Adherence to a Mediterranean Diet Is Associated with Lower Depressive Symptoms among U.S. Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Independent Variable: Mediterranean Diet Adherence Score
2.3. Dependent Variable: Depression
2.4. Covariates and Effect Modifiers
2.5. Statistical Analysis
2.6. Sensitivity Analyses
3. Results
3.1. Descriptive
3.2. Regression-Based Estimates
3.3. Sensitivity Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Institute of Mental Health Information Resource Center. Key Substance Use and Mental Health Indicators in the United States: Results from the 2019 National Survey on Drug Use and Health: Major Depression; U.S. Department of Health and Human Services: Rockville, MD, USA, 2020. Available online: https://www.nimh.nih.gov/health/statistics/major-depression (accessed on 1 October 2021).
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Greenberg, P.E.; Fournier, A.A.; Sisitsky, T.; Pike, C.T.; Kessler, R.C. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J. Clin. Psychiatry 2015, 76, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novick, D.; Montgomery, W.; Vorstenbosch, E.; Moneta, M.V.; Dueñas, H.; Haro, J.M. Recovery in patients with major depressive disorder (MDD): Results of a 6-month, multinational, observational study. Patient Prefer. Adherence 2017, 11, 1859–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuijpers, P.; Beekman, A.T.F.; Reynolds, C.F. Preventing depression: A global priority. JAMA 2012, 307, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Vasilescu, A.-N.; Schweinfurth, N.; Borgwardt, S.; Gass, P.; Lang, U.E.; Inta, D.; Eckart, S. Modulation of the activity of N-methyl-d-aspartate receptors as a novel treatment option for depression: Current clinical evidence and therapeutic potential of rapastinel (GLYX-13). Neuropsychiatr. Dis. Treat. 2017, 13, 973–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- What Are the Real Risks of Antidepressants? Harvard Health Publishing: Cambridge, MA, USA, 2014.
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef] [Green Version]
- Jay, T.M. Cellular plasticity and the pathophysiology of depression. In Neuroplasticity; Costa, J.A., Macher, J.P., Olié, J.P., Eds.; Springer Healthcare: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Leonard, B.; Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev. 2012, 36, 764–785. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Wisner, K.L. Nutrition and depression: Implications for improving mental health among childbearing-aged women. Biol. Psychiatry 2005, 58, 679–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, S.W.; Kim, Y.-K. The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J. Inflamm. Res. 2018, 11, 179–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skarupski, K.A.; Tangney, C.C.; Li, H.; Evans, D.A.; Morris, M.C. Mediterranean Diet and Depressive Symptoms Among Older Adults Over Time. J. Nutr. Health Aging 2013, 17, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Bottiglieri, T. Folate, vitamin B12, and neuropsychiatric disorders. Nutr. Rev. 1996, 54, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.; Chocano-Bedoya, P.; Schulze, M.B.; Mirzaei, F.; O’Reilly, É.J.; Okereke, O.I.; Hu, F.B.; Willett, W.C.; Ascherio, A. Inflammatory dietary pattern and risk of depression among women. Brain Behav. Immun. 2014, 36, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, U.; Mishra, S.; Xu, J.; Levin, S.; Gonzales, J.; Barnard, N.D. A multicenter randomized controlled trial of a nutrition intervention program in a multiethnic adult population in the corporate setting reduces depression and anxiety and improves quality of life: The GEICO study. Am. J. Health Promot. 2015, 29, 245–254. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Henríquez-Sánchez, P.; Ruiz-Canela, M.; Lahortiga, F.; Molero, P.; Toledo, E.; Martínez-González, M.A. A longitudinal analysis of diet quality scores and the risk of incident depression in the SUN Project. BMC Med. 2015, 13, 197. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Villegas, A.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Covas, M.I.; Arós, F.; Romaguera, D.; Gómez-Gracia, E.; Lapetra, J.; et al. Mediterranean dietary pattern and depression: The PREDIMED randomized trial. BMC Med. 2013, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.M.; Holscher, H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 2020, 23, 237–250. [Google Scholar] [CrossRef]
- Galland, L. Diet and inflammation. Nutr. Clin. Pract. 2010, 25, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sanchez-Villegas, A.; Kivimaki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Health Statistics. National Health and Nutrition Examination Survey Data Sets and Related Documentation, Total Nutrient Intake. 2007–2012. Available online: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed on 2 October 2019).
- Turner-McGrievy, G.M.; Davidson, C.R.; Wilcox, S. Does the type of weight loss diet affect who participates in a behavioral weight loss intervention? A comparison of participants for a plant-based diet versus a standard diet trial. Appetite 2014, 73, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Health and Nutrition Examination Survey 2007–2012 Data Documentation, Codebook, and Frequencies, Dietary Interview—Total Nutrient Intake, Second Day. Available online: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed on 1 October 2021).
- USDA Agricultural Research Service. Food and Nutrient Data Base for Dietary Studies. Available online: http://www.ars.usda.gov/Services/docs.htm?docid=12085 (accessed on 15 September 2021).
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Rovner, A.J.; Mumford, S.L.; Yeung, E.; Browne, R.W.; Trevisan, M.; Perkins, N.J.; Wactawski-Wende, J.; Schisterman, E.F. Adherence to a Mediterranean diet and plasma concentrations of lipid peroxidation in premenopausal women. Am. J. Clin. Nutr. 2010, 92, 1461–1467. [Google Scholar] [CrossRef] [Green Version]
- Mitrou, P.N.; Kipnis, V.; Thiébaut, A.M.; Reedy, J.; Subar, A.F.; Wirfält, E.; Flood, A.; Mouw, T.; Hollenbeck, A.R.; Leitzmann, M.F.; et al. Mediterranean dietary pattern and prediction of all-cause mortality in a us population: Results from the nih-aarp diet and health study. Arch. Intern. Med. 2007, 167, 2461–2468. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Gelaye, B.; Rondon, M.; Sánchez, S.E.; García, P.J.; Sánchez, E.; Barrios, Y.V.; Simon, G.E.; Henderson, D.C.; Cripe, S.M.; et al. Comparative performance of Patient Health Questionnaire-9 and Edinburgh Postnatal Depression Scale for screening antepartum depression. J. Affect. Disord. 2014, 162, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parletta, N.; Milte, C.M.; Meyer, B.J. Nutritional modulation of cognitive function and mental health. J. Nutr. Biochem. 2013, 24, 725–743. [Google Scholar] [CrossRef] [Green Version]
- Hibbeln, J.R. Seafood consumption, the DHA content of mothers’ milk and prevalence rates of postpartum depression: A cross-national, ecological analysis. J. Affect. Disord. 2002, 69, 15–29. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Delgado-Rodríguez, M.; Alonso, A.; Schlatter, J.; Lahortiga, F.; Majem, L.S.; Martínez-González, M.A. Association of the Mediterranean Dietary pattern with the incidence of depression. Arch. Gen. Psychiatry 2009, 6, 1090–1098. [Google Scholar] [CrossRef]
- Cano-Ibáñez, N.; Gea, A.; Ruiz-Canela, M.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Navarrete-Muñoz, E.M.; Romaguera, D.; Martínez, J.A.; Barón-López, F.J.; et al. Diet quality and nutrient density in subjects with metabolic syndrome: Influence of socioeconomic status and lifestyle factors. A cross-sectional assessment in the PREDIMED-Plus study. Clin. Nutr. 2020, 39, 1161–1173. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.K.; Shin, D.; Song, W.O. Are dietary patterns associated with depression in U.S. adults? J. Med. Food 2016, 19, 1074–1084. [Google Scholar] [CrossRef]
- Rienks, J.; Dobson, A.J.; Mishra, G.D. Mediterranean dietary pattern and prevalence and incidence of depressive symptoms in mid-aged women: Results from a large community-based prospective study. Eur. J. Clin. Nutr. 2013, 67, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.A.; Montagnani, M.; Koh, K.K.; Quon, M.J. Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation 2006, 113, 1888–1904. [Google Scholar] [CrossRef] [PubMed]
- Beltowski, J. Leptin and atherosclerosis. Atherosclerosis 2006, 189, 47–61. [Google Scholar] [CrossRef]
- Hood, K.K.; Lawrence, J.M.; Anderson, A.; Bell, R.; Dabelea, D.; Daniels, S.; Rodriguez, B.; Dolan, L.M. SEARCH for diabetes in youth study group: Metabolic and inflammatory links to depression in youth with diabetes. Diabetes Care 2012, 35, 2443–2446. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.; Dixit, V. Mechanisms of disease: Inflammasome activation and the development of type 2 diabetes. Front. Immunol. 2013, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Park, M.H.; Kim, D.H.; Lee, E.K.; Kim, N.D.; Im, D.S.; Lee, J.; Yu, B.P.; Chung, H.Y. Age-related inflammation and insulin resistance: A review of their intricate interdependency. Arch. Pharm. Res. 2014, 37, 1507–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatwan, I.M.; Alhinai, E.A.; Alawadhi, B.; Surendran, S.; Aljefree, N.M.; Almoraie, N.M. High Adherence to the Mediterranean Diet Is Associated with a Reduced Risk of Obesity among Adults in Gulf Countries. Nutrients 2021, 13, 995. [Google Scholar] [CrossRef] [PubMed]
- Babio, N.; Bulló, M.; Basora, J.; Martínez-González, M.A.; Fernández-Ballart, J.; Márquez-Sandoval, F.; Molina, C.; Salas-Salvadó, J. Adherence to the Mediterranean diet and risk of metabolic syndrome and its components. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 563–570. [Google Scholar] [CrossRef]
- Whalen, K.A.; McCullough, M.L.; Flanders, W.D.; Hartman, T.J.; Judd, S.; Bostick, R.M. Paleolithic and Mediterranean Diet Pattern Scores Are Inversely Associated with Biomarkers of Inflammation and Oxidative Balance in Adults. J. Nutr. 2016, 146, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R. Anti-inflammatory effects of the Mediterranean diet: The experience of the PREDIMED study. Proc. Nutr. Soc. 2010, 69, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Luchsinger, J.A.; Stern, Y.; Scarmeas, N. Mediterranean Diet, Inflammatory and Metabolic Biomarkers, and Risk of Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2010, 22, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Zhong, S.; Liao, X.; Chen, J.; He, T.; Lai, S.; Jia, Y. A Meta-Analysis of Oxidative Stress Markers in Depression. PLoS ONE 2015, 10, e0138904. [Google Scholar]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nature 2008, 9, 46–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbody, S.; Lewis, S.; Lightfoot, T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: A HuGE review. Am. J. Epidemiol. 2017, 65, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rudkouskaya, A.; Sim, V.; Shah, A.A.; Feustel, P.J.; Jourd’heuil, D.; Mongin, A.A. Long-lasting inhibition of presynaptic metabolism and neurotransmitter release by protein S-nitrosylation. Free Radic. Biol. Med. 2010, 49, 757–769. [Google Scholar] [CrossRef] [Green Version]
- Masi, G.; Brovedani, P. The Hippocampus, Neurotrophic Factors and Depression. CNS Drugs 2011, 25, 913–931. [Google Scholar] [CrossRef]
- Wilkinson, P.O.; Goodyer, I.M. Childhood adversity and allostatic overload of the hypothalamic–pituitary–adrenal axis: A vulnerability model for depressive disorders. Dev. Psychopathol. 2011, 23, 1017–1037. [Google Scholar] [CrossRef] [Green Version]
- Holsboer, F.; Ising, M. Stress hormone regulation: Biological role and translation into therapy. Annu. Rev. Psychol. 2010, 61, 81–109. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Aschbacher, K.; O’Donovan, A.; Wolkowitz, O.M.; Dhabhar, F.S.; Su, Y.; Epel, E. Good stress bad stress and oxidative stress: Insights from anticipatory cortisol reactivity. Psychoneuroendocrinology 2013, 38, 1698–1708. [Google Scholar] [CrossRef] [Green Version]
- Cleophas, M.C.P.; Ratter, J.M.; Bekkering, S.; Quintin, J.; Schraa, K.; Stroes, E.S.; Netea, M.G.; Joosten, L.A.B. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci. Rep. 2019, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Bagga, D.; Wang, L.; Farias-Eisner, R.; Glaspy, J.A.; Reddy, S.T. Differential effects of prostaglandin derived from ω-6 and ω-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl. Acad. Sci. USA 2003, 100, 1751–1756. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Harris, W. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J. Lipid Res. 2003, 44, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keefe, J.H.; Gheewala, N.M.; O’Keefe, J.O. Dietary Strategies for Improving Post-Prandial Glucose, Lipids, Inflammation, and Cardiovascular Health. J. Am. Coll. Cardiol. 2008, 51, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef]
- Subar, A.F. The value of self-report dietary data: Challenges related to data collection, analysis, and Interpretation. In Proceedings of the International Life Sciences Institute Annual Meeting, St. Petersburg, FL, USA, 22–27 January 2016. [Google Scholar]
N (%) or Mean (Standard Error) 1 | |||||
---|---|---|---|---|---|
Overall (n = 11,769) | Q1 aMED, 0–2 pts (n = 3621) | Q2 aMED, 3 pts (n = 2689) | Q3 aMED, 4–5 pts (n = 4155) | Q4 aMED, 6–9 pts (n = 1304) | |
Sociodemographic | |||||
Females | 5989 (51.6%) | 1919 (53.3%) | 1342 (51.0%) | 2126 (51.5%) | 602 (48.6%) |
Mean age (years) | 46.2 (0.4) | 43.1 (0.5) | 45.8 (0.4) | 47.6 (0.5) | 50.0 (0.6) |
Below PIR 2 | 2579 (14.6%) | 1024 (20.0%) | 651 (16.1%) | 758(11.7%) | 14 (6.9%) |
Relationship status | |||||
Married | 6123 (56.3%) | 1679 (50.6%) | 1308 (52.4%) | 2319 (59.8%) | 817 (66.9%) |
Divorced/Separated/Widowed | 2503 (17.3%) | 815 (18.9%) | 613 (19.3%) | 868 (16.6%) | 207 (11.9%) |
Never married | 2227 (18.8%) | 794 (21.7%) | 541 (20.4%) | 687 (16.6%) | 205 (14.9%) |
Living with partner | 916 (7.6%) | 333 (8.8%) | 227 (7.9%) | 281 (6.9%) | 75 (6.3%) |
Educational attainment | |||||
<Highschool | 2963 (16.5%) | 1109 (21.7%) | 749 (18.9%) | 934 (13.7%) | 171 (7.6%) |
High school graduate or GED | 2689 (22.4%) | 954 (27.5%) | 681 (25.1%) | 870 (20.0%) | 184 (12.4%) |
Some college or associates degree | 3420 (31.1%) | 1062 (32.7%) | 771 (31.4%) | 1244 (31.6%) | 343 (25.3%) |
≥College graduate | 2697 (30.0%) | 496 (18.2%) | 488 (24.7%) | 1107 (34.8%) | 606 (54.7%) |
Race/ethnicity | |||||
Non-Hispanic White | 5368 (70.4%) | 175 (70.7%) | 1152 (67.7%) | 1802 (69.6%) | 656 (77.1%) |
Hispanic | 2976 (12.8%) | 851 (12.7%) | 741 (14.6%) | 1118 (13.2%) | 266 (8.4%) |
Non-Hispanic Black | 2529 (10.7%) | 848 (12.7%) | 612 (11.6%) | 872 (10.1%) | 197 (6.0%) |
Other | 896 (6.1%) | 164 (3.9%) | 184 (6.1%) | 363 (7.1%) | 185 (8.5%) |
Lifestyle Behaviors | |||||
Currently smoking | 3114 (26.1%) | 1349 (37.4%) | 769 (28.3%) | 824 (19. 4%) | 172 (13.9%) |
Recent alcohol use | 2921 (28.2%) | 670 (20.3%) | 591 (24.0%) | 1136 (31.1%) | 524 (47.3%) |
Mean minutes moderate physical activity (weekly) | 96.9 (2.6) | 86.2 (4.0) | 89.9 (4.6) | 101.7 (3.8) | 121.8 (6.5) |
Health | |||||
Mean PHQ-9 score (range 0–27) | 3.0 (0.1) | 3.7 (0.1) | 3.3 (0.1) | 2.6 (0.07) | 2.3 (0.1) |
Moderate/severe depression (10–27) | 1125 (7.9%) | 463 (11.2%) | 299 (9.5%) | 303 (5.5%) | 60 (4.0%) |
Mean BMI (kg/m2) | 28.9 (0.11) | 29.8 (0.14) | 29.3 (0.16) | 28.5 (0.2) | 27.1 (0.21) |
Mean CRP (mg/dL) 3 | 0.3 (0.0) | 0.3 (0.0) | 0.3 (0.0) | 0.3 (0.0) | 0.2 (0.0) |
Hypertension | 4092 (30.2%) | 1219 (29.3%) | 950 (31.0%) | 1495 (31.6%) | 428 (27.3%) |
Hypercholesterolemia | 3823 (38.8%) | 1051(36.6%) | 866 (40.7%) | 1416 (39.5%) | 490 (38.1%) |
Cardiovascular conditions 4 | 1101 (7.2%) | 355 (6.8%) | 243 (7.4%) | 410 (8.0%) | 93 (5.9%) |
Type 2 diabetes | 1421 (8.8%) | 418 (8.3%) | 338 (10.2%) | 543 (9.2%) | 122 (6.6%) |
Liver condition | 424 (3.1%) | 126 (2.6%) | 89 (2.8%) | 150 (3.2%) | 59 (4.3%) |
Cancer | 1016 (8.8%) | 269 (7.2%) | 206 (8.9%) | 389 (9.6%) | 152 (10.4%) |
% or Mean (Standard Error) 1 | |||||
---|---|---|---|---|---|
Overall (n = 11,769) | Q1 aMED (n = 3621) | Q2 aMED (n = 2689) | Q3 aMED (n = 4155) | Q4 aMED (n = 1304) | |
Macronutrients | |||||
Energy (kcal) | 2087.9 (10.7) | 2029.6 (17.1) | 2052.7 (20.1) | 2121.5 (15.0) | 2198.2 (29.7) |
% kcals from carbohydrate | 48.9% (0.2) | 47.9 % (0.3) | 48.6% (0.3) | 49.9% (0.3) | 49.4% (0.2) |
% kcal from protein | 15.7% (0.1) | 15.5% (0.1) | 15.7% (0.1) | 15.7% (0.1) | 15.8% (0.2) |
% kcals from total fat | 33.4% (0.1) | 34.0% (0.3) | 33.6% (0.3) | 33.0% (0.2) | 32.9% (0.3) |
% kcals from saturated fat | 10.8% (0.1) | 12.3% (0.1) | 11.0% (0.1) | 10.2% (0.1) | 8.8% (0.1) |
MUFA per 1000 kcal (gm) | 13.4 (0.1) | 13.4 (0.1) | 13.4 (0.1) | 13.3 (0.1) | 13.9 (0.2) |
PUFA per 1000 kcal (gm) | 8.4 (0.1) | 7.3 (0.1) | 8.3 (0.1) | 8.9 (0.1) | 9.9 (0.1) |
Micronutrients per 1000 kcal | |||||
Fiber (gm) | 8.2 (0.1) | 5.6 (0.1) | 7.7 (0.1) | 9.6 (0.1) | 11.9 (0.2) |
Cholesterol (mg) | 134.0 (1.3) | 145.2 (2.3) | 139.2 (1.8) | 129.35 (1.7) | 111.3 (3.2) |
Sodium (mg) | 1684.9 (5.8) | 1688.0 (11.7) | 1695.0(13.2) | 1695.6 (9.5) | 1628.9 (15.9) |
Folate (mcg) | 200.2 (1.6) | 167.7 (1.8) | 193.8 (2.3) | 218.0(2.1) | 240.6 (4.2) |
Iron (mg) | 7.4 (0.1) | 6.7 (0.1) | 7.3(0.1) | 7.8 (0.1) | 8.0 (0.1) |
Calcium (mg) | 468.2 (3.8) | 465.0 (6.1) | 454.6 (6.5) | 477.0 (5.0) | 475.6 (8.4) |
Vitamin C (mg) | 41.7 (1.0) | 27.2 (1.3) | 40.5 (1.4) | 48.8 (1.3) | 58.9 (1.7) |
Vitamin K (mcg) | 56.8 (2.2) | 33.1 (1.4) | 50.1 (2.05) | 71.2 (5.2) | 86.0(4.4) |
Vitamin E (mg) | 3.9 (0.1) | 2.9 (0.1) | 3.6 (0.1) | 4.3 (0.1) | 5.5 (0.1) |
Vitamin B12 (mcg) | 2.5 (0.1) | 2.5 (0.1) | 2.4 (0.1) | 2.7 (0.1) | 2.5 (0.1) |
Thiamin (Vit B1) (mg) | 0.8 (0.0) | 0.7 (0.0) | 0.8 (0.0) | 0.8 (0.0) | 0.9 (0.0) |
Riboflavin (Vit B2) (mg) | 1.1 (0.0) | 1.0 (0.0) | 1.0 (0.0) | 1.1 (0.05) | 1.1 (0.0) |
Magnesium (mg) | 147.4 (1.1) | 119.9(0.7) | 139.9 (1.3) | 160.1(1.37) | 192.0 (2.1) |
Phosphorus (mg) | 657.5 (2.9) | 635.6 (3.9) | 646.2 (4.8) | 670.9 (4.8) | 693.7(6.3) |
Selenium (mcg) | 53.4 (0.3) | 52.5 (0.4) | 52.3 (0.4) | 53.9 (0.5) | 55.9 (1.0) |
Zinc (mg) | 5.6 (0.0) | 5.6 (0.1) | 5.6 (0.1) | 5.7 (0.1) | 5.5 (0.1) |
Odds Ratio (95% Confidence Interval) | ||||
---|---|---|---|---|
N | Quartile 2 | Quartile 3 | Quartile 4 | |
Primary Model 1 | 11,769 | 0.93 (0.77, 1.12) | 0.60 (0.50, 0.74) * | 0.55 (0.36, 0.84) * |
Sensitivities | ||||
+Controlling for Health Conditions 1,2 | 9039 | 0.86 (0.67, 1.10) | 0.61 (0.48, 0.78) * | 0.48 (0.31, 0.73) * |
+Controlling for Lifestyle Behaviors 1,3 | 11,769 | 1.01 (0.84, 1.20) | 0.69 (0.57, 0.84) * | 0.70 (0.45, 1.07) |
+Controlling for Day of Collection 1,4 | 11,769 | 0.93 (0.77, 1.12) | 0.60 (0.50, 0.74) * | 0.55 (0.37, 0.84) * |
+Controlling for C-reactive protein 1,5 | 5377 | 1.02 (0.72, 1.44) | 0.71 (0.54, 0.93) * | 0.47 (0.25, 0.90) * |
N | Mean Total aMED Score (SE) | Odds Ratio (95% Confidence Interval) | |
---|---|---|---|
Age | |||
<30 years old | 2032 | 3.13 (0.05) | 1.02 (0.60, 1.75) |
30–55 years old | 5253 | 3.39 (0.05) | 0.62 (0.49, 0.80) * |
>55 years old | 4484 | 3.83 (0.05) | 0.46 (0.33, 0.64) * |
BMI category | |||
Normal weight (18.5–24.99 kg/m2) | 3127 | 3.72 (0.06) | 0.57 (0.38, 0.86) * |
Overweight (25.0–29.99 kg/m2) | 3872 | 3.57 (0.06) | 0.66 (0.43, 1.00) * |
Obese (≥30.0 kg/m2) | 4517 | 3.22 (0.03) | 0.71 (0.55, 0.90) * |
Odds Ratio (95% Confidence Interval) 1 | |||
---|---|---|---|
N = 9897 | |||
Quartile 2 | Quartile 3 | Quartile 4 | |
Mean Value 2 | 0.61 (0.47, 0.78) * | 0.65 (0.47, 0.90) * | 0.49 (0.35, 0.69) * |
Population Ratio Method 3 | 0.72 (0.56, 0.93) * | 0.62 (0.45, 0.87) * | 0.45 (0.32, 0.63) * |
Bivarite Method 4 | 1.07 (0.85, 1.34) | 0.95 (0.74, 1.23) | 1.03 (0.84, 1.27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oddo, V.M.; Welke, L.; McLeod, A.; Pezley, L.; Xia, Y.; Maki, P.; Koenig, M.D.; Kominiarek, M.A.; Langenecker, S.; Tussing-Humphreys, L. Adherence to a Mediterranean Diet Is Associated with Lower Depressive Symptoms among U.S. Adults. Nutrients 2022, 14, 278. https://doi.org/10.3390/nu14020278
Oddo VM, Welke L, McLeod A, Pezley L, Xia Y, Maki P, Koenig MD, Kominiarek MA, Langenecker S, Tussing-Humphreys L. Adherence to a Mediterranean Diet Is Associated with Lower Depressive Symptoms among U.S. Adults. Nutrients. 2022; 14(2):278. https://doi.org/10.3390/nu14020278
Chicago/Turabian StyleOddo, Vanessa M., Lauren Welke, Andrew McLeod, Lacey Pezley, Yinglin Xia, Pauline Maki, Mary Dawn Koenig, Michelle A. Kominiarek, Scott Langenecker, and Lisa Tussing-Humphreys. 2022. "Adherence to a Mediterranean Diet Is Associated with Lower Depressive Symptoms among U.S. Adults" Nutrients 14, no. 2: 278. https://doi.org/10.3390/nu14020278
APA StyleOddo, V. M., Welke, L., McLeod, A., Pezley, L., Xia, Y., Maki, P., Koenig, M. D., Kominiarek, M. A., Langenecker, S., & Tussing-Humphreys, L. (2022). Adherence to a Mediterranean Diet Is Associated with Lower Depressive Symptoms among U.S. Adults. Nutrients, 14(2), 278. https://doi.org/10.3390/nu14020278