes, Priscilla Moura Rolim, Bartira Mendes Gorgulho, Patrícia Simone Nogueira, Paulo Rogério Melo Rodrigues, Tiago Feitosa da Silva, Fernanda Andrade Martins, Tatiane Dalamaria, and et al. 2022. "Food Insecurity and Associated Factors in Brazilian Undergraduates during the COVID-19 Pandemic" Nutrients 14, no. 2: 358. https://doi.org/10.3390/nu14020358
APA StyleMaciel, B. L. L., Lyra, C. d. O., Gomes, J. R. C., Rolim, P. M., Gorgulho, B. M., Nogueira, P. S., Rodrigues, P. R. M., da Silva, T. F., Martins, F. A., Dalamaria, T., Santos, T. S. S., Höfelmann, D. A., Crispim, S. P., Slater, B., Ramalho, A. A., & Marchioni, D. M. (2022). Food Insecurity and Associated Factors in Brazilian Undergraduates during the COVID-19 Pandemic. Nutrients, 14(2), 358. https://doi.org/10.3390/nu14020358