Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials
Abstract
:1. Introduction
2. Methods
2.1. Setting and Search Strategy
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Appraisal
3. Results
3.1. Search Outcomes
3.2. Quality Assessment
3.3. Efficacy of Curcumin Therapy on the Clinical Manifestation of COVID-19
3.4. Efficacy of Curcumin Therapy on the Mortality Rate of COVID-19 Patients
3.5. Efficacy of Curcumin Therapy on mRNA Expression and Pro-Inflammatory Cytokine Secretion
3.6. Efficacy of Curcumin Therapy on Frequency of T Helper (Th) 17 Cells and mRNA Expression of Th17 Cell-Related Factors
3.7. Efficacy of Curcumin Therapy on Regulatory T (Treg) Cell Frequency and Gene Expression of Treg Transcription Factor Forkhead Box P3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johns Hopkins Coronavirus Resource Center. COVID-19 Dashboard. 2021. Available online: https://coronavirus.jhu.edu/map.html (accessed on 16 December 2021).
- Our World in Data. Coronavirus (COVID-19) Vaccinations. 2021. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 16 December 2021).
- Noori, M.; Nejadghaderi, S.A.; Arshi, S.; Carson-Chahhoud, K.; Ansarin, K.; Kolahi, A.; Safiri, S. Potency of BNT162b2 and mRNA-1273 vaccine-induced neutralizing antibodies against severe acute respiratory syndrome-CoV-2 variants of concern: A systematic review of in vitro studies. Rev. Med. Virol. 2021, e2277, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Proal, A.D.; VanElzakker, M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): An overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 2021, 12, 698169. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, F.; Hamblin, M.R.; Rezaei, N. The immune system and COVID-19: Friend or foe? Life Sci. 2020, 256, 117900. [Google Scholar] [CrossRef] [PubMed]
- Canoğlu, K.; Şaylan, B.; Çalışkan, T. COVID-19 and thrombosis: Prophylaxis and management. Tuberk. Toraks 2021, 69, 269–278. [Google Scholar] [CrossRef]
- Bhaskar, S.; Sinha, A.; Banach, M.; Mittoo, S.; Weissert, R.; Kass, J.S.; Rajagopal, S.; Pai, A.R.; Kutty, S. Cytokine storm in COVID-19—immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM consortium position paper. Front. Immunol. 2020, 11, 1648. [Google Scholar] [CrossRef]
- Santoro, M.G.; Carafoli, E. Remdesivir: From ebola to COVID-19. Biochem. Biophys. Res. Commun. 2021, 538, 145–150. [Google Scholar] [CrossRef]
- Quek, E.; Tahir, H.; Kumar, P.; Hastings, R.; Jha, R. Treatment of COVID-19: A review of current and prospective pharmacotherapies. Br. J. Hosp. Med. 2021, 82, 1–9. [Google Scholar] [CrossRef]
- Devreese, K.M.J. COVID-19-related laboratory coagulation findings. Int. J. Lab. Hematol. 2021, 43 (Suppl. S1), 36–42. [Google Scholar] [CrossRef]
- Gasmi, A.; Chirumbolo, S.; Peana, M.; Noor, S.; Menzel, A.; Dadar, M.; Bjørklund, G. The role of diet and supplementation of natural products in COVID-19 prevention. Biol. Trace Elem. Res. 2021, 200, 27–30. [Google Scholar] [CrossRef]
- Yuandani; Jantan, I.; Rohani, A.S.; Sumantri, I.B. Immunomodulatory effects and mechanisms of curcuma species and their bioactive compounds: A review. Front. Pharmacol. 2021, 12, 643119. [Google Scholar] [CrossRef]
- Rahimi, K.; Hassanzadeh, K.; Khanbabaei, H.; Haftcheshmeh, S.M.; Ahmadi, A.; Izadpanah, E.; Mohammadi, A.; Sahebkar, A. Curcumin: A dietary phytochemical for targeting the phenotype and function of dendritic cells. Curr. Med. Chem. 2021, 28, 1549–1564. [Google Scholar] [CrossRef]
- Abd-Alkhalek, A.M.; Omayma, A.E. Managements of COVID-19 by curcumin. Acta Sci. Pharm. Sci. 2021, 5, 95–96. [Google Scholar] [CrossRef]
- Ghasemi, F.; Shafiee, M.; Banikazemi, Z.; Pourhanifeh, M.H.; Khanbabaei, H.; Shamshirian, A.; Moghadam, S.A.; ArefNezhad, R.; Sahebkar, A.; Avan, A.; et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol.-Res. Pract. 2019, 215, 152556. [Google Scholar] [CrossRef]
- Alidadi, M.; Liberale, L.; Montecucco, F.; Majeed, M.; Al-Rasadi, K.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Protective effects of curcumin on endothelium: An updated review. Studies on Biomarkers and New Targets in Aging Research in Iran. Adv. Exp. Med. Biol. 2021, 1291, 103–119. [Google Scholar] [PubMed]
- Ruscica, M.; Penson, P.E.; Ferri, N.; Sirtori, C.R.; Pirro, M.; Mancini, G.J.; Sattar, N.; Toth, P.P.; Sahebkar, A.; Lavie, C.J.; et al. Impact of nutraceuticals on markers of systemic inflammation: Potential relevance to cardiovascular diseases–A position paper from the international lipid expert panel (ILEP). Prog. Cardiovasc. Dis. 2021, 67, 40–52. [Google Scholar] [CrossRef]
- Ghandadi, M.; Sahebkar, A. Curcumin: An effective inhibitor of interleukin-6. Curr. Pharm. Des. 2017, 23, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril. 2010, 94, e75–e76. [Google Scholar] [CrossRef]
- Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Majeed, M.; Sahebkar, A.; Simental-Mendía, L. Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: A randomized double-blind placebo-controlled trial. Drug Res. 2018, 68, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Mortezaee, K.; Salehi, E.; Mirtavoos-mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol. 2019, 234, 12537–12550. [Google Scholar] [CrossRef]
- Zahedipour, F.; Hosseini, S.A.; Sathyapalan, T.; Majeed, M.; Jamialahmadi, T.; Al-Rasadi, K.; Banach, M.; Sahebkar, A. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother. Res. 2020, 34, 2911–2920. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol. 2007, 595, 1–75. [Google Scholar]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef]
- Guest, P.C.; Sahebkar, A. Research in the middle east into the health benefits of curcumin. Adv. Exp. Med. Biol. 2021, 1291, 1–13. [Google Scholar]
- Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Panahi, Y.; Karbasi, A.; Valizadegan, G.; Ostadzadeh, N.; Soflaei, S.S.; Jamialahmadi, T.; Majeed, M.; Sahebkar, A. Effect of curcumin on severity of functional dyspepsia: A triple blinded clinical trial. Adv. Exp. Med. Biol. 2021, 1308, 119–126. [Google Scholar]
- Talebi, S.; Safarian, M.; Jaafari, M.R.; Sayedi, S.J.; Abbasi, Z.; Ranjbar, G.; Kianifar, H.R. The effects of nano-curcumin as a nutritional strategy on clinical and inflammatory factors in children with cystic fibrosis: The study protocol for a randomized controlled trial. Trials 2021, 22, 292. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Sahebkar, A.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur. J. Nutr. 2020, 59, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Alidadi, M.; Sahebkar, A.; Eslami, S.; Vakilian, F.; Jarahi, L.; Alinezhad-Namaghi, M.; Arabi, S.M.; Vakili, S.; Tohidinezhad, F.; Nikooiyan, Y.; et al. The effect of curcumin supplementation on pulse wave velocity in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Adv. Exp. Med. Biol. 2021, 1308, 1–11. [Google Scholar] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Reprint—preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.-H.; Cai, L.; Cheng, Z.-S.; Cheng, H.; Deng, T.; Fan, Y.-P.; Fang, C.; Huang, D.; Huang, L.-Q.; Huang, Q.; et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res. 2020, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Ahmadi, R.; Salari, S.; Sharifi, M.D.; Reihani, H.; Rostamiani, M.B.; Behmadi, M.; Taherzadeh, Z.; Eslami, S.; Rezayat, S.M.; Jaafari, M.R.; et al. Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: A randomized triple-blind placebo-controlled clinical trial. Food Sci. Nutr. 2021, 9, 4068–4075. [Google Scholar] [CrossRef]
- Saber-Moghaddam, N.; Salari, S.; Hejazi, S.; Amini, M.; Taherzadeh, Z.; Eslami, S.; Rezayat, S.M.; Jaafari, M.R.; Elyasi, S. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: An open-label non-randomized clinical trial. Phytother. Res. 2021, 35, 2616–2623. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, H.; Abdolmohammadi-Vahid, S.; Danshina, S.; Gencer, M.Z.; Ammari, A.; Sadeghi, A.; Roshangar, L.; Aslani, S.; Esmaeilzadeh, A.; Ghaebi, M.; et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 2020, 89 Pt B, 107088. [Google Scholar] [CrossRef]
- Tahmasebi, S.; El-Esawi, M.A.; Mahmoud, Z.H.; Timoshin, A.; Valizadeh, H.; Roshangar, L.; Varshoch, M.; Vaez, A.; Aslani, S.; Navashenaq, J.G.; et al. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J. Cell. Physiol. 2021, 236, 5325–5338. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, S.; Saeed, B.Q.; Temirgalieva, E.; Yumashev, A.V.; El-Esawi, M.A.; Navashenaq, J.G.; Valizadeh, H.; Sadeghi, A.; Aslani, S.; Yousefi, M.; et al. Nanocurcumin improves Treg cell responses in patients with mild and severe SARS-CoV2. Life Sci. 2021, 276, 119437. [Google Scholar] [CrossRef] [PubMed]
- Pawar, K.S.; Mastud, R.N.; Pawar, S.K.; Pawar, S.S.; Bhoite, R.R.; Bhoite, R.R.; Kulkarni, M.V.; Deshpande, A.R. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: A randomized clinical trial. Front. Pharmacol. 2021, 12, 669362. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, J.; Islam, S.; Yang, Y.; Hu, Y.; Chen, X. The role of CD4+FoxP3+ regulatory T cells in the immunopathogenesis of COVID-19: Implications for treatment. Int. J. Biol. Sci. 2021, 17, 1507–1520. [Google Scholar] [CrossRef]
- Baeten, P.; Van Zeebroeck, L.; Kleinewietfeld, M.; Hellings, N.; Broux, B. Improving the efficacy of regulatory T cell therapy. Clin. Rev. Allergy Immunol. 2021, 1–19, online ahead of print. [Google Scholar] [CrossRef]
- Rezaei, M.; Mahmoudi, S.; Mortaz, E.; Marjani, M. Immune cell profiling and antibody responses in patients with COVID-19. BMC Infect. Dis. 2021, 21, 646. [Google Scholar] [CrossRef]
- Zhang, Z.; Ai, G.; Chen, L.; Liu, S.; Gong, C.; Zhu, X.; Zhang, C.; Qin, H.; Hu, J.; Huang, J. Associations of immunological features with COVID-19 severity: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 738. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Liu, Y.; Zhou, R.; Deng, X.; Li, F.; Liang, K.; Shi, Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology 2020, 160, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Truong, A.K. COVID-19 infection on IL-23 inhibition. Dermatol. Ther. 2020, 33, e13893. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- George, J.A.; Mayne, E.S. The Novel Coronavirus and Inflammation. Adv. Exp. Med. Biol. 2021, 1321, 127–138. [Google Scholar]
- Ramasamy, S.; Subbian, S. Critical determinants of cytokine storm and type I interferon response in COVID-19 pathogenesis. Clin. Microbiol. Rev. 2021, 34, e00299-20. [Google Scholar] [CrossRef]
- Melo, A.K.G.; Milby, K.M.; Caparroz, A.L.M.A.; Pinto, A.C.P.N.; Santos, R.R.P.; Rocha, A.P.; Ferreira, G.A.; Souza, V.A.; Valadares, L.D.A.; Vieira, R.M.R.A.; et al. Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: A living systematic review and meta-analysis. PLoS ONE. 2021, 16, e0253894. [Google Scholar] [CrossRef] [PubMed]
- Dolati, S.; Ahmadi, M.; Rikhtegar, R.; Babaloo, Z.; Ayromlou, H.; Aghebati-Maleki, L.; Nouri, M.; Yousefi, M. Changes in Th17 cells function after nanocurcumin use to treat multiple sclerosis. Int. Immunopharmacol. 2018, 61, 74–81. [Google Scholar] [CrossRef]
- Dolati, S.; Babaloo, Z.; Ayromlou, H.; Ahmadi, M.; Rikhtegar, R.; Rostamzadeh, D.; Roshangar, L.; Nouri, M.; Mehdizadeh, A.; Younesi, V.; et al. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J. Neuroimmunol. 2019, 327, 15–21. [Google Scholar] [CrossRef]
- Haftcheshmeh, S.M.; Khosrojerdi, A.; Aliabadi, A.; Lotfi, S.; Mohammadi, A.; Momtazi-Borojeni, A.A. Immunomodulatory effects of curcumin in rheumatoid arthritis: Evidence from molecular mechanisms to clinical outcomes. Rev. Physiol. Biochem. Pharmacol. 2021, 179, 1–29. [Google Scholar]
- Bagherniya, M.; Darand, M.; Askari, G.; Guest, P.C.; Sathyapalan, T.; Sahebkar, A. The clinical use of curcumin for the treatment of rheumatoid arthritis: A systematic review of clinical trials. Adv. Exp. Med. Biol. 2021, 1291, 251–263. [Google Scholar] [PubMed]
- Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr. 2019, 59, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Yavarpour-Bali, H.; Ghasemi-Kasman, M.; Pirzadeh, M. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomed. 2019, 14, 4449–4460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ege, D. Action mechanisms of curcumin in alzheimer’s disease and its brain targeted delivery. Materials 2021, 14, 3332. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.J.A.; Abbott, K.A.; Garg, M.L. Anti-inflammatory effects of oral supplementation with curcumin: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2021, 79, 1043–1066. [Google Scholar] [CrossRef]
- Gorabi, A.M.; Razi, B.; Aslani, S.; Abbasifard, M.; Imani, D.; Sathyapalan, T.; Sahebkar, A. Effect of curcumin on pro-inflammatory cytokines: A meta-analysis of randomized controlled trials. Cytokine 2021, 143, 155541. [Google Scholar] [CrossRef]
- Momtazi, A.A.; Shahabipour, F.; Khatibi, S.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Curcumin as a MicroRNA regulator in cancer: A review. Rev. Physiol. Biochem. Pharmacol. 2016, 171, 1–38. [Google Scholar]
- Li, D.; Zhang, Y.; Pei, X.; Liu, X.; Dai, C.; Li, C.; Li, L.; Zhang, J.; Xiao, X.; Tang, S. Molecular mechanism of olaquindox-induced hepatotoxicity and the hepatic protective role of curcumin. Food Chem. Toxicol. 2020, 145, 111727. [Google Scholar] [CrossRef]
- Kubo, M.; Motomura, Y. Transcriptional regulation of the anti-inflammatory cytokine IL-10 in acquired immune cells. Front. Immunol. 2012, 3, 275. [Google Scholar] [CrossRef] [Green Version]
- Plitas, G.; Rudensky, A.Y. Regulatory T cells: Differentiation and function. Cancer Immunol. Res. 2016, 4, 721–725. [Google Scholar] [CrossRef] [Green Version]
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017, 174, 1325–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuomo, J.; Appendino, G.; Dern, A.S.; Schneider, E.; McKinnon, T.P.; Brown, M.J.; Togni, S.; Dixon, B.M. Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J. Nat. Prod. 2011, 74, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference. | Type of Studies | Sample Size | Age (Mean) | Male (%) | Intervention * | Conclusion | Quality Assessment | |
---|---|---|---|---|---|---|---|---|
Intervention | Control | |||||||
Ahmadi, Iran, 2020 [34] | Randomized triple-blind placebo-controlled clinical trial [IRCT20200408046990N1] Treatment duration: 2 weeks Follow-up: 2 weeks after treatment | 30 mild to moderate COVID-19 patients | 27 mild to moderate COVID-19 patients | 43.15 ± 11.58 | 58.3% | Sinacurcumin® soft gel 40 mg
| Positive effect of curcumin therapy. All symptoms except sore throat resolved faster in the treatment group, and the difference was significant for chills, cough, and smell/taste disturbances. CRP serum level was lower in the treatment group at the end of two weeks, and lymphocyte counts were significantly higher in the intervention group | 5 |
Saber-Moghaddam, Iran, 2020 [35] | Open-label non-randomized placebo-controlled clinical trial [IRCT20200408046990N1] Treatment duration: 2 weeks Follow-up: 2 weeks after treatment | 21 mild to moderate COVID-19 patients | 20 mild to moderate COVID-19 patients | 55.9 ± 15.16 | 65.9% | Sinacurcumin® soft gel 40 mg
| Positive effect of curcumin therapy. Symptoms resolved significantly faster in the intervention group. Duration of supplemental O2 use and hospitalization also shorter in the treatment group | 3 |
Valizadeh, Iran, 2020 [36] | Randomized, double-blind, placebo-controlled clinical trial [IR.TBZMED.REC.1398.1314] Treatment duration: 2 weeks | 20 COVID-19 patients | 20 COVID-19 patients + 40 healthy subjects | 51.5 ± 8.2 | 76.2% | Sinacurcumin® soft gel 40 mg
Both groups received: Betaferon 300 μg subcutaneously every other day until 5 days, Bromhexine 8 mg tablets every 8 h, and Atorvastatin 40 mg daily. | Positive effect of curcumin therapy. Nano-curcumin, as an anti-inflammatory herbal-based agent, may be able to modulate the increased rate of inflammatory cytokines (especially IL-1β and IL-6 mRNA expression and cytokine secretion) in COVID-19 patients, which may cause improvement in clinical manifestation and overall recovery | 3 |
Tahmasebi, Iran, 2020 [37] | Randomized, double-blind, placebo-controlled Clinical trial [IR.TBZMED.REC.1398.1314] Treatment duration: 3 weeks | 40 mild and severe COVID-19 patients | 40 mild and severe COVID-19 patients + 40 healthy subjects | 54.2 ± 9.1 | 60% | SinaCurcumin® (Exir Nano) 80 mg -Intervention group received an 80 mg capsule two times daily (every 12 h) for 21 days.
| Curcumin reduced the frequency of Th17 cells and related inflammatory factors in both mild and severe COVID-19 patients. Hence, it could be considered as a potential modulatory compound in improving patient inflammation | 5 |
Tahmasebi, Iran, 2021 [38] | Randomized, double-blind, placebo-controlled Clinical trial [IR.TBZMED.REC.1398.1314] Treatment duration: 3 weeks | 40 mild and severe COVID-19 patients | 40 mild and severe COVID-19 patients + 40 healthy subjects | 54.2 ± 9.1 | 60% | SinaCurcumin® (Exir Nano) 80 mg
| In both mild and severe COVID-19 patients, nano-curcumin upregulated frequency of Treg cells, expression levels of FoxP3, IL-10, IL-35, and TGF-β, as well as serum levels of cytokines in the treatment group | 4 |
Pawar, India, 2020 [39] | Randomized double-blind placebo-controlled clinical trial [CTRI/2020/05/025482] Treatment duration: 2 weeks | 70 mild to severe COVID-19 patients; Mild (n = 30) Moderate (n = 25), and severe (n = 15) -Mild: (SpO2 > 94%) -moderate: (SpO2, between 90–94%) -Severe: (SpO2 < 90%) | 70 mild to severe COVID-19 patients; Mild (n = 30) Moderate (n = 25), and severe (n = 15) | Range (18–85) | 70.7% | Curcumin administered with piperine
| Positive effect of curcumin therapy. Showed early symptomatic recovery and could substantially reduce the duration of hospitalization in patients with moderate to severe symptoms, and fewer deaths observed in the intervention group | 5 |
Saber-Moghaddam et al. [35] | Valizadeh et al. [36] | Ahmadi et al. [34] | Tahmasebi et al. [37] | Tahmasebi et al. [38] | Pawar s et al. [39] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Curcumin | Placebo | p-Value | Curcumin | Placebo | p-Value | Curcumin | Placebo | p-Value | Curcumin | Placebo | p-Value | Curcumin | Placebo | p-Value | Curcumin | Placebo | p-Value | |
Fever (°C) <37 | 0.62 ± 0.74 | 1.15 ± 1.35 | 0.047 | 37.5% | 66.7% | <0.0001 | 2.86 ± 1.65 | 3.6 ± 3.3 | 0.373 | Mild (0) Severe (10%) | Mild (30%) Severe (39.6%) | <0.05 | Mild (0) Severe (10%) | Mild (30%) Severe (39.6%) | <0.05 | 80.0% | 60.0% | NS |
Oxygen saturation level % | 94.33 ± 4.01 | 74.28 ± 22.1 | 0.001 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Myalgia, N (%) | 1.9 ± 0.83 | 3.44 ± 1.33 | 0.009 | - | - | - | 3.08 ± 2.75 | 4.38 ± 3.01 | 0.043 | - | - | - | - | - | - | 20.0% | 33.3% | NS |
Cough, N (%) | 1.62 ± 0.8 | 3.89 ± 1.54 | 0.002 | 12.5% | 50% | <0.0001 | 4.84 ± 4.29 | 6.96 ± 3.87 | 0.043 | Mild (5%) Severe (10%) | Mild (20%) Severe (47%) | <0.05 | Mild (5%) Severe (10%) | Mild (20%) Severe (47%) | <0.05 | 73.3% | 73.3% | NS |
Chills, N (%) | 1.14 ± 1.31 | 2.55 ± 1.57 | 0.004 | - | - | - | 1.93 ± 0.46 | 2.6 ± 0.99 | 0.013 | - | - | - | - | - | - | - | - | NS |
Dyspnea | 1.14 ± 0.85 | 1.85 ± 1.39 | 0.031 | 6.25% | 8.33% | <0.0001 | 8.37 ± 3.92 | 8.62 ± 2.88 | 0.887 | Mild (1%) Severe (5%) | Mild (5.2%) Severe (15%) | <0.05 | Mild (1%) Severe (5%) | Mild (5.2%) Severe (15%) | <0.05 | 40.0% | 80.0% | <0.05 |
Smell and taste | 1.62 ± 1.07 | 1.44 ± 1.59 | 0.769 | - | - | - | 3.56 ± 2.01 | 5.14 ± 3.37 | 0.032 | - | - | - | - | - | - | - | - | - |
Pulmonary fibrosis | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 13.3% | 93.3% | <0.05 |
Hospitalization duration (day) | 5.05 ± 1.36 | 9.15 ± 4.28 | <0.001 | - | - | - | - | - | - | - | - | - | - | - | - | 80.0% | 33.3% | <0.05 |
Lymphocyte count | 18.76 ± 6.75 | 11.99 ± 6.01 | 0.048 | 35% | 75% | <0.0001 | 5.440 ± 62.22 | 2.198 ± 948 | 0.05 | Mild (45%) | Mild (52%) | <0.05 | Mild (45%) | Mild (52%) | <0.05 | - | - | - |
Serum TNF-α (pg/mL) | - | - | - | * 0.94 ± 0.41 | 1.09 ± 0.24 | NS | - | - | - | - | - | - | - | - | - | - | - | - |
Serum IL-1β (pg/mL) | - | - | - | * 0.56 ± 0.31 | 1.16 ± 0.27 | <0.0001 | - | - | - | - | - | - | - | - | - | - | - | - |
Serum IL-6 (pg/mL) | - | - | - | * 0.58 ± 0.25 | 1.15 ± 0.32 | <0.0001 | - | - | - | - | - | - | - | - | - | - | - | - |
Serum IL-10 (pg/mL) | - | - | - | - | - | - | - | - | - | - | - | - | M: 46.1 ± 20.8 S: 38.2 ± 18.2 | M:43 ± 16.6 S:19.21 ± 9.4 | 0.0094 0.0009 | - | - | - |
Serum IL-17 (pg/mL) | - | - | - | - | - | - | - | - | - | M: 0.69 ± 0.21 S: 0.76 ± 0.11 | M: 0.92 ± 0.1 S: 0.95 ± 0.1 | NS NS | - | - | - | - | - | - |
Serum IL-18 (pg/mL) | - | - | - | * 0.93 ± 0.35 | 1.07 ± 0.35 | NS | - | - | - | - | - | - | - | - | - | - | - | - |
Serum IL-21 (pg/mL) | - | - | - | - | - | - | - | - | - | M:0.54 ± 0.31 S: 0.87 ± 0.18 | M: 1.01 ± 0.16 S: 0.94 ± 0.11 | 0.02 NS | - | - | - | - | - | - |
Serum IL-23 (pg/mL) | - | - | - | - | - | - | - | - | - | M: 0.79 ± 0.23 S: 0.82 ± 0.21 | M: 0.91 ± 0.15 S: 0.97 ± 0.1 | NS NS | - | - | - | - | - | - |
Serum IL-35 (pg/mL) | - | - | - | - | - | - | - | - | - | - | - | - | M: 718.6 ± 473 S: 225.5 ± 118.3 | M:526.6 ± 398 S: 182.9 ± 97.4 | >0.05 >0.05 | - | - | - |
Serum TGF-β (pg/mL) | - | - | - | - | - | - | - | - | - | - | - | - | M:64.8 ± 32.7 S: 87.7 ± 50.3 | M:61.7 ± 27.3 S:66.9 ± 54.44 | >0.05 >0.05 | - | - | - |
Serum GM-CSF (pg/mL) | - | - | - | - | - | - | - | - | - | M: 0.45 ± 0.23 S: 0.77 ± 0.15 | M: 0.98 ± 0.15 S: 0.98 ± 0.12 | 0.02 NS | - | - | - | - | - | - |
T-helper 17 | - | - | - | - | - | - | - | - | - | M: 2.68 ± 1.04 S: 3.26 ± 1.11 | M: 4.25 ± 1.54 S: 4.98 ± 1.53 | <0.001 <0.001 | - | - | - | - | - | - |
RORɣt | - | - | - | - | - | - | - | - | - | M: 0.67 ± 0.18 S: 0.87 ± 0.14 | M: 1.18 ± 0.13 S: 1.03 ± 0.13 | 0.002 NS | - | - | - | - | - | - |
Mortality | - | - | - | 4/20 (20%) | 8/20 (40%) | NR | - | - | - | 0/20 in mild 1/20 (5%) in severe | 1/20 (5%) in mild 5/20 (25%) in severe | <0.0001 | 0/20 in mild 1/20 (5%) in severe | 1/20 (5%) in mild 5/20 (25%) in severe | <0.0001 | 0/30 in mild 0/25 in moderate 2/15 (13.4%) in severe | 1/30 (3.4%) in mild 5/25 (8%) in moderate 5/15 (33.4%) in severe | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahedian-Azimi, A.; Abbasifard, M.; Rahimi-Bashar, F.; Guest, P.C.; Majeed, M.; Mohammadi, A.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients 2022, 14, 256. https://doi.org/10.3390/nu14020256
Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, Guest PC, Majeed M, Mohammadi A, Banach M, Jamialahmadi T, Sahebkar A. Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients. 2022; 14(2):256. https://doi.org/10.3390/nu14020256
Chicago/Turabian StyleVahedian-Azimi, Amir, Mitra Abbasifard, Farshid Rahimi-Bashar, Paul C. Guest, Muhammed Majeed, Asadollah Mohammadi, Maciej Banach, Tannaz Jamialahmadi, and Amirhossein Sahebkar. 2022. "Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials" Nutrients 14, no. 2: 256. https://doi.org/10.3390/nu14020256
APA StyleVahedian-Azimi, A., Abbasifard, M., Rahimi-Bashar, F., Guest, P. C., Majeed, M., Mohammadi, A., Banach, M., Jamialahmadi, T., & Sahebkar, A. (2022). Effectiveness of Curcumin on Outcomes of Hospitalized COVID-19 Patients: A Systematic Review of Clinical Trials. Nutrients, 14(2), 256. https://doi.org/10.3390/nu14020256