Mediterranean Diet and Fatty Liver Risk in a Population of Overweight Older Italians: A Propensity Score-Matched Case-Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Socio-Demographic, Lifestyle, Clinical, and Medical Characteristics
2.3. Dietary Assessments
2.4. Assessment of the Fatty Liver Status
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sattar, N.; Forrest, E.; Preiss, D. Non-Alcoholic Fatty Liver Disease. BMJ 2014, 349, g4596. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.M.; Price, J.F.; Glancy, S.; Perry, E.; Nee, L.D.; Hayes, P.C.; Frier, B.M.; Van Look, L.A.F.; Johnston, G.I.; Reynolds, R.M.; et al. Prevalence of and Risk Factors for Hepatic Steatosis and Nonalcoholic Fatty Liver Disease in People with Type 2 Diabetes: The Edinburgh Type 2 Diabetes Study. Diabetes Care 2011, 34, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P. Nonalcoholic Fatty Liver Disease. N. Engl. J. Med. 2002, 346, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Bellentani, S.; Scaglioni, F.; Marino, M.; Bedogni, G. Epidemiology of Non-Alcoholic Fatty Liver Disease. Dig. Dis. 2010, 28, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.; Lang, S.; Steffen, H.-M. Nonalcoholic Fatty Liver Disease—Current Status and Future Directions. J. Dig. Dis. 2015, 16, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Keach, J.C.; Batts, K.P.; Lindor, K.D. Independent Predictors of Liver Fibrosis in Patients with Nonalcoholic Steatohepatitis. Hepatology 1999, 30, 1356–1362. [Google Scholar] [CrossRef]
- Marchesini, G.; Petta, S.; Dalle Grave, R. Diet, Weight Loss, and Liver Health in Nonalcoholic Fatty Liver Disease: Pathophysiology, Evidence, and Practice. Hepatology 2016, 63, 2032–2043. [Google Scholar] [CrossRef]
- Trovato, F.M.; Catalano, D.; Martines, G.F.; Pace, P.; Trovato, G.M. Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: The Need of Extended and Comprehensive Interventions. Clin. Nutr. 2015, 34, 86–88. [Google Scholar] [CrossRef]
- Sofi, F.; Casini, A. Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: New Therapeutic Option around the Corner? World J. Gastroenterol. 2014, 20, 7339–7346. [Google Scholar] [CrossRef]
- D’Alessandro, A.; De Pergola, G. Mediterranean Diet Pyramid: A Proposal for Italian People. Nutrients 2014, 6, 4302–4316. [Google Scholar] [CrossRef]
- Brown, T.M. Nonalcoholic Fatty Liver Disease and Cardiovascular Disease Risk. Clin. Gastroenterol. Hepatol. 2012, 10, 568–569. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.; Rossi, A.P.; Fantin, F.; Zamboni, G.; Chirumbolo, S.; Zoico, E.; Mazzali, G. Adipose Tissue, Diet and Aging. Mech. Ageing Dev. 2014, 136–137, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Cree, M.G.; Newcomer, B.R.; Katsanos, C.S.; Sheffield-Moore, M.; Chinkes, D.; Aarsland, A.; Urban, R.; Wolfe, R.R. Intramuscular and Liver Triglycerides Are Increased in the Elderly. J. Clin. Endocrinol. Metab. 2004, 89, 3864–3871. [Google Scholar] [CrossRef]
- Milić, S.; Lulić, D.; Štimac, D. Non-Alcoholic Fatty Liver Disease and Obesity: Biochemical, Metabolic and Clinical Presentations. World J. Gastroenterol. 2014, 20, 9330–9337. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, H.; Craig, D.; Barker, R.; Spiers, G.; Stow, D.; Anstee, Q.M.; Hanratty, B. Metabolic Risk Factors and Incident Advanced Liver Disease in Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review and Meta-Analysis of Population-Based Observational Studies. PLoS Med. 2020, 17, e1003100. [Google Scholar] [CrossRef]
- JafariNasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging Human Body: Changes in Bone, Muscle and Body Fat with Consequent Changes in Nutrient Intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar] [CrossRef]
- Fantin, F.; Di Francesco, V.; Fontana, G.; Zivelonghi, A.; Bissoli, L.; Zoico, E.; Rossi, A.; Micciolo, R.; Bosello, O.; Zamboni, M. Longitudinal Body Composition Changes in Old Men and Women: Interrelationships with Worsening Disability. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 1375–1381. [Google Scholar] [CrossRef]
- Newby, P.K.; Muller, D.; Hallfrisch, J.; Qiao, N.; Andres, R.; Tucker, K.L. Dietary Patterns and Changes in Body Mass Index and Waist Circumference in Adults. Am. J. Clin. Nutr. 2003, 77, 1417–1425. [Google Scholar] [CrossRef]
- Mathieu, P.; Pibarot, P.; Larose, E.; Poirier, P.; Marette, A.; Després, J.-P. Visceral Obesity and the Heart. Int. J. Biochem. Cell Biol. 2008, 40, 821–836. [Google Scholar] [CrossRef]
- Anderson, A.L.; Harris, T.B.; Tylavsky, F.A.; Perry, S.E.; Houston, D.K.; Hue, T.F.; Strotmeyer, E.S.; Sahyoun, N.R. Health ABC Study Dietary Patterns and Survival of Older Adults. J. Am. Diet. Assoc. 2011, 111, 84–91. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic Syndrome—A New World-Wide Definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Evaluation AWG on P, APA Work Group on Psychiatric Evaluation. The American Psychiatric Association Practice Guidelines for the Psychiatric Evaluation of Adults: Guideline, V. Assessment of Cultural Factors. Focus 2020, 71–74. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State: A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Costs of Unaddressed Hearing Loss and Cost-Effectiveness of Interventions; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241512046. [Google Scholar]
- Pascolini, D.; Mariotti, S.P. Global Estimates of Visual Impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef]
- Mirza, S.; Clay, R.D.; Koslow, M.A.; Scanlon, P.D. COPD Guidelines: A Review of the 2018 GOLD Report. Mayo Clin. Proc. 2018, 93, 1488–1502. [Google Scholar] [CrossRef]
- Boulet, L.-P.; Reddel, H.K.; Bateman, E.; Pedersen, S.; FitzGerald, J.M.; O’Byrne, P.M. The Global Initiative for Asthma (GINA): 25 Years Later. Eur. Respir. J. 2019, 54. [Google Scholar] [CrossRef]
- Multimorbidity. Available online: https://apps.who.int/iris/handle/10665/252275 (accessed on 9 February 2021).
- Castellana, F.; Lampignano, L.; Bortone, I.; Zupo, R.; Lozupone, M.; Griseta, C.; Daniele, A.; De Pergola, G.; Giannelli, G.; Sardone, R.; et al. Physical Frailty, Multimorbidity, and All-Cause Mortality in an Older Population From Southern Italy: Results from the Salus in Apulia Study. J. Am. Med. Dir. Assoc. 2021, 22, 598–605. [Google Scholar] [CrossRef]
- Leoci, C.; Centonze, S.; Guerra, V.; Cisternino, A.M.; Misciagna, G. Reliability and Validity of a Semiquantitative Food Frequency Questionnaire. G. Ital. Nutr. Clin. Prev. 1983, 2, 58–59. [Google Scholar]
- Castellana, F.; Zupo, R.; Bortone, I.; Giannelli, G.; Donghia, R.; Lampignano, L.; Griseta, C.; De Pergola, G.; Boeing, H.; Cisternino, A.M.; et al. Traditional Old Dietary Pattern of Castellana Grotte (Apulia) Is Associated with Healthy Outcomes. Nutrients 2020, 12, 3097. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND Diet Slows Cognitive Decline with Aging. Alzheimers Dement. 2015, 11, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Milias, G.A.; Pitsavos, C.; Stefanadis, C. MedDietScore: A Computer Program That Evaluates the Adherence to the Mediterranean Dietary Pattern and Its Relation to Cardiovascular Disease Risk. Comput. Methods Programs Biomed. 2006, 83, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Folsom, A.R.; Parker, E.D.; Harnack, L.J. Degree of Concordance with DASH Diet Guidelines and Incidence of Hypertension and Fatal Cardiovascular Disease. Am. J. Hypertens. 2007, 20, 225–232. [Google Scholar] [CrossRef]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-Style Diet and Risk of Coronary Heart Disease and Stroke in Women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A Simple and Accurate Predictor of Hepatic Steatosis in the General Population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Zivkovic, A.M.; German, J.B.; Sanyal, A.J. Comparative Review of Diets for the Metabolic Syndrome: Implications for Nonalcoholic Fatty Liver Disease. Am. J. Clin. Nutr. 2007, 86, 285–300. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Lampignano, L.; De Pergola, G. Mediterranean Diet Pyramid: A Proposal for Italian People. A Systematic Review of Prospective Studies to Derive Serving Sizes. Nutrients 2019, 11, 1296. [Google Scholar] [CrossRef]
- Beck-Nielsen, H. The Metabolic Syndrome: Pharmacology and Clinical Aspects; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 9783709113318. [Google Scholar]
- Pintó, X.; Fanlo-Maresma, M.; Corbella, E.; Corbella, X.; Mitjavila, M.T.; Moreno, J.J.; Casas, R.; Estruch, R.; Corella, D.; Bulló, M.; et al. PREDIMED Study Investigators. A Mediterranean Diet Rich in Extra-Virgin Olive Oil Is Associated with a Reduced Prevalence of Nonalcoholic Fatty Liver Disease in Older Individuals at High Cardiovascular Risk. J. Nutr. 2019, 149, 1920–1929. [Google Scholar] [CrossRef]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean Diet Improves Hepatic Steatosis and Insulin Sensitivity in Individuals with Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- Fraser, A.; Abel, R.; Lawlor, D.A.; Fraser, D.; Elhayany, A. A Modified Mediterranean Diet Is Associated with the Greatest Reduction in Alanine Aminotransferase Levels in Obese Type 2 Diabetes Patients: Results of a Quasi-Randomised Controlled Trial. Diabetologia 2008, 51, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Tzima, N.; Pitsavos, C.; Panagiotakos, D.B.; Chrysohoou, C.; Polychronopoulos, E.; Skoumas, J.; Stefanadis, C. Adherence to the Mediterranean Diet Moderates the Association of Aminotransferases with the Prevalence of the Metabolic Syndrome; the ATTICA Study. Nutr. Metab. 2009, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, M.D.; Tileli, N.; Margariti, A.; Georgoulis, M.; Deutsch, M.; Tiniakos, D.; Fragopoulou, E.; Zafiropoulou, R.; Manios, Y.; Papatheodoridis, G. Adherence to the Mediterranean Diet Is Associated with the Severity of Non-Alcoholic Fatty Liver Disease. Clin. Nutr. 2014, 33, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean Diet and Health. Biofactors 2013, 39, 335–342. [Google Scholar] [CrossRef]
- Assy, N.; Nassar, F.; Nasser, G.; Grosovski, M. Olive Oil Consumption and Non-Alcoholic Fatty Liver Disease. World J. Gastroenterol. 2009, 15, 1809–1815. [Google Scholar] [CrossRef]
- Vari, A. LARN: Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana; SICS Editore: Rome, Italy, 2017; ISBN 9788869309380. [Google Scholar]
- Hernández, E.Á.; Kahl, S.; Seelig, A.; Begovatz, P.; Irmler, M.; Kupriyanova, Y.; Nowotny, B.; Nowotny, P.; Herder, C.; Barosa, C.; et al. Acute Dietary Fat Intake Initiates Alterations in Energy Metabolism and Insulin Resistance. J. Clin. Investig. 2017, 127, 695–708. [Google Scholar] [CrossRef]
- Bjermo, H.; Iggman, D.; Kullberg, J.; Dahlman, I.; Johansson, L.; Persson, L.; Berglund, J.; Pulkki, K.; Basu, S.; Uusitupa, M.; et al. Effects of N-6 PUFAs Compared with SFAs on Liver Fat, Lipoproteins, and Inflammation in Abdominal Obesity: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2012, 95, 1003–1012. [Google Scholar] [CrossRef]
- Wouters, K.; van Gorp, P.J.; Bieghs, V.; Gijbels, M.J.; Duimel, H.; Lütjohann, D.; Kerksiek, A.; van Kruchten, R.; Maeda, N.; Staels, B.; et al. Dietary Cholesterol, rather than Liver Steatosis, Leads to Hepatic Inflammation in Hyperlipidemic Mouse Models of Nonalcoholic Steatohepatitis. Hepatology 2008, 48, 474–486. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.; Clifton, P. A Review of Potential Metabolic Etiologies of the Observed Association between Red Meat Consumption and Development of Type 2 Diabetes Mellitus. Metabolism 2015, 64, 768–779. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J.E.; Chang, Y.; Kim, M.K.; Sung, E.; Shin, H.; Ryu, S. Dietary Sodium and Potassium Intake in Relation to Non-Alcoholic Fatty Liver Disease. Br. J. Nutr. 2016, 116, 1447–1456. [Google Scholar] [CrossRef]
- Belinova, L.; Kahleova, H.; Malinska, H.; Topolcan, O.; Vrzalova, J.; Oliyarnyk, O.; Kazdova, L.; Hill, M.; Pelikanova, T. Differential Acute Postprandial Effects of Processed Meat and Isocaloric Vegan Meals on the Gastrointestinal Hormone Response in Subjects Suffering from Type 2 Diabetes and Healthy Controls: A Randomized Crossover Study. PLoS ONE 2014, 9, e107561. [Google Scholar] [CrossRef]
- Cocate, P.G.; Natali, A.J.; de Oliveira, A.; Alfenas, R.D.C.G.; Peluzio, M.D.C.G.; Longo, G.Z.; dos Santos, E.C.; Buthers, J.M.; de Oliveira, L.L.; Hermsdorff, H.H.M. Red but Not White Meat Consumption Is Associated with Metabolic Syndrome, Insulin Resistance and Lipid Peroxidation in Brazilian Middle-Aged Men. Eur. J. Prev. Cardiol. 2015, 22, 223–230. [Google Scholar] [CrossRef]
- Fretts, A.M.; Follis, J.L.; Nettleton, J.A.; Lemaitre, R.N.; Ngwa, J.S.; Wojczynski, M.K.; Kalafati, I.P.; Varga, T.V.; Frazier-Wood, A.C.; Houston, D.K.; et al. Consumption of Meat Is Associated with Higher Fasting Glucose and Insulin Concentrations regardless of Glucose and Insulin Genetic Risk Scores: A Meta-Analysis of 50,345 Caucasians. Am. J. Clin. Nutr. 2015, 102, 1266–1278. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Freedman, N.D.; Cross, A.J.; McGlynn, K.A.; Abnet, C.C.; Park, Y.; Hollenbeck, A.R.; Schatzkin, A.; Everhart, J.E.; Sinha, R. Association of Meat and Fat Intake with Liver Disease and Hepatocellular Carcinoma in the NIH-AARP Cohort. J. Natl. Cancer Inst. 2010, 102, 1354–1365. [Google Scholar] [CrossRef] [PubMed]
- Miele, L.; Dall’armi, V.; Cefalo, C.; Nedovic, B.; Arzani, D.; Amore, R.; Rapaccini, G.; Gasbarrini, A.; Ricciardi, W.; Grieco, A.; et al. A Case-Control Study on the Effect of Metabolic Gene Polymorphisms, Nutrition, and Their Interaction on the Risk of Non-Alcoholic Fatty Liver Disease. Genes Nutr. 2014, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Oddy, W.H.; Herbison, C.E.; Jacoby, P.; Ambrosini, G.L.; O’Sullivan, T.A.; Ayonrinde, O.T.; Olynyk, J.K.; Black, L.J.; Beilin, L.J.; Mori, T.A.; et al. The Western Dietary Pattern Is Prospectively Associated with Nonalcoholic Fatty Liver Disease in Adolescence. Am. J. Gastroenterol. 2013, 108, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Birkenfeld, A.L.; Shulman, G.I. Nonalcoholic Fatty Liver Disease, Hepatic Insulin Resistance, and Type 2 Diabetes. Hepatology 2014, 59, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Mueller, S.; Hellerbrand, C.; Liangpunsakul, S. Effect of Chronic Alcohol Consumption on the Development and Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Hepatobiliary Surg. Nutr. 2015, 4, 147–151. [Google Scholar] [CrossRef]
- Suzuki, A.; Angulo, P.; St Sauver, J.; Muto, A.; Okada, T.; Lindor, K. Light to Moderate Alcohol Consumption Is Associated with Lower Frequency of Hypertransaminasemia. Am. J. Gastroenterol. 2007, 102, 1912–1919. [Google Scholar] [CrossRef]
- Loomba, R.; Bettencourt, R.; Barrett-Connor, E. Synergistic Association between Alcohol Intake and Body Mass Index with Serum Alanine and Aspartate Aminotransferase Levels in Older Adults: The Rancho Bernardo Study. Aliment. Pharmacol. Ther. 2009, 30, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Kalla, A.; Figueredo, V.M. Alcohol and Cardiovascular Disease in the Geriatric Population. Clin. Cardiol. 2017, 40, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Ortolá, R.; García-Esquinas, E.; Galán, I.; Rodríguez-Artalejo, F. Patterns of Alcohol Consumption and Health-Related Quality of Life in Older Adults. Drug Alcohol Depend. 2016, 159, 166–173. [Google Scholar] [CrossRef] [PubMed]
- CREA. Linee Guida per Una Sana Alimentazione; Revisione 2018; Centro di Ricerca Alimenti e Nutrizione: Rome, Italy, 2018.
- Alkerwi, A.; Baydarlioglu, B.; Sauvageot, N.; Stranges, S.; Lemmens, P.; Shivappa, N.; Hébert, J.R. Smoking status is inversely associated with overall diet quality: Findings from the ORISCAV-LUX study. Clin Nutr. 2017, 36, 1275–1282. [Google Scholar] [CrossRef]
- Kuczmarski, M.F.; Adams, E.L.; Cotugna, N.; Pohlig, R.T.; Beydoun, M.A.; Zonderman, A.B.; Evans, M.K. Health Literacy and Education Predict Nutrient Quality of Diet of Socioeconomically Diverse, Urban Adults. J. Epidemiol. Prev. Med. 2016, 2, 13000115. [Google Scholar] [CrossRef] [PubMed]
Variables * | Unmatched Cohort | ||
---|---|---|---|
FLI | |||
≤60 (n = 671) | >60 (n = 732) | p ^ | |
Gender (%) | 0.97 § | ||
Male | 360 (53.65) | 392 (53.55) | |
Female | 311 (46.35) | 340 (46.45) | |
Age (years) | 77.76 ± 7.61 | 79.47 ± 8.52 | 0.001 |
Smoking (Yes) (%) | 110 (16.39) | 273 (37.30) | <0.001 § |
Education (years) | 7.55 ± 5.23 | 8.26 ± 6.02 | 0.10 |
Physical Activity (<2) (%) | 253 (40.03) | 372 (54.31) | <0.001 § |
Systolic Pressure (mmHg) | 131.97 ± 14.38 | 134.50 ± 14.34 | 0.002 |
Diastolic Pressure (mmHg) | 78.22 ± 8.18 | 78.53 ± 7.74 | 0.59 |
BMI (Kg/m2) | 26.48 ± 2.90 | 31.16 ± 4.18 | <0.0001 |
BMI (Kg/m2) (%) | <0.001 § | ||
<25 | 221 (32.94) | 33 (4.51) | |
≥25 | 450 (67.06) | 699 (95.49) | |
Waist (cm) | 97.28 ± 8.01 | 108.39 ± 9.40 | <0.0001 |
Waist (cm) by Gender | |||
Male | 97.95 ± 7.27 | 109.54 ± 8.90 | <0.0001 |
Female | 96.50 ± 8.73 | 107.08 ± 9.79 | <0.0001 |
Glucose (mg/dL) | 105.80 ± 25.81 | 121.55 ± 41.67 | <0.0001 |
HOMA-IR (mg/dL) | 1.98 ± 1.69 | 3.24 ± 2.98 | <0.0001 |
Total Cholesterol (mg/dL) | 184.68 ± 38.67 | 196.18 ± 41.10 | <0.0001 |
Triglycerides (mg/dL) | 98.51 ± 52.08 | 180.03 ± 97.96 | <0.0001 |
HDL (mg/dL) | 51.91 ± 14.71 | 48.83 ± 14.83 | <0.0001 |
LDL (mg/dL) | 114.52 ± 35.37 | 114.36 ± 32.64 | 0.85 |
GOT (U/L) | 28.56 ± 22.14 | 33.64 ± 30.28 | 0.001 |
GPT (U/L) | 22.67 ± 16.23 | 28.16 ± 22.41 | <0.0001 |
GGT (U/L) | 19.30 ± 15.28 | 47.09 ± 44.11 | <0.0001 |
Platelets count | 223.72 ± 68.76 | 237.10 ± 70.78 | 0.0002 |
Hypertension (Yes) (%) | 453 (67.51) | 546 (74.59) | 0.003 § |
Diabetes (Yes) (%) | 77 (11.48) | 110 (15.03) | 0.05 § |
Metabolic Syndrome (Yes) (%) | 50 (7.45) | 118 (16.12) | <0.001 § |
Stroke (Yes) (%) | 13 (1.94) | 18 (2.46) | 0.51 § |
Vascular Dementia (%) | 2 (0.30) | 2 (0.27) | 0.93 § |
Dementia (Yes) (%) | 34 (5.07) | 62 (8.47) | 0.01 § |
Depression (Yes) (%) | 68 (10.13) | 93 (12.70) | 0.13 § |
MMSE < 19 (Yes) (%) | 29 (4.32) | 46 (6.28) | 0.10 § |
Sarcopenia (Yes) (%) | 71 (10.58) | 62 (8.47) | 0.18 § |
Physical Frailty (Yes) (%) | 129 (19.23) | 131 (17.90) | 0.52 § |
ARHL (Yes) (%) | 139 (20.72) | 169 (23.09) | 0.28 § |
Vision Loss (Yes) (%) | 25 (3.73) | 26 (3.55) | 0.86 § |
COPD (Yes) (%) | 118 (17.59) | 140 (19.13) | 0.46 § |
Asthma (Yes) (%) | 61 (9.09) | 70 (9.56) | 0.76 § |
Multimorbidity (>1) (Yes) (%) | 369 (54.99) | 460 (62.84) | 0.003 § |
Variables * | Unmatched Cohort | ||
---|---|---|---|
FLI | |||
≤60 (n = 671) | >60 (n = 732) | p ^ | |
Food Groups | |||
Dairy | 104.41 ± 113.22 | 105.91 ± 107.37 | 0.38 |
Low Fat Dairy | 105.25 ± 107.11 | 97.52 ± 109.10 | 0.04 |
Eggs | 8.49 ± 9.45 | 7.94 ± 8.67 | 0.31 |
White Meat | 24.68 ± 27.69 | 28.22 ± 44.06 | 0.07 |
Red Meat | 22.38 ± 25.81 | 23.69 ± 26.59 | 0.14 |
Processed Meat | 14.58 ± 15.10 | 16.20 ± 24.65 | 0.12 |
Fish | 25.78 ± 25.17 | 26.78 ± 54.22 | 0.69 |
Seafood/Shellfish | 9.09 ± 12.89 | 11.18 ± 34.91 | 0.28 |
Leafy Vegetables | 58.66 ± 60.33 | 60.90 ± 70.39 | 0.96 |
Fruiting Vegetables | 95.69 ± 77.16 | 95.20 ± 87.63 | 0.30 |
Root Vegetables | 11.67 ± 26.58 | 12.52 ± 28.74 | 0.66 |
Other Vegetables | 83.40 ± 80.45 | 81.34 ± 83.66 | 0.45 |
Legumes | 39.12 ± 34.28 | 37.38 ± 27.48 | 0.23 |
Potatoes | 13.55 ± 18.38 | 13.25 ± 19.56 | 0.23 |
Fruits | 629.41 ± 550.79 | 605.42 ± 510.80 | 0.63 |
Nuts | 8.01 ± 15.69 | 6.63 ± 15.82 | 0.002 |
Grains | 157.82 ± 106.63 | 154.54 ± 108.05 | 0.43 |
Olives and Vegetable Oil | 52.67 ± 36.07 | 51.33 ± 38.76 | 0.06 |
Sweets | 22.64 ± 28.04 | 22.93 ± 39.36 | 0.14 |
Sugary | 10.69 ± 15.49 | 10.46 ± 25.29 | 0.12 |
Juices | 7.22 ± 21.25 | 6.13 ± 20.18 | 0.44 |
Caloric Drinks | 7.14 ± 43.08 | 9.87 ± 59.99 | 0.67 |
Ready to Eat Dish | 24.01 ± 37.21 | 32.76 ± 54.78 | 0.35 |
Coffee | 48.37 ± 29.81 | 45.64 ± 29.78 | 0.05 |
Wine | 118.76 ± 159.54 | 125.59 ± 167.17 | 0.98 |
Beer | 17.00 ± 67.02 | 21.76 ± 77.45 | 0.29 |
Spirits | 1.32 ± 4.55 | 1.67 ± 6.16 | 0.80 |
Water | 657.40 ± 302.65 | 663.81 ± 298.00 | 0.60 |
Micro-Nutrients | |||
Na+ | 1530.14 ± 861.60 | 1547.66 ± 1131.46 | 0.97 |
K+ | 3438.53 ± 1757.71 | 3385.37 ± 1845.44 | 0.67 |
Fe | 11.08 ± 5.03 | 11.18 ± 5.94 | 0.99 |
Ca++ | 878.10 ± 526.06 | 882.73 ± 564.11 | 0.63 |
P | 1133.43 ± 500.70 | 1144.40 ± 629.48 | 0.53 |
B1 | 0.83 ± 0.37 | 0.84 ± 0.48 | 0.79 |
B2 | 1.43 ± 0.75 | 1.42 ± 0.76 | 0.91 |
PP | 1.43 ± 0.75 | 1.42 ± 0.76 | 0.91 |
Vitamin A | 1192.58 ± 1785.23 | 1215.04 ± 1711.93 | 0.69 |
Vitamin C | 187.09 ± 130.17 | 181.44 ± 130.47 | 0.55 |
Macro-Nutrients | |||
H2O | 1954.08 ± 744.49 | 1947.36 ± 761.35 | 0.93 |
Proteins | 66.78 ± 28.97 | 67.84 ± 41.99 | 0.70 |
Lipids | 84.72 ± 38.62 | 83.73 ± 45.73 | 0.12 |
Total Carbohydrates | 471.32 ± 215.41 | 458.12 ± 228.93 | 0.13 |
Total Fibers | 74.51 ± 40.69 | 71.91 ± 39.67 | 0.29 |
Saturated Fatty Acids | 21.73 ± 10.73 | 21.99 ± 12.46 | 0.59 |
MUFAs | 44.51 ± 24.87 | 43.68 ± 27.91 | 0.06 |
PUFAs | 9.40 ± 4.37 | 9.19 ± 5.57 | 0.03 |
Cholesterol | 189.92 ± 117.51 | 196.39 ± 154.89 | 0.76 |
Alcohol | 13.13 ± 17.25 | 14.03 ± 18.53 | 0.91 |
Alcohol >20 (Yes) (%) | 128 (19.08) | 156 (21.31) | 0.30 § |
Kcal | 2037.62 ± 719.38 | 2013.98 ± 877.32 | 0.15 |
KJ | 8529.16 ± 3011.50 | 8430.23 ± 3672.43 | 0.15 |
Dietary Pattern | β | se(β) | p-Value | C.I. (95%) |
---|---|---|---|---|
MedDiet | −0.07 | 0.03 | 0.02 | −0.13 to −0.01 |
DASH | −0.06 | 0.03 | 0.07 | −0.12 to 0.005 |
MIND | −0.05 | 0.03 | 0.15 | −0.11 to 0.02 |
Variables * | Matched Cohort | ||
---|---|---|---|
FLI | |||
≤60 (n = 284) | >60 (n = 343) | p ^ | |
Gender (%) | 0.27 § | ||
Male | 144 (50.70) | 189 (55.10) | |
Female | 140 (49.30) | 154 (44.90) | |
Age (years) | 77.90 ± 7.84 | 79.09 ± 8.30 | 0.10 |
Smoking (Yes) (%) | 51 (17.96) | 117 (34.11) | <0.001 § |
Education (years) | 7.33 ± 5.23 | 8.40 ± 5.93 | 0.04 |
Physical Activity (<2) (%) | 125 (46.13) | 161 (50.16) | 0.33 § |
Systolic Pressure (mmHg) | 133.03 ± 14.04 | 133.53 ± 13.47 | 0.63 |
Diastolic Pressure (mmHg) | 78.29 ± 7.48 | 78.50 ± 7.81 | 0.86 |
BMI (Kg/m2) | 28.80 ± 4.59 | 29.91 ± 4.41 | 0.53 |
BMI (Kg/m2) (%) | 0.67 § | ||
<25 | 56 (19.72) | 63 (18.37) | |
≥25 | 228 (80.28) | 280 (81.63) | |
Waist (cm) | 102.42 ± 9.65 | 103.51 ± 11.21 | 0.20 |
Waist (cm) by Gender | |||
Male | 102.71 ± 9.39 | 104.31 ± 10.47 | 0.14 |
Female | 102.12 ± 9.94 | 102.52 ± 12.02 | 0.80 |
Glucose (mg/dL) | 110.35 ± 33.29 | 114.68 ± 33.96 | 0.04 |
HOMA-IR (mg/dL) | 2.57 ± 2.71 | 2.57 ± 2.52 | 0.34 |
Total Cholesterol (mg/dL) | 186.13 ± 39.65 | 192.53 ± 40.57 | 0.08 |
Triglycerides (mg/dL) | 125.12 ± 81.50 | 142.54 ± 85.48 | 0.002 |
HDL (mg/dL) | 51.02 ± 15.02 | 49.81 ± 13.91 | 0.37 |
LDL (mg/dL) | 111.68 ± 33.65 | 116.88 ± 34.96 | 0.08 |
GOT (U/L) | 28.91 ± 22.63 | 32.72 ± 27.50 | 0.20 |
GPT (U/L) | 24.69 ± 16.00 | 27.29 ± 24.28 | 0.60 |
GGT (U/L) | 30.23 ± 34.90 | 34.14 ± 36.64 | 0.02 |
Platelets count | 225.96 ± 64.06 | 229.28 ± 69.90 | 0.67 |
Hypertension (Yes) (%) | 193 (67.96) | 255 (74.34) | 0.08 § |
Diabetes (Yes) (%) | 35 (12.32) | 43 (12.54) | 0.94 § |
Metabolic Syndrome (Yes) (%) | 33 (11.62) | 48 (13.99) | 0.38 § |
Stroke (Yes) (%) | 6 (2.11) | 6 (1.75) | 0.74 § |
Vascular Dementia (%) | 1 (0.35) | 0 (0.00) | 0.27 § |
Dementia (Yes) (%) | 12 (4.23) | 18 (5.25) | 0.55 § |
Depression (Yes) (%) | 29 (10.21) | 49 (14.29) | 0.12 § |
MMSE < 19 (Yes) (%) | 9 (3.17) | 14 (4.08) | 0.54 § |
Sarcopenia (Yes) (%) | 26 (9.15) | 33 (9.62) | 0.84 § |
Physical Frailty (Yes) (%) | 54 (19.01) | 67 (19.53) | 0.87 § |
ARHL (Yes) (%) | 58 (20.42) | 78 (22.74) | 0.48 § |
Vision Loss (Yes) (%) | 6 (2.11) | 10 (2.92) | 0.53 § |
COPD (Yes) (%) | 43 (15.14) | 71 (20.70) | 0.07 § |
Asthma (Yes) (%) | 23 (8.10) | 36 (10.50) | 0.31 § |
Multimorbidity (>1) (Yes) (%) | 153 (53.87) | 213 (62.10) | 0.04 § |
Variables * | Matched Cohort | ||
---|---|---|---|
FLI | |||
≤60 (n = 284) | >60 (n = 343) | p ^ | |
Food Groups | |||
Dairy | 108.74 ± 121.47 | 113.78 ± 123.10 | 0.52 |
Low Fat Dairy | 108.91 ± 109.63 | 115.78 ± 115.25 | 0.48 |
Eggs | 9.80 ± 11.27 | 9.52 ± 9.04 | 0.53 |
White Meat | 28.73 ± 23.97 | 35.53 ± 53.14 | 0.18 |
Red Meat | 21.40 ± 14.97 | 27.98 ± 36.79 | 0.04 |
Processed Meat | 14.72 ± 14.16 | 19.33 ± 34.32 | 0.06 |
Fish | 31.50 ± 28.30 | 36.58 ± 77.22 | 0.97 |
Seafood/Shellfish | 10.74 ± 11.61 | 14.02 ± 47.78 | 0.18 |
Leafy Vegetables | 81.30 ± 79.71 | 85.69 ± 81.87 | 0.18 |
Fruiting Vegetables | 131.20 ± 94.95 | 130.04 ± 93.53 | 0.65 |
Root Vegetables | 15.42 ± 27.09 | 16.93 ± 30.71 | 0.14 |
Other Vegetables | 117.21 ± 99.56 | 109.49 ± 96.89 | 0.40 |
Legumes | 51.94 ± 47.53 | 48.15 ± 27.49 | 0.94 |
Potatoes | 16.94 ± 18.45 | 20.56 ± 28.96 | 0.08 |
Fruits | 802.60 ± 618.56 | 760.48 ± 526.03 | 0.74 |
Nuts | 11.59 ± 20.27 | 9.49 ± 18.30 | 0.85 |
Grains | 182.10 ± 110.15 | 175.16 ± 112.36 | 0.26 |
Olives and Vegetable Oil | 55.79 ± 37.81 | 60.16 ± 40.16 | 0.09 |
Sweets | 28.00 ± 36.63 | 25.23 ± 39.34 | 0.81 |
Sugary | 13.92 ± 38.56 | 11.84 ± 19.78 | 0.73 |
Juices | 6.35 ± 21.44 | 8.57 ± 26.16 | 0.33 |
Caloric Drinks | 3.55 ± 10.20 | 12.42 ± 64.56 | 0.98 |
Ready to Eat Dish | 35.70 ± 35.70 | 42.84 ± 78.51 | 0.60 |
Coffee | 46.48 ± 29.96 | 48.89 ± 30.61 | 0.31 |
Wine | 96.48 ± 157.82 | 130.93 ± 188.31 | 0.04 |
Beer | 17.43 ± 66.63 | 20.72 ± 77.18 | 0.69 |
Spirits | 1.37 ± 4.92 | 1.21 ± 4.29 | 0.97 |
Water | 718.18 ± 281.97 | 692.55 ± 305.98 | 0.27 |
Micro-Nutrients | |||
Na+ | 1746.09 ± 833.28 | 1901.85 ± 1491.34 | 0.30 |
K+ | 4255.60 ± 1953.77 | 4258.50 ± 1984.92 | 0.80 |
Fe | 13.07 ± 5.15 | 13.73 ± 7.04 | 0.34 |
Ca++ | 990.01 ± 573.63 | 1050.74 ± 591.58 | 0.18 |
P | 1274.45 ± 507.97 | 1372.52 ± 764.93 | 0.12 |
B1 | 0.99 ± 0.37 | 1.04 ± 0.61 | 0.84 |
B2 | 1.66 ± 0.72 | 1.75 ± 0.90 | 0.29 |
PP | 1.66 ± 0.72 | 1.75 ± 0.90 | 0.29 |
Vitamin A | 1411.61 ± 868.50 | 1607.07 ± 2376.31 | 0.15 |
Vitamin C | 240.52 ± 148.46 | 234.61 ± 138.90 | 0.88 |
Macro-Nutrients | |||
H2O | 2266.55 ± 808.90 | 2272.44 ± 770.32 | 0.51 |
Proteins | 76.50 ± 27.22 | 82.04 ± 53.96 | 0.40 |
Lipids | 92.08 ± 38.78 | 97.82 ± 48.32 | 0.12 |
Total Carbohydrates | 556.42 ± 220.89 | 546.21 ± 236.13 | 0.46 |
Total Fibers | 94.03 ± 43.58 | 91.61 ± 40.44 | 0.67 |
Saturated Fatty Acids | 23.52 ± 11.41 | 25.22 ± 13.25 | 0.12 |
MUFAs | 47.26 ± 25.43 | 50.11 ± 27.67 | 0.09 |
PUFAs | 10.85 ± 4.69 | 11.20 ± 6.39 | 0.53 |
Cholesterol | 214.56 ± 122.31 | 234.38 ± 191.61 | 0.14 |
Alcohol | 10.84 ± 17.42 | 14.48 ± 20.58 | 0.05 |
Alcohol >20 (Yes) (%) | 42 (14.79) | 80 (23.32) | 0.007 § |
Kcal | 2290.24 ± 701.19 | 2370.45 ± 973.63 | 0.60 |
KJ | 9586.85 ± 2935.47 | 9922.48 ± 4075.39 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lampignano, L.; Donghia, R.; Sila, A.; Bortone, I.; Tatoli, R.; De Nucci, S.; Castellana, F.; Zupo, R.; Tirelli, S.; Giannoccaro, V.; et al. Mediterranean Diet and Fatty Liver Risk in a Population of Overweight Older Italians: A Propensity Score-Matched Case-Cohort Study. Nutrients 2022, 14, 258. https://doi.org/10.3390/nu14020258
Lampignano L, Donghia R, Sila A, Bortone I, Tatoli R, De Nucci S, Castellana F, Zupo R, Tirelli S, Giannoccaro V, et al. Mediterranean Diet and Fatty Liver Risk in a Population of Overweight Older Italians: A Propensity Score-Matched Case-Cohort Study. Nutrients. 2022; 14(2):258. https://doi.org/10.3390/nu14020258
Chicago/Turabian StyleLampignano, Luisa, Rossella Donghia, Annamaria Sila, Ilaria Bortone, Rossella Tatoli, Sara De Nucci, Fabio Castellana, Roberta Zupo, Sarah Tirelli, Viviana Giannoccaro, and et al. 2022. "Mediterranean Diet and Fatty Liver Risk in a Population of Overweight Older Italians: A Propensity Score-Matched Case-Cohort Study" Nutrients 14, no. 2: 258. https://doi.org/10.3390/nu14020258
APA StyleLampignano, L., Donghia, R., Sila, A., Bortone, I., Tatoli, R., De Nucci, S., Castellana, F., Zupo, R., Tirelli, S., Giannoccaro, V., Guerra, V., Panza, F., Lozupone, M., Mastronardi, M., De Pergola, G., Giannelli, G., & Sardone, R. (2022). Mediterranean Diet and Fatty Liver Risk in a Population of Overweight Older Italians: A Propensity Score-Matched Case-Cohort Study. Nutrients, 14(2), 258. https://doi.org/10.3390/nu14020258