Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Milk Sample Collection
2.3. HMO Detection
2.4. Nutrients Contents from Food Frequency Questionnaire (FFQ)
2.5. Energy Adjustment for Diet
2.6. Principal Component Analysis
2.7. Mixed-Effect Model
2.8. Statistical Analysis and Plotting
3. Results
3.1. Baseline Characteristics
3.2. HMO Levels Are Significantly Different between Secretors and Non-Secretors
3.3. HMOs Level Are Significantly Different between Different Stages
3.4. Model for HMOs and Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalbermatter, C.; Fernandez Trigo, N.; Christensen, S.; Ganal-Vonarburg, S.C. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front. Immunol. 2021, 12, 683022. [Google Scholar] [CrossRef]
- Exclusive Breastfeeding for Six Months Best for Babies Everywhere. Available online: https://www.who.int/news/item/15-01-2011-exclusive-breastfeeding-for-six-months-best-for-babies-everywhere (accessed on 2 September 2022).
- Chen, X. Human Milk Oligosaccharides (HMOS). In Advances in Carbohydrate Chemistry and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2015; Volume 72, pp. 113–190. ISBN 978-0-12-802141-5. [Google Scholar]
- Yan, J.; Ding, J.; Jin, G.; Yu, D.; Yu, L.; Long, Z.; Guo, Z.; Chai, W.; Liang, X. Profiling of Sialylated Oligosaccharides in Mammalian Milk Using Online Solid Phase Extraction-Hydrophilic Interaction Chromatography Coupled with Negative-Ion Electrospray Mass Spectrometry. Anal. Chem. 2018, 90, 3174–3182. [Google Scholar] [CrossRef] [Green Version]
- Keikha, M.; Bahreynian, M.; Saleki, M.; Kelishadi, R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Systematic Review. Breastfeed. Med. 2017, 12, 517–527. [Google Scholar] [CrossRef]
- Vicaretti, S.D.; Mohtarudin, N.A.; Garner, A.M.; Zandberg, W.F. Capillary Electrophoresis Analysis of Bovine Milk Oligosaccharides Permits an Assessment of the Influence of Diet and the Discovery of Nine Abundant Sulfated Analogues. J. Agric. Food Chem. 2018, 66, 8574–8583. [Google Scholar] [CrossRef]
- Azad, M.B.; Robertson, B.; Atakora, F.; Becker, A.B.; Subbarao, P.; Moraes, T.J.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; et al. Human Milk Oligosaccharide Concentrations Are Associated with Multiple Fixed and Modifiable Maternal Characteristics, Environmental Factors, and Feeding Practices. J. Nutr. 2018, 148, 1733–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonon, K.M.; de Morais, M.B.; Abrão, A.C.F.V.; Miranda, A.; Morais, T.B. Maternal and Infant Factors Associated with Human Milk Oligosaccharides Concentrations According to Secretor and Lewis Phenotypes. Nutrients 2019, 11, 1358. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Cai, X.; Wang, J.; Mao, Y.; Zou, Y.; Tian, F.; Peng, B.; Hu, J.; Zhao, Y.; Wang, S. Six Oligosaccharides’ Variation in Breast Milk: A Study in South China from 0 to 400 Days Postpartum. Nutrients 2021, 13, 4017. [Google Scholar] [CrossRef]
- Yuan, M.-Y.; He, J.-R.; Chen, N.-N.; Lu, J.-H.; Shen, S.-Y.; Xiao, W.-Q.; Hu, F.; Xiao, H.-Y.; Wu, Y.-Y.; Xia, X.-Y.; et al. Validity and Reproducibility of a Dietary Questionnaire for Consumption Frequencies of Foods during Pregnancy in the Born in Guangzhou Cohort Study (BIGCS). Nutrients 2016, 8, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y. China Food Composition Tables, Standard Edition 2009; Peking University Medical Press: Beijing, China; Volume 2.
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Soft. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Patil, I. Visualizations with Statistical Details: The “ggstatsplot” Approach. JOSS 2021, 6, 3167. [Google Scholar] [CrossRef]
- WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience. Available online: https://www.who.int/publications-detail-redirect/9789241549912 (accessed on 4 August 2022).
- Liu, J.-J.; Kwak, S.; Pathanibul, P.; Lee, J.W.; Yu, S.; Yun, E.J.; Lim, H.; Kim, K.H.; Jin, Y.-S. Biosynthesis of a Functional Human Milk Oligosaccharide, 2’-Fucosyllactose, and l-Fucose Using Engineered Saccharomyces Cerevisiae. ACS Synth. Biol. 2018, 7, 2529–2536. [Google Scholar] [CrossRef] [PubMed]
- Lebrilla, C.B.; Vinjamuri, A. Structures and Functions of Human Milk Oligosaccharides (HMOs). In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-809633-8. [Google Scholar]
- Li, W.; Wang, J.; Lin, Y.; Li, Y.; Ren, F.; Guo, H. How Far Is It from Infant Formula to Human Milk? A Look at the Human Milk Oligosaccharides. Trends Food Sci. Technol. 2021, 118, 374–387. [Google Scholar] [CrossRef]
- Quin, C.; Vicaretti, S.D.; Mohtarudin, N.A.; Garner, A.M.; Vollman, D.M.; Gibson, D.L.; Zandberg, W.F. Influence of Sulfonated and Diet-Derived Human Milk Oligosaccharides on the Infant Microbiome and Immune Markers. J. Biol. Chem. 2020, 295, 4035–4048. [Google Scholar] [CrossRef]
- DeRose, V.J.; Yglesias, M.V. 8.39—Metal Ion Interactions With DNA, RNA, and Nucleic Acid Enzymes. In Comprehensive Coordination Chemistry III; Constable, E.C., Parkin, G., Que, L., Jr., Eds.; Elsevier: Oxford, UK, 2021; pp. 968–993. ISBN 978-0-08-102689-2. [Google Scholar]
- Zhang, W.; Vervoort, J.; Pan, J.; Gao, P.; Zhu, H.; Wang, X.; Zhang, Y.; Chen, B.; Liu, Y.; Li, Y.; et al. Comparison of Twelve Human Milk Oligosaccharides in Mature Milk from Different Areas in China in the Chinese Human Milk Project (CHMP) Study. Food Chem. 2022, 395, 133554. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Gao, Y.; Nanan, R.; Macia, L.; Tan, J.; Sominsky, L.; Quinn, T.P.; O’Hely, M.; Ponsonby, A.-L.; Tang, M.L.K.; Collier, F.; et al. The Maternal Gut Microbiome during Pregnancy and Offspring Allergy and Asthma. J. Allergy Clin. Immunol. 2021, 148, 669–678. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Li, X.; Cai, Z.; Zhang, L.; Duan, Z. Global Vegetable Supply towards Sustainable Food Production and a Healthy Diet. J. Clean. Prod. 2022, 369, 133212. [Google Scholar] [CrossRef]
- Lis-Kuberka, J.; Orczyk-Pawiłowicz, M. Sialylated Oligosaccharides and Glycoconjugates of Human Milk. The Impact on Infant and Newborn Protection, Development and Well-Being. Nutrients 2019, 11, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Xu, H.; Fang, J.; Zhang, X. Enzymatic and Chemoenzymatic Synthesis of Human Milk Oligosaccharides and Derivatives. Carbohydr. Polym. 2022, 291, 119564. [Google Scholar] [CrossRef]
- Mank, M.; Hauner, H.; Heck, A.J.R.; Stahl, B. Targeted LC-ESI-MS2 Characterization of Human Milk Oligosaccharide Diversity at 6 to 16 Weeks Post-Partum Reveals Clear Staging Effects and Distinctive Milk Groups. Anal. Bioanal. Chem. 2020, 412, 6887–6907. [Google Scholar] [CrossRef]
- Turkia, J.; Mehtätalo, L.; Schwab, U.; Hautamäki, V. Mixed-Effect Bayesian Network Reveals Personal Effects of Nutrition. Sci. Rep. 2021, 11, 12016. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The Coefficient of Determination R 2 and Intra-Class Correlation Coefficient from Generalized Linear Mixed-Effects Models Revisited and Expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.-T.; Chen, C.; Newburg, D.S. Utilization of Major Fucosylated and Sialylated Human Milk Oligosaccharides by Isolated Human Gut Microbes. Glycobiology 2013, 23, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.R.; Chow, J.M.; Buck, R.H. Multifunctional Benefits of Prevalent HMOs: Implications for Infant Health. Nutrients 2021, 13, 3364. [Google Scholar] [CrossRef]
- Bzikowska, A.; Czerwonogrodzka-Senczyna, A.; Wesołowska, A.; Weker, H. Nutrition during Breastfeeding—Impact on Human Milk Composition. Pol. Merkur. Lekarski 2017, 43, 276–280. [Google Scholar] [PubMed]
- Tian, H.-M.; Wu, Y.-X.; Lin, Y.-Q.; Chen, X.-Y.; Yu, M.; Lu, T.; Xie, L. Dietary Patterns Affect Maternal Macronutrient Intake Levels and the Fatty Acid Profile of Breast Milk in Lactating Chinese Mothers. Nutrition 2019, 58, 83–88. [Google Scholar] [CrossRef]
- Davis, J.C.C.; Lewis, Z.T.; Krishnan, S.; Bernstein, R.M.; Moore, S.E.; Prentice, A.M.; Mills, D.A.; Lebrilla, C.B.; Zivkovic, A.M. Growth and Morbidity of Gambian Infants Are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota. Sci. Rep. 2017, 7, 40466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durham, H.A.; Lovelady, C.A.; Brouwer, R.J.N.; Krause, K.M.; Ostbye, T. Comparison of Dietary Intake of Overweight Postpartum Mothers Practicing Breastfeeding or Formula Feeding. J. Am. Diet Assoc. 2011, 111, 67–74. [Google Scholar] [CrossRef]
Baseline Characteristics | Mean (q25, q75) or n Count |
---|---|
Mothers enrolled | 277 |
Age (y) | 30.15 (28, 32) |
Number of pregnancies | 1.52 (1, 2) |
Number of deliveries | 1.27 (1, 2) |
c-section/natural | 84/193 |
Pre-pregnancy weight (kg) | 58.62 (52.5, 63) |
Prepartum weight (kg) | 73.1 (67, 79) |
Weight gain (kg) | 14.24 (11, 18) |
Height (m) | 1.64 (1.6, 1.67) |
Pre-pregnancy BMI | 21.91 (20.03, 23.44) |
Prepartum BMI | 27.29 (25.1, 29.3) |
Infant sex, male/female | 141/135 |
Education 1 | 3.04 (3, 3.5) |
HMO | Secretor Milk (n Sample = 289) | Non-Secretor Milk (n Sample = 94) | p Value (adj. t-Test) |
---|---|---|---|
3-FL (mg/L) | 469.11 (228.54, 1231.22) | 1384.59 (837.39, 2073.68) | 8.96 × 10−14 |
2′-FL (mg/L) | 1809.11 (1106.02, 2930.43) | 24.67 (13.42, 48.15) | 1.08 × 10−80 |
LNnT (mg/L) | 114.31 (51.91, 231.05) | 50.71 (18.04, 153.2) | 0.002376952 |
LNT (mg/L) | 435.58 (257.37, 691.05) | 898.87 (383.78, 1610.93) | 1.97 × 10−8 |
6′-SL (mg/L) | 182.56 (28.43, 430.39) | 206.70 (26.13, 418.84) | 0.54555129 |
3′-SL (mg/L) | 135.48 (102.76, 203.94) | 126.71 (92.86, 188.45) | 0.13571986 |
FL (mg/L) | 2610.31 (2243.56, 3237.48) | 1417.10 (872.09, 2104.38) | 2.06 × 10−29 |
SL (mg/L) | 298.79 (163.86, 649.54) | 293.67 (143.16, 613.62) | 0.353030878 |
LT (mg/L) | 595.4 (323.03, 924.43) | 961.21 (403.02, 1861.66) | 2.22 × 10−6 |
sum (mg/L) | 3513 (2902.41, 5053.34) | 3005.08 (2637.14, 3692.77) | 7.85 × 10−11 |
HMO | CM (n = 75) | TM (n = 16) | MM (n = 68) | M2 (n = 72) | M3 (n = 58) | p Value (Kruskal–Wallis Test) |
---|---|---|---|---|---|---|
3-FL (mg/L) | 176.26 (119.82, 294.18) | 201.47 (137.66, 327.16) | 377.18 (234.7, 487.84) | 1213.61 (893.13, 1493.38) | 1393.44 (1028.57, 1640.19) | 4.33 × 10−42 |
2′-FL (mg/L) | 3537.05 (3005.28, 4366.29) | 2689.71 (2342.02, 3019.01) | 2009.38 (1566.06, 2544.99) | 1193.59 (862.31, 1526.61) | 1006.85 (675.33, 1282.08) | 1.02 × 10−39 |
LNnT (mg/L) | 293.62 (246.06, 414.73) | 216.35 (174.76, 301.17) | 117.55 (74.26, 164.57) | 58.92 (37.17, 94.25) | 37.83 (19.55, 63.11) | 1.72 × 10−41 |
LNT (mg/L) | 656.47 (456.51, 1099.37) | 1261.48 (943.38, 1512.82) | 534.04 (348.77, 774.67) | 254.56 (198.96, 352.79) | 297.9 (182.05, 404.29) | 2.27 × 10−24 |
6′-SL (mg/L) | 464.68 (391.03, 548.36) | 552.09 (493.79, 756.52) | 294.43 (180.98, 402.07) | 32.38 (20.82, 50.21) | 20 (10.62, 33.46) | 4.66 × 10−48 |
3′-SL (mg/L) | 253.69 (202.9, 315.39) | 153.48 (131.16, 199.67) | 105.39 (86.19, 118.91) | 114.95 (93.71, 139.61) | 139.54 (103.72, 163.91) | 5.24 × 10−30 |
FL | 3697.9 (3186.22, 4621.85) | 2921.89 (2605.74, 3278.7) | 2504.21 (1988.17, 3007.23) | 2372.99 (2180.82, 2609.96) | 2373.63 (2120.77, 2582.83) | 8.61 × 10−25 |
SL | 717.46 (649.54, 812.08) | 737.02 (645.97, 908.78) | 414.95 (278.87, 511.85) | 154.86 (135.26, 187.18) | 164.51 (131.33, 202) | 4.74 × 10−47 |
LT | 1047.8 (768.11, 1382.07) | 1537.79 (1186.76, 1760.79) | 683.8 (500.42, 907.64) | 291.53 (249.25, 434.18) | 334 (219.81, 485.35) | 8.46 × 10−35 |
sum | 5755.93 (5187.86, 6402.73) | 5142.36 (4793.08, 5678.31) | 3690.99 (3119.37, 4075.24) | 2930.6 (2752.11, 3165.77) | 2934.16 (2638.05, 3253.69) | 1.53 × 10−41 |
HMO | CM (n = 25) | TM (n = 4) | MM (n = 23) | M2 (n = 21) | M3 (n = 21) | p Value (Kruskal–Wallis Test) |
---|---|---|---|---|---|---|
3-FL (mg/L) | 696.47 (580.34, 961.76) | 751.45 (629.03, 898.64) | 1117.73 (857.49, 1448.78) | 2179.61 (1638.99, 2474.44) | 2050.38 (1692.3, 2210.65) | 1.92 × 10−11 |
2′-FL (mg/L) | 69.35 (54.45, 93.84) | 14.87 (8.12, 25.83) | 30.12 (25.2, 39.36) | 15.25 (12.2, 22.08) | 13.43 (10.75, 19.17) | 1.20 × 10−9 |
LNnT (mg/L) | 282.99 (206.1, 368.4) | 74.24 (55.22, 89.74) | 64.52 (40.17, 94.88) | 19.02 (13.12, 30.15) | 14.23 (7.13, 26.45) | 9.83 × 10−15 |
LNT (mg/L) | 2120.76 (1616.91, 2555.86) | 2589.37 (2164.01, 3227.1) | 1065.83 (821.18, 1408.14) | 284.08 (175.62, 606.28) | 375.25 (261.77, 567.98) | 6.07 × 10−13 |
6′-SL (mg/L) | 451.66 (400.91, 488.5) | 745.42 (544.11, 900) | 274.53 (184.17, 370.54) | 31.77 (11.49, 45.03) | 17.48 (9.14, 24.11) | 4.21 × 10−15 |
3′-SL (mg/L) | 239.43 (222.49, 300.21) | 150.77 (131.12, 173.99) | 97.62 (74.04, 122.7) | 100.22 (83.6, 112.25) | 123.2 (91.85, 134.96) | 2.63 × 10−11 |
FL | 777.62 (650.94, 972.71) | 759.53 (644.69, 910.14) | 1126.91 (899.39, 1481.16) | 2191.46 (1653.96, 2490.18) | 2068.14 (1733.74, 2222.3) | 3.62 × 10−11 |
SL | 709.06 (618.19, 768.08) | 903.32 (671.43, 1084.91) | 378.15 (279.82, 474.28) | 142.74 (119.33, 162.85) | 146.43 (114.23, 163.69) | 4.88 × 10−14 |
LT | 2508.49 (1923.8, 2791.45) | 2638.76 (2231.66, 3279.55) | 1140.5 (865.38, 1484.22) | 304 (191.83, 640.3) | 401.7 (279.79, 581.82) | 1.17 × 10−13 |
sum | 3927.75 (3646.62, 4172.64) | 4535.04 (3853.88, 5201.93) | 2727.3 (2560.26, 3120.88) | 2809.38 (2533.22, 3097.37) | 2687.3 (2478.14, 2946.63) | 3.77 × 10−9 |
3-FL | 2′-FL | LNnT | LNT | 6′-SL | 3′-SL | FL | LT | SL | Sum | |
---|---|---|---|---|---|---|---|---|---|---|
PC1 | 26.29 | 31.62 | −2.44 | 18.72 | 1.67 | 5 # | 59.82 | 16.37 | 6.63 | 80.733 * |
PC2 | −12.06 | 32.68 | 0.54 | 15.31 | 0.84 | −0.63 | 19.54 | 16.13 | 0.64 | 37.179 |
PC3 | 1.53 | 34.12 | −2.27 | −8.31 | 4.05 | −0.06 | 34.3 | −10.31 | 4.31 | 29.749 |
PC4 | 54.06 ** | −25.52 | −3.1 | 9.56 | −7.98 | 4.01 | 29.18 | 6.21 | −4.14 | 30.238 |
PC5 | −18.21 | 16.12 | 5 | −15.65 | 2.39 | 4.93 # | −0.14 | −10.91 | 7.02 | −6.476 |
PC6 | −7.63 | −16.7 | −4.62 | 0.02 | 8.46 | −2.69 | −27.23 | −5 | 5.93 | −24.371 |
PC7 | −26.49 | −10.19 | 0.31 | 44.26 # | 1.17 | 1.27 | −35.3 | 44.67 # | 2.47 | 10.338 |
PC8 | 17.44 | 6.08 | −4.31 | 30.03 | 3.07 | −0.12 | 26.08 | 25.63 | 2.85 | 51.341 |
PC9 | 10.27 | −39.06 | −1.65 | 19.04 | 3.31 | −3.06 | −27.64 | 17.37 | 0.27 | −11.538 |
PC10 | −40.06 * | 136.24 ** | −4 | −30.1 | 0.43 | −3.13 | 96.6 * | −33.93 | −2.49 | 59.417 |
PC11 | 43.16 * | −23.7 | −1.44 | 8.41 | 7.99 | 0.52 | 17.06 | 7.24 | 8.52 | 36.917 |
PC12 | 36.75 # | 6.33 | 1.95 | −1.73 | −1.13 | 2.01 | 42.27 | 0.55 | 0.99 | 45.827 |
PC13 | 0.08 | −1.22 | −2.67 | −3.6 | −0.47 | −0.27 | −3.04 | −6 | −0.29 | −7.337 |
Conditional R2 | 0.759 | 0.747 | 0.632 | 0.643 | 0.816 | 0.514 | 0.474 | 0.672 | 0.816 | 0.726 |
Marginal R2 | 0.016 | 0.010 | 0.006 | 0.010 | 0.004 | 0.016 | 0.015 | 0.008 | 0.003 | 0.010 |
Principal Components | Top1 | Top2 | Top3 | Top4 | Top5 |
---|---|---|---|---|---|
PC1 | ferrum | kalium | manganese | calcium | magnesium |
0.903 | 0.866 | 0.821 | 0.760 | 0.700 | |
PC4 | plant protein | plant oil | plant calcium | animal calcium | animal fat |
0.943 | 0.915 | 0.904 | 0.877 | 0.851 | |
PC5 | gamma tocopherol | delta tocopherol | beta tocopherol | C18:3 n linoleic acid | C18:3 total linoleic acid |
0.968 | 0.943 | 0.768 | 0.726 | 0.723 | |
PC7 | milk | lactose | selenium | milk calcium | phosphorus |
0.919 | 0.899 | 0.435 | 0.362 | 0.354 | |
PC10 | supplement | vitamin B2 | vitamin B1 | alpha tocopherol | total choline |
0.883 | 0.782 | 0.667 | 0.548 | 0.244 | |
PC11 | total carotene | vitamin A | vitamin C | lutein and zeaxanthin | vegetable |
0.787 | 0.781 | 0.750 | 0.732 | 0.704 | |
PC12 | cookie | vitamin B3 | cuprum | seasoning | potato starch |
−0.538 | 0.495 | −0.418 | 0.407 | 0.390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Mao, Y.; Liu, S.; Wang, J.; Li, X.; Zhao, Y.; Hill, D.R.; Wang, S. Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China. Nutrients 2022, 14, 4131. https://doi.org/10.3390/nu14194131
Li X, Mao Y, Liu S, Wang J, Li X, Zhao Y, Hill DR, Wang S. Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China. Nutrients. 2022; 14(19):4131. https://doi.org/10.3390/nu14194131
Chicago/Turabian StyleLi, Xinyang, Yingyi Mao, Shuang Liu, Jin Wang, Xiang Li, Yanrong Zhao, David R. Hill, and Shuo Wang. 2022. "Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China" Nutrients 14, no. 19: 4131. https://doi.org/10.3390/nu14194131
APA StyleLi, X., Mao, Y., Liu, S., Wang, J., Li, X., Zhao, Y., Hill, D. R., & Wang, S. (2022). Vitamins, Vegetables and Metal Elements Are Positively Associated with Breast Milk Oligosaccharide Composition among Mothers in Tianjin, China. Nutrients, 14(19), 4131. https://doi.org/10.3390/nu14194131