Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health
Abstract
:1. Introduction
1.1. Food Polysaccharides, an Overview
1.2. Food Polysaccharides and Gut Microbiota
2. Health-Promoting Effects of Polysaccharides through the Modulation of Gut Microbiota
2.1. Dietary Polysaccharides and Short-Chain Fatty Acids (SCFAs)
2.2. Dietary Polysaccharides Influence Immunity by Acting as Prebiotics by Changing Gut Microbiota Composition
3. Human Studies Examining Polysaccharide Modulation of Gut Microbiota and Its Association with Improved Health
4. Future Perspectives in the Nutrition Field
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aranceta, J.; Serra-Majem, L. Working Party for the Development of Food-Based Dietary Guidelines for the Spanish, P. Dietary Guidelines for the Spanish Population. Public Health Nutr. 2001, 4, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, A.; Edwards, C.; DE Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of Polysaccharides in Food, Digestion, and Health. Crit. Rev. Food Sci. Nutr. 2015, 57, 237–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Tan, H.; Nie, S. Beneficial Effects of Seaweed-Derived Dietary Fiber: Highlights of the Sulfated Polysaccharides. Food Chem. 2021, 373, 131608. [Google Scholar] [CrossRef] [PubMed]
- Meyers, L.D.; Hellwig, J.P.; Otten, J.J. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Díaz-Montes, E. Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. Polysaccharides 2022, 3, 480–501. [Google Scholar] [CrossRef]
- BeMiller, J.N. Carbohydrate Chemistry for Food Scientists; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Goff, H.D.; Guo, Q. Chapter 1. The Role of Hydrocolloids in the Development of Food Structure. In Handbook of Food Structure Development, 1st ed.; Royal Society of Chemistry: London, UK, 2019; pp. 1–28. [Google Scholar] [CrossRef]
- Ahmadi, S.; Mainali, R.; Nagpal, R.; Sheikh-Zeinoddin, M.; Soleimanian-Zad, S.; Wang, S.; Deep, G.; Mishra, S.K.; Yadav, H. Dietary Polysaccharides in the Amelioration of Gut Microbiome Dysbiosis and Metabolic Diseases. Obes. Control Ther. Open Access 2017, 4, 1–15. [Google Scholar] [CrossRef]
- Stephen, A.M.; Phillips, G.O. Food Polysaccharides and Their Applications; CRC press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Tiwari, U.; Brennan, C. Pulses nonstarch polysaccharides. In Pulse Foods; Elsevier: Amsterdam, The Netherlands, 2021; pp. 177–192. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; de Boeck, G.; Becker, K. Dietary Roles of Non-Starch Polysachharides in Human Nutrition: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 899–935. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z. Solubility of Polysaccharides; IntechOpen Limited: London, UK, 2017. [Google Scholar]
- Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers 2018, 10, 762. [Google Scholar] [CrossRef]
- Capuano, E. The Behavior of Dietary Fiber in the Gastrointestinal Tract Determines Its Physiological Effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Khalil, A.A.; Shaukat, F.; Song, Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019, 8, 304. [Google Scholar] [CrossRef] [Green Version]
- Do, M.H.; Seo, Y.S.; Park, H.-Y. Polysaccharides: Bowel Health and Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2020, 61, 1212–1224. [Google Scholar] [CrossRef]
- Anderson, J.W. Physiological and Metabolic Effects of Dietary Fiber. Fed. Proc. 1985, 44, 2902–2906. [Google Scholar]
- De Jesus Raposo, M.F.; De Morais, A.M.M.B.; De Morais, R.M.S.C. Emergent Sources of Prebiotics: Seaweeds and Microalgae. Mar. Drugs 2016, 14, 27. [Google Scholar] [CrossRef]
- Sokol, H. Definition and Roles of the Gut Microbiota. La Rev. Du Prat. 2019, 69, 776–782. [Google Scholar]
- Aragón-Vela, J.; Solis-Urra, P.; Ruiz-Ojeda, F.J.; Álvarez-Mercado, A.I.; Olivares-Arancibia, J.; Plaza-Diaz, J. Impact of Exercise on Gut Microbiota in Obesity. Nutrients 2021, 13, 3999. [Google Scholar] [CrossRef]
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The Gut Microbiome in Health and in Disease. Curr. Opin. Gastroenterol. 2015, 31, 69–75. [Google Scholar] [CrossRef]
- Plaza-Díaz, J.; Solis-Urra, P.; Aragón-Vela, J.; Rodríguez-Rodríguez, F.; Olivares-Arancibia, J.; Álvarez-Mercado, A. Insights into the Impact of Microbiota in the Treatment of NAFLD/NASH and Its Potential as a Biomarker for Prognosis and Diagnosis. Biomedicines 2021, 9, 145. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Sommer, F.; Rühlemann, M.; Bang, C.; Höppner, M.; Rehman, A.; Kaleta, C.; Schmitt-Kopplin, P.; Dempfle, A.; Weidinger, S.; Ellinghaus, E.; et al. Microbiomarkers in Inflammatory Bowel Diseases: Caveats Come with Caviar. Gut 2017, 66, 1734–1738. [Google Scholar] [CrossRef]
- Sommer, F.; Anderson, J.M.; Bharti, R.; Raes, J.; Rosenstiel, P. The Resilience of the Intestinal Microbiota Influences Health and Disease. Nat. Rev. Microbiol. 2017, 15, 630–638. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, E.; Egea-Zorrilla, A.; Plaza-Díaz, J.; Aragón-Vela, J.; Muñoz-Quezada, S.; Tercedor-Sánchez, L.; Abadia-Molina, F. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related Cardiovascular Diseases. Nutrients 2020, 12, 605. [Google Scholar] [CrossRef] [Green Version]
- Michaud, D.S.; Izard, J.; Wilhelm-Benartzi, C.S.; You, D.-H.; Grote, V.A.; Tjonneland, A.; Dahm, C.C.; Overvad, K.; Jenab, M.; Fedirko, V.; et al. Plasma Antibodies to Oral Bacteria and Risk of Pancreatic Cancer in a Large European Prospective Cohort Study. Gut 2013, 62, 1764–1770. [Google Scholar] [CrossRef]
- Fernández, M.F.; Reina-Pérez, I.; Astorga, J.M.; Rodríguez-Carrillo, A.; Plaza-Díaz, J.; Fontana, L. Breast Cancer and Its Relationship with the Microbiota. Int. J. Environ. Res. Public Health 2018, 15, 1747. [Google Scholar] [CrossRef] [Green Version]
- Honda, K.; Littman, D.R. The Microbiota in Adaptive Immune Homeostasis and Disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef]
- Huang, Y.J.; Nelson, C.E.; Brodie, E.L.; DeSantis, T.Z.; Baek, M.S.; Liu, J.; Woyke, T.; Allgaier, M.; Bristow, J.; Wiener-Kronish, J.P.; et al. Airway Microbiota and Bronchial Hyperresponsiveness in Patients with Suboptimally Controlled Asthma. J. Allergy Clin. Immunol. 2011, 127, 372.e3–381.e3. [Google Scholar] [CrossRef] [Green Version]
- De Groot, P.F.; Belzer, C.; Aydin, Ö.; Levin, E.; Levels, J.H.; Aalvink, S.; Boot, F.; Holleman, F.; Van Raalte, D.H.; Scheithauer, T.P. Distinct Fecal and Oral Microbiota Composition in Human Type 1 Diabetes, an Observational Study. PLoS ONE 2017, 12, e0188475. [Google Scholar] [CrossRef] [Green Version]
- Kleessen, B.; Kroesen, A.J.; Buhr, H.J.; Blaut, M. Mucosal and Invading Bacteria in Patients with Inflammatory Bowel Disease Compared with Controls. Scand. J. Gastroenterol. 2002, 37, 1034–1041. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.-H.; Andersen, G.L. Chronic Kidney Disease Alters Intestinal Microbial Flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, Z.; Liu, X.; Cheng, Y.; Jiang, X.; Jiang, H.; Wang, Y.; Li, L. Decreased Diversity of the Oral Microbiota of Patients with Hepatitis B Virus-Induced Chronic Liver Disease: A Pilot Project. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut Biogeography of the Bacterial Microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Walter, J. Ecological Role of Lactobacilli in the Gastrointestinal Tract: Implications for Fundamental and Biomedical Research. Appl. Environ. Microbiol. 2008, 74, 4985–4996. [Google Scholar] [CrossRef] [Green Version]
- Boscaini, S.; Leigh, S.-J.; Lavelle, A.; García-Cabrerizo, R.; Lipuma, T.; Clarke, G.; Schellekens, H.; Cryan, J.F. Microbiota and Body Weight Control: Weight Watchers Within? Mol. Metab. 2021, 57, 101427. [Google Scholar] [CrossRef]
- Lavelle, A.; Lennon, G.; O’Sullivan, O.; Docherty, N.; Balfe, A.; Maguire, A.; Mulcahy, H.E.; Doherty, G.; O’Donoghue, D.; Hyland, J.; et al. Spatial Variation of the Colonic Microbiota in Patients with Ulcerative Colitis and Control Volunteers. Gut 2015, 64, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Vuik, F.; Dicksved, J.; Lam, S.Y.; Fuhler, G.M.; Van Der Laan, L.; Van De Winkel, A.; Konstantinov, S.R.; Spaander, M.; Peppelenbosch, M.P.; Engstrand, L.; et al. Composition of the Mucosa-Associated Microbiota Along the Entire Gastrointestinal Tract of Human Individuals. United Eur. Gastroenterol. J. 2019, 7, 897–907. [Google Scholar] [CrossRef] [Green Version]
- Carroll, I.M.; Ringel-Kulka, T.; Keku, T.O.; Chang, Y.-H.; Packey, C.D.; Sartor, R.B.; Ringel, Y. Molecular Analysis of the Luminal- and Mucosal-Associated Intestinal Microbiota in Diarrhea-Predominant Irritable Bowel Syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G799–G807. [Google Scholar] [CrossRef] [Green Version]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Burrough, E.R.; Arruda, B.L.; Plummer, P.J. Comparison of the Luminal and Mucosa-Associated Microbiota in the Colon of Pigs with and without Swine Dysentery. Front. Veter- Sci. 2017, 4, 139. [Google Scholar] [CrossRef] [Green Version]
- Zeisel, S.H.; Warrier, M. Trimethylamine N-Oxide, The Microbiome, and Heart and Kidney Disease. Annu. Rev. Nutr. 2017, 37, 157–181. [Google Scholar] [CrossRef]
- Nam, H.S. Gut Microbiota and Ischemic Stroke: The Role of Trimethylamine N-Oxide. J. Stroke 2019, 21, 151–159. [Google Scholar] [CrossRef]
- Thomas, M.S.; Fernandez, M.L. Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Curr. Atheroscler. Rep. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-Oxide (TMAO) in Human Health. EXCLI J. 2021, 20, 301–319. [Google Scholar]
- Zhu, Y.; Li, Q.; Jiang, H. Gut Microbiota in Atherosclerosis: Focus on Trimethylamine N-Oxide. APMIS 2020, 128, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Ke, B.; Du, J. TMAO: How Gut Microbiota Contributes to Heart Failure. Transl. Res. 2020, 228, 109–125. [Google Scholar] [CrossRef]
- Cho, C.E.; Aardema, N.D.J.; Bunnell, M.L.; Larson, D.P.; Aguilar, S.S.; Bergeson, J.R.; Malysheva, O.V.; Caudill, M.A.; Lefevre, M. Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men. Nutrients 2020, 12, 2220. [Google Scholar] [CrossRef]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Braune, A.; Grabber, J.H.; Steinhart, H.; Bunzel, M. Model Studies of Lignified Fiber Fermentation by Human Fecal Microbiota and Its Impact on Heterocyclic Aromatic Amine Adsorption. Mutat. Res. Mol. Mech. Mutagen. 2007, 624, 41–48. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Liang, Y.; Jiao, X.; Zhao, C. Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients 2018, 10, 1055. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.-T.; Chen, C.; Kling, D.; Liu, B.; McCoy, J.M.; Merighi, M.; Heidtman, M.; Newburg, D.S. The Principal Fucosylated Oligosaccharides of Human Milk Exhibit Prebiotic Properties on Cultured Infant Microbiota. Glycobiology 2012, 23, 169–177. [Google Scholar] [CrossRef]
- Marcobal, A.; Barboza, M.; Sonnenburg, E.D.; Pudlo, N.; Martens, E.C.; Desai, P.; Lebrilla, C.B.; Weimer, B.C.; Mills, D.A.; German, J.B.; et al. Bacteroides in the Infant Gut Consume Milk Oligosaccharides via Mucus-Utilization Pathways. Cell Host Microbe 2011, 10, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Lewis, Z.T.; Totten, S.M.; Smilowitz, J.T.; Popovic, M.; Parker, E.; Lemay, D.G.; Van Tassell, M.L.; Miller, M.J.; Jin, Y.-S.; German, J.B.; et al. Maternal Fucosyltransferase 2 Status Affects the Gut Bifidobacterial Communities of Breastfed Infants. Microbiome 2015, 3, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, T.; Nakanishi, Y.; Ikeda, K.; Tsugawa, H.; Suda, W.; Mizuno, Y.; Yamamichi, N.; Arita, M.; Hattori, M.; Kubota, N.; et al. 1876-P: Gut Microbial Fermentation of Polysaccharides Impacts Insulin Resistance in Humans. Diabetes 2020, 69, 1876. [Google Scholar] [CrossRef]
- Sonnenburg, E.D.; Zheng, H.; Joglekar, P.; Higginbottom, S.K.; Firbank, S.J.; Bolam, D.N.; Sonnenburg, J.L. Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations. Cell 2010, 141, 1241–1252. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, P.C.; Marcobal, A.; Ursell, L.K.; Smits, S.A.; Sonnenburg, E.D.; Costello, E.K.; Higginbottom, S.K.; Domino, S.E.; Holmes, S.P.; Relman, D.A.; et al. Genetically Dictated Change in Host Mucus Carbohydrate Landscape Exerts a Diet-Dependent Effect on the Gut Microbiota. Proc. Natl. Acad. Sci. USA 2013, 110, 17059–17064. [Google Scholar] [CrossRef] [Green Version]
- Cuskin, F.; Lowe, E.C.; Temple, M.J.; Zhu, Y.; Cameron, E.A.; Pudlo, N.A.; Porter, N.T.; Urs, K.; Thompson, A.J.; Cartmell, A.; et al. Human Gut Bacteroidetes Can Utilize Yeast Mannan Through a Selfish Mechanism. Nature 2015, 517, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and Functional Importance in the Gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- Sanchez, H.N.; Moroney, J.B.; Gan, H.; Shen, T.; Im, J.L.; Li, T.; Taylor, J.R.; Zan, H.; Casali, P. B Cell-Intrinsic Epigenetic Modulation of Antibody Responses by Dietary Fiber-Derived Short-Chain Fatty Acids. Nat. Commun. 2020, 11, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cai, X.; Fei, W.; Ye, Y.; Zhao, M.; Zheng, C. The Role of Short-Chain Fatty Acids in Immunity, Inflammation and Metabolism. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiang, F.; Zhang, J.; Wang, W.; Li, L.; Yan, J. Modulatory Effects of Polysaccharides from Plants, Marine Algae and Edible Mushrooms on Gut Microbiota and Related Health Benefits: A Review. Int. J. Biol. Macromol. 2022, 204, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [Green Version]
- El Kaoutari, A.; Armougom, F.; Gordon, J.I.; Raoult, D.; Henrissat, B. The Abundance and Variety of Carbohydrate-Active Enzymes in the Human Gut Microbiota. Nat. Rev. Genet. 2013, 11, 497–504. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. (Lausanne) 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay Between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Macia, L.; Tan, J.; Vieira, A.T.; Leach, K.; Stanley, D.; Luong, S.; Maruya, M.; McKenzie, C.l.; Hijikata, A.; Wong, C.; et al. Metabolite-Sensing Receptors GPR43 and GPR109A Facilitate Dietary Fibre-Induced Gut Homeostasis Through Regulation of the Inflammasome. Nat. Commun. 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yang, W.; Huang, X.; Cao, A.T.; Bilotta, A.J.; Xiao, Y.; Sun, M.; Chen, L.; Ma, C.; Liu, X.; et al. Neutrophils Promote Amphiregulin Production in Intestinal Epithelial Cells through TGF-β and Contribute to Intestinal Homeostasis. J. Immunol. 2018, 201, 2492–2501. [Google Scholar] [CrossRef] [Green Version]
- Desalegn, G.; Pabst, O. Inflammation Triggers Immediate Rather Than Progressive Changes in Monocyte Differentiation in the Small Intestine. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Hu, J.; Geng, F.; Nie, S. Bacteroides Utilization for Dietary Polysaccharides and Their Beneficial Effects on Gut Health. Food Sci. Hum. Wellness 2022, 11, 1101–1110. [Google Scholar] [CrossRef]
- Duncan, S.; Louis, P.; Thomson, J.M.; Flint, H.J. The Role of Ph in Determining the Species Composition of the Human Colonic Microbiota. Environ. Microbiol. 2009, 11, 2112–2122. [Google Scholar] [CrossRef]
- Cani, P.D.; Everard, A.; Duparc, T. Gut microbiota, Enteroendocrine Functions and Metabolism. Curr. Opin. Pharmacol. 2013, 13, 935–940. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The Role of the Gut Microbiota in Nutrition and Health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef]
- Bartolomaeus, H.; Balogh, A.; Yakoub, M.; Homann, S.; Markó, L.; Höges, S.; Tsvetkov, D.; Krannich, A.; Wundersitz, S.; Avery, E.G.; et al. Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation 2019, 139, 1407–1421. [Google Scholar] [CrossRef]
- Mathewson, N.D.; Jenq, R.; Mathew, A.V.; Koenigsknecht, M.; Hanash, A.; Toubai, T.; Oravecz-Wilson, K.; Wu, S.-R.; Sun, Y.; Rossi, C.; et al. Gut Microbiome–Derived Metabolites Modulate Intestinal Epithelial Cell Damage and Mitigate Graft-Versus-Host Disease. Nat. Immunol. 2016, 17, 505–513. [Google Scholar] [CrossRef]
- Dolan, K.T.; Chang, E.B. Diet, Gut Microbes, and the Pathogenesis of Inflammatory Bowel Diseases. Mol. Nutr. Food Res. 2016, 61, 1600129. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [Green Version]
- Topping, D.L.; Clifton, P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [Green Version]
- Tzianabos, A.O. Polysaccharide Immunomodulators as Therapeutic Agents: Structural Aspects and Biologic Function. Clin. Microbiol. Rev. 2000, 13, 523–533. [Google Scholar] [CrossRef]
- Tang, C.; Ding, R.; Sun, J.; Liu, J.; Kan, J.; Jin, C. The Impacts of Natural Polysaccharides on Intestinal Microbiota and Immune Responses—A Review. Food Funct. 2019, 10, 2290–2312. [Google Scholar] [CrossRef]
- Sheng, X.; Yan, J.; Meng, Y.; Kang, Y.; Han, Z.; Tai, G.; Zhou, Y.; Cheng, H. Immunomodulatory Effects of Hericium Erinaceus Derived Polysaccharides Are Mediated by Intestinal Immunology. Food Funct. 2017, 8, 1020–1027. [Google Scholar] [CrossRef]
- Xi, Q.-Y.; Jiang, Y.; Zhao, S.; Zeng, B.; Wang, F.; Wang, L.-N.; Jiang, Q.-Y.; Zhang, Y.-L. Effect of Ginseng Polysaccharides on The Immunity and Growth of Piglets by Dietary Supplementation During Late Pregnancy and Lactating Sows. Anim. Sci. J. 2016, 88, 863–872. [Google Scholar] [CrossRef]
- Liang, M.-f.; Liu, G.-h.; Zhao, Q.-y.; Yang, S.-f.; Zhong, S.-x.; Cui, G.-l.; He, X.-h.; Zhao, X.; Guo, F.-x.; Wu, C. Effects of Taishan Robinia Pseudoacacia Polysaccharides on Immune Function in Chickens. Int. Immunopharmacol. 2013, 15, 661–665. [Google Scholar] [CrossRef]
- Kim, H.; Yu, K.-W.; Hong, H.-D.; Shin, K.-S. Effect of Arabinoxylan-and Rhamnogalacturonan I-Rich Polysaccharides Iso-Lated from Young Barley Leaf on Intestinal Immunostimulatory Activity. J. Funct. Foods 2017, 35, 384–390. [Google Scholar] [CrossRef]
- Zafar, H.; Jr, M.H.S. Gut Bacteroides Species in Health and Disease. Gut Microbes 2021, 13, 1–20. [Google Scholar] [CrossRef]
- Li, J.; Pang, B.; Shao, D.; Jiang, C.; Hu, X.; Shi, J. Artemisia Sphaerocephala Krasch Polysaccharide Mediates Lipid Metabolism and Metabolic Endotoxaemia in Associated with the Modulation of Gut Microbiota in Diet-Induced Obese Mice. Int. J. Biol. Macromol. 2020, 147, 1008–1017. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Zhao, N.; Hong, Z.; Cai, B.; Le, Q.; Yang, T.; Shi, L.; He, J. Soluble Polysaccharide Derived from Laminaria japonica Attenuates Obesity-Related Nonalcoholic Fatty Liver Disease Associated with Gut Microbiota Regulation. Mar. Drugs 2021, 19, 699. [Google Scholar] [CrossRef]
- Zheng, W.; Duan, M.; Jia, J.; Song, S.; Ai, C. Low-Molecular Alginate Improved Diet-Induced Obesity and Metabolic Syndrome Through Modulating the Gut Microbiota In BALB/C Mice. Int. J. Biol. Macromol. 2021, 187, 811–820. [Google Scholar] [CrossRef]
- Geerlings, S.Y.; Kostopoulos, I.; De Vos, W.M.; Belzer, C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms 2018, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Hiel, S.; Gianfrancesco, M.A.; Rodriguez, J.; Portheault, D.; Leyrolle, Q.; Bindels, L.B.; Cauduro, C.G.D.S.; Mulders, M.D.; Zamariola, G.; Azzi, A.-S.; et al. Link Between Gut Microbiota and Health Outcomes in Inulin-Treated Obese Patients: Lessons from the Food4Gut Multicenter Randomized Placebo-Controlled Trial. Clin. Nutr. 2020, 39, 3618–3628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ouyang, Y.; Li, H.; Shen, L.; Ni, Y.; Fang, Q.; Wu, G.; Qian, L.; Xiao, Y.; Zhang, J.; et al. Metabolic Phenotypes and The Gut Microbiota in Response to Dietary Resistant Starch Type 2 In Normal-Weight Subjects: A Randomized Crossover Trial. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahim, Z.; Proost, S.; Tito, R.Y.; Raes, J.; Glorieux, G.; Moosa, M.R.; Blaauw, R. The Effect of ß-Glucan Prebiotic on Kidney Function, Uremic Toxins and Gut Microbiome in Stage 3 to 5 Chronic Kidney Disease (CKD) Predialysis Participants: A Randomized Controlled Trial. Nutrients 2022, 14, 805. [Google Scholar] [CrossRef] [PubMed]
- Nixon, S.L.; Daly, R.A.; Borton, M.A.; Solden, L.M.; Welch, S.A.; Cole, D.R.; Mouser, P.J.; Wilkins, M.J.; Wrighton, K.C. Genome-Resolved Metagenomics Extends the Environmental Distribution of the Verrucomicrobia Phylum to the Deep Terrestrial Subsurface. mSphere 2019, 4, e00613-19. [Google Scholar] [CrossRef] [Green Version]
- Cong, J.; Zhou, P.; Zhang, R. Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients 2022, 14, 1977. [Google Scholar] [CrossRef]
- Kumar, D.; Lal, M.K.; Dutt, S.; Raigond, P.; Changan, S.S.; Tiwari, R.K.; Chourasia, K.N.; Mangal, V.; Singh, B. Functional Fermented Probiotics, Prebiotics, and Synbiotics from Non-Dairy Products: A Perspective from Nutraceutical. Mol. Nutr. Food Res. 2022, 66, 2101059. [Google Scholar] [CrossRef]
- Tawfick, M.M.; Xie, H.; Zhao, C.; Shao, P.; Farag, M.A. Inulin Fructans in Diet: Role in Gut Homeostasis, Immunity, Health Outcomes and Potential Therapeutics. Int. J. Biol. Macromol. 2022, 208, 948–961. [Google Scholar] [CrossRef]
- Rodriguez, J.; Neyrinck, A.M.; Van Kerckhoven, M.; Gianfrancesco, M.A.; Renguet, E.; Bertrand, L.; Cani, P.D.; Lanthier, N.; Cnop, M.; Paquot, N.; et al. Physical Activity Enhances the Improvement of Body Mass Index and Metabolism by Inulin: A Multicenter Randomized Placebo-Controlled Trial Performed in Obese Individuals. BMC Med. 2022, 20, 1–20. [Google Scholar] [CrossRef]
- Williams, C.J.; Torquati, L.; Li, Z.; Lea, R.A.; Croci, I.; Keating, E.; Little, J.P.; Eynon, N.; Coombes, J.S. Oligofructose-Enriched Inulin Intake, Gut Microbiome Characteristics, and the VO2 Peak Response to High-Intensity Interval Training in Healthy Inactive Adults. J. Nutr. 2021, 152, 680–689. [Google Scholar] [CrossRef]
- He, S.; Xiong, Q.; Tian, C.; Li, L.; Zhao, J.; Lin, X.; Guo, X.; He, Y.; Liang, W.; Zuo, X.; et al. Inulin-Type Prebiotics Reduce Serum Uric Acid Levels Via Gut Microbiota Modulation: A Randomized, Controlled Crossover Trial in Peritoneal Dialysis Patients. Eur. J. Nutr. 2021, 61, 665–677. [Google Scholar] [CrossRef]
- Kemp, J.A.; de Paiva, B.R.; dos Santos, H.F.; de Jesus, H.E.; Craven, H.; Ijaz, U.Z.; Borges, N.A.; Shiels, P.G.; Mafra, D. The Impact of Enriched Resistant Starch Type-2 Cookies on the Gut Microbiome in Hemodialysis Patients: A Randomized Controlled Trial. Mol. Nutr. Food Res. 2021, 65, e2100374. [Google Scholar] [CrossRef]
- Hedin, C.R.; McCarthy, N.E.; Louis, P.; Farquharson, F.M.; McCartney, S.; Stagg, A.J.; Lindsay, J.O.; Whelan, K. Prebiotic Fructans Have Greater Impact on Luminal Microbiology and CD3+ T Cells in Healthy Siblings Than Patients with Crohn’s Disease: A Pilot Study Investigating the Potential for Primary Prevention of Inflammatory Bowel Disease. Clin. Nutr. 2021, 40, 5009–5019. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Rodriguez, J.; Zhang, Z.; Seethaler, B.; Sánchez, C.R.; Roumain, M.; Hiel, S.; Bindels, L.B.; Cani, P.D.; Paquot, N.; et al. Prebiotic Dietary Fibre Intervention Improves Fecal Markers Related to Inflammation in Obese Patients: Results from The Food4Gut Randomized Placebo-Controlled Trial. Eur. J. Nutr. 2021, 60, 3159–3170. [Google Scholar] [CrossRef]
- Leyrolle, Q.; Cserjesi, R.; Mulders, M.D.; Zamariola, G.; Hiel, S.; Gianfrancesco, M.A.; Portheault, D.; Amadieu, C.; Bindels, L.B.; Leclercq, S.; et al. Prebiotic Effect on Mood in Obese Patients Is Determined by the Initial Gut Microbiota Composition: A Randomized, Controlled Trial. Brain Behav. Immun. 2021, 94, 289–298. [Google Scholar] [CrossRef]
- Kiewiet, M.B.G.; Elderman, M.E.; El Aidy, S.; Burgerhof, J.G.M.; Visser, H.; Vaughan, E.E.; Faas, M.M.; de Vos, P. Flexibility of Gut Microbiota in Ageing Individuals during Dietary Fiber Long-Chain Inulin Intake. Mol. Nutr. Food Res. 2020, 65, e2000390. [Google Scholar] [CrossRef]
- Chong, C.Y.L.; Orr, D.; Plank, L.D.; Vatanen, T.; O’Sullivan, J.M.; Murphy, R. Randomised Double-Blind Placebo-Controlled Trial of Inulin with Metronidazole in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2020, 12, 937. [Google Scholar] [CrossRef] [Green Version]
- Hess, A.L.; Benítez-Páez, A.; Blædel, T.; Larsen, L.H.; Iglesias, J.R.; Madera, C.; Sanz, Y.; Larsen, T.M.; the MyNewGut Consortium. The Effect of Inulin and Resistant Maltodextrin on Weight Loss During Energy Restriction: A Randomised, Placebo-Controlled, Double-Blinded Intervention. Eur. J. Nutr. 2019, 59, 2507–2524. [Google Scholar] [CrossRef]
- Hiel, S.; Bindels, L.B.; Pachikian, B.D.; Kalala, G.; Broers, V.; Zamariola, G.; Chang, B.P.I.; Kambashi, B.; Rodriguez, J.; Cani, P.D.; et al. Effects of a Diet Based on Inulin-Rich Vegetables on Gut Health and Nutritional Behavior in Healthy Humans. Am. J. Clin. Nutr. 2019, 109, 1683–1695. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Li, J.; Li, Y. Resistant Starch Formation in Rice: Genetic Regulation and Beyond. Plant Commun. 2022, 3, 100329. [Google Scholar] [CrossRef]
- Laffin, M.R.; Tayebi Khosroshahi, H.; Park, H.; Laffin, L.J.; Madsen, K.; Kafil, H.S.; Abedi, B.; Shiralizadeh, S.; Vaziri, N.D. Amylose Resistant Starch (HAM-RS2) Supplementation Increases the Proportion of Faecalibacterium Bacteria in End-Stage Renal Disease Patients: Microbial Analysis From a Randomized Placebo-Controlled Trial. Hemodial. Int. 2019, 23, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Hughes, R.; Horn, W.; Finnegan, P.; Newman, J.; Marco, M.; Keim, N.; Kable, M. Resistant Starch Type 2 from Wheat Reduces Postprandial Glycemic Response with Concurrent Alterations in Gut Microbiota Composition. Nutrients 2021, 13, 645. [Google Scholar] [CrossRef]
- Fernandez-Julia, P.J.; Munoz-Munoz, J.; van Sinderen, D. A Comprehensive Review on the Impact of Β-Glucan Metabolism by Bacteroides and Bifidobacterium Species as Members of The Gut Microbiota. Int. J. Biol. Macromol. 2021, 181, 877–889. [Google Scholar] [CrossRef]
- Morales, D.; Shetty, S.A.; López-Plaza, B.; Gómez-Candela, C.; Smidt, H.; Marín, F.R.; Soler-Rivas, C. Modulation of Human Intestinal Microbiota in a Clinical Trial by Consumption of A Β-D-Glucan-Enriched Extract Obtained from Lentinula Edodes. Eur. J. Nutr. 2021, 60, 3249–3265. [Google Scholar] [CrossRef]
- Velikonja, A.; Lipoglavšek, L.; Zorec, M.; Orel, R.; Avguštin, G. Alterations in Gut Microbiota Composition and Metabolic Parameters After Dietary Intervention with Barley Beta Glucans in Patients with High Risk for Metabolic Syndrome Development. Anaerobe 2018, 55, 67–77. [Google Scholar] [CrossRef]
- Ale, E.C.; Binetti, A.G. Role of Probiotics, Prebiotics, and Synbiotics in the Elderly: Insights into Their Applications. Front. Microbiol. 2021, 12, 631254. [Google Scholar] [CrossRef]
- Mall, J.-P.G.; Fart, F.; Sabet, J.A.; Lindqvist, C.M.; Nestestog, R.; Hegge, F.T.; Keita, A.V.; Brummer, R.J.; Schoultz, I. Effects of Dietary Fibres on Acute Indomethacin-Induced Intestinal Hyperpermeability in the Elderly: A Randomised Placebo Controlled Parallel Clinical Trial. Nutrients 2020, 12, 1954. [Google Scholar] [CrossRef]
- Nilholm, C.; Manoharan, L.; Roth, B.; D’Amato, M.; Ohlsson, B. A Starch- And Sucrose-Reduced Dietary Intervention in Irritable Bowel Syndrome Patients Produced a Shift in Gut Microbiota Composition Along with Changes in Phylum, Genus, and Amplicon Sequence Variant Abundances, Without Affecting the Micro-RNA Levels. United Eur. Gastroenterol. J. 2022, 10, 363–375. [Google Scholar] [CrossRef]
- DeMartino, P.; Johnston, E.A.; Petersen, K.S.; Kris-Etherton, P.M.; Cockburn, D.W. Additional Resistant Starch from One Potato Side Dish per Day Alters the Gut Microbiota but Not Fecal Short-Chain Fatty Acid Concentrations. Nutrients 2022, 14, 721. [Google Scholar] [CrossRef]
- Fong, J.V.N.; Miketinas, D.; Moore, L.W.; Nguyen, D.T.; Graviss, E.A.; Ajami, N.; Patterson, M.A. Precision Nutrition Model Predicts Glucose Control of Overweight Females Following the Consumption of Potatoes High in Resistant Starch. Nutrients 2022, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Feng, M.; Chu, Y.; Wang, S.; Shete, V.; Tuohy, K.M.; Liu, F.; Zhou, X.; Kamil, A.; Pan, D.; et al. The Prebiotic Effects of Oats on Blood Lipids, Gut Microbiota, and Short-Chain Fatty Acids in Mildly Hypercholesterolemic Subjects Compared with Rice: A Randomized, Controlled Trial. Front. Immunol. 2021, 12, 787797. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.M.; Davy, B.M.; Ponder, M.A.; McMillan, R.P.; Hughes, M.D.; Hulver, M.W.; Neilson, A.P.; Davy, K.P. Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial. Nutrients 2021, 13, 3235. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Terasawa, M.; Okazaki, F.; Nakayama, H.; Zang, L.; Nishiura, K.; Matsuda, K.; Nishimura, N. Rhamnan Sulphate from Green Algae Monostroma Nitidum Improves Constipation with Gut Microbiome Alteration in Double-Blind Placebo-Controlled Trial. Sci. Rep. 2021, 11, 13384. [Google Scholar] [CrossRef] [PubMed]
- Yoon, L.; Michels, K. Characterizing the Effects of Calcium and Prebiotic Fiber on Human Gut Microbiota Composition and Function Using a Randomized Crossover Design—A Feasibility Study. Nutrients 2021, 13, 1937. [Google Scholar] [CrossRef]
- Biruete, A.; Cross, T.-W.L.; Allen, J.M.; Kistler, B.M.; de Loor, H.; Evenepoel, P.; Fahey, G.C.; Bauer, L.; Swanson, K.S.; Wilund, K.R. Effect of Dietary Inulin Supplementation on the Gut Microbiota Composition and Derived Metabolites of Individuals Undergoing Hemodialysis: A Pilot Study. J. Ren. Nutr. 2021, 31, 512–522. [Google Scholar] [CrossRef]
- Berding, K.; Long-Smith, C.M.; Carbia, C.; Bastiaanssen, T.F.S.; van de Wouw, M.; Wiley, N.; Strain, C.R.; Fouhy, F.; Stanton, C.; Cryan, J.F.; et al. A Specific Dietary Fibre Supplementation Improves Cognitive Performance—An Exploratory Randomised, Placebo-Controlled, Crossover Study. Psychopharmacology 2020, 238, 149–163. [Google Scholar] [CrossRef]
- Reider, S.J.; Moosmang, S.; Tragust, J.; Trgovec-Greif, L.; Tragust, S.; Perschy, L.; Przysiecki, N.; Sturm, S.; Tilg, H.; Stuppner, H.; et al. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota—Results from the PAGODA Trial. Nutrients 2020, 12, 1257. [Google Scholar] [CrossRef]
- Reimer, R.A.; Soto-Vaca, A.; Nicolucci, A.C.; Mayengbam, S.; Park, H.; Madsen, K.L.; Menon, R.; Vaughan, E.E. Effect of Chicory Inulin-Type Fructan–Containing Snack Bars on the Human Gut Microbiota in Low Dietary Fiber Consumers in a Randomized Crossover Trial. Am. J. Clin. Nutr. 2020, 111, 1286–1296. [Google Scholar] [CrossRef]
- Deehan, E.C.; Yang, C.; Perez-Muñoz, M.E.; Nguyen, N.K.; Cheng, C.C.; Triador, L.; Zhang, Z.; Bakal, J.A.; Walter, J. Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host Microbe 2020, 27, 389–404.e6. [Google Scholar] [CrossRef]
- Sasidharan, B.K.; Ramadass, B.; Viswanathan, P.; Samuel, P.; Gowri, M.; Pugazhendhi, S.; Ramakrishna, B.S. A Phase 2 Randomized Controlled Trial of Oral Resistant Starch Supplements in the Prevention of Acute Radiation Proctitis in Patients Treated for Cervical Cancer. J. Cancer Res. Ther. 2019, 15, 1383–1391. [Google Scholar] [CrossRef]
- Yasukawa, Z.; Inoue, R.; Ozeki, M.; Okubo, T.; Takagi, T.; Honda, A.; Naito, Y. Effect of Repeated Consumption of Partially Hydrolyzed Guar Gum on Fecal Characteristics and Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Clinical Trial. Nutrients 2019, 11, 2170. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, J.; Kovatcheva-Datchary, P.; Björck, I.; Bäckhed, F.; Nilsson, A. Abundance of Gut Prevotella at Baseline and Metabolic Response to Barley Prebiotics. Eur. J. Nutr. 2018, 58, 2365–2376. [Google Scholar] [CrossRef]
- Gotteland, M.; Riveros, K.; Gasaly, N.; Carcamo, C.; Magne, F.; Liabeuf, G.; Beattie, A.; Rosenfeld, S. The Pros and Cons of Using Algal Polysaccharides as Prebiotics. Front. Nutr. 2020, 7, 163. [Google Scholar] [CrossRef]
Author/Year | Type of Study | Aim | Study Design | Most Remarkable Findings |
---|---|---|---|---|
Nilholm et al., 2022, [123] | RCT | Identify the effects of reduced starch and sucrose consumption on the gut microbiota and circulating microRNA in patients with digestive symptoms | N = 80. IBS patients 4-week SSRD intervention dietary records, and symptom questionnaires; IBS symptom severity score; Visual analog scale for IBS. 16S rRNA sequencing | ↑ β diversity associated with changes in nutrient intake, ↓ Gastrointestinal symptoms, ↑ Eubacterium, Lachnospiraceae UCG-001, Eggerthella, ↓Acidaminococcus, Slackia, Catenibacterium |
Rodríguez et al., 2022, [104] | RCT | To evaluate the impact of physical activity and prebiotic supplementation in obese subjects | N = 60. Obese subjects, intake of 16 g/day of native inulin plus dietary advice for 3 months and increased physical activity. 16S rRNA sequencing | ↓ BMI,↓ liver enzymes and plasma cholesterol, and an improvement in glucose tolerance were observed. Bifidobacterium, Dialister, and Catenibacterium regulations. Improved glucose homeostasis and increased gut fermentation |
DeMartino et al., 2022, [124] | RCT | To measure changes in the gut microbiota and fecal SCFAs | N = 50. Healthy adults. BMI 24.5 ± 3.6 kg/m2. Daily intake of a side dish containing one potato (averaging 145g) for 4 weeks | Potato dish consumption produced ↓ Alpha diversity ↑ Hungatella xylanolytica and Roseburia faecis |
Ebrahim et al., 2022, [99] | RCT | In this study, a β-glucan prebiotic was examined concerning kidney function, uremic toxins, and gut microbiome | N = 3. Chronic kidney disease patients in stages 3 to 5. Intake of 13.5 g/day of β-glucan for 14 weeks. 16S rRNA sequencing | Altered uremic toxin levels of intestinal origin and favorably affected the gut microbiome. |
Nolte Fong et al., 2022, [125] | RCT | To predict PPGR. To develop a precision nutrition model to predict PPGR after the intervention of low-versus high-RS-potatoes. | N = 30. Women BMI: 25–40 kg/m2. Daily intake of 250 g of hot (9.2 g RS) or cold (13.7 g RS) potatoes. 16S rRNA sequencing | Mostly Faecalibacterium, predicted the PPGR, inverse relationships between. Low-RS potato, moderate height and Faecalibacterium, inverse relationships between glucose iAUC, insoluble fiber intake, and Actinobacteria |
Xu et al., 2021, [126] | RCT | The purpose of this study is to examine the relationship between blood lipids, gut microbiota, and plasma SCFAs | N = 210. Chinese population, mild hypercholesterolemia. Intake of 80 g of oats or rice daily for 45 days. Pyrosequencing-based analysis | ↓Total cholesterol, ↑ Akkermansia muciniphila, Roseburia, Dialister, Butyrivibrio, and Paraprevotella, ↓ f-Sutterellaceae, Negative correlation between Bifidobacterium and low-density lipoprotein cholesterol. Positive correlation between Enterobacteriaceae, Roseburia, and Faecalibacterium prausnitzii and plasma butyric acid |
Williams et al., 2022, [105] | RCT | To assess oligofructose-enriched inulin supplementation on the gut microbiome and the peak oxygen uptake response to high-intensity interval training | N = 31. Sedentary and healthy women BMI = 25.9 kg/m2, 6 weeks of supervised high-intensity interval training plus 12 g/day of oligofructose-enriched inulin | Greater Improvement in VTs, Bifidobacterium, and several metabolic processes related to exercise capacity |
Mitchell et al., 2021, [127] | RCT | To determine the efficacy of inulin supplementation in improving glucose metabolism and reducing the risk of type 2 diabetes | N = 24. Adults at risk for T2D, BMI: 31.3 kg/m2. Intake of inulin (10 g/day) for 6 weeks. 16S rRNA sequencing | ↓ Fasting insulin, ↑Bifidobacterium |
He et al., 2021, [106] | RCT | To examine the effect of inulin on intestinal microbiota and serum UA levels in end-stage renal disease | N = 62. Continuous ambulatory peritoneal dialysis patients. Intake of inulin-type prebiotics (10 g/day, 12 weeks). Shotgun metagenomics sequencing | ↓ Serum UA, ↑ Fecal UA degradation was positively associated with Firmicutes/Bacteroidetes, enriched Clostridium sp. CAG:7, C. sp. FS41, C. citroniae, Anaerostipes caccae, and C. botulinum |
Kemp et al., 2021 [107] | RCT | To evaluate the effects of enriched RS-2 cookies on the gut microbiome in hemodialysis patients | N = 20. Hemodialysis patients. Intake of 16 g/day of Hi-Maize 260 for 4 weeks. 16S rRNA sequencing | ↓ Pielou’s evenness. ↑ Amplicon Sequencing Variants Roseburia and Ruminococcus gauvreauii, ↓ Dialister |
Hedin et al., 2021, [108] | Clinical Trial | To determine if supplementation with oligofructose/inulin impacts the risk phenotype in Crohn’s disease patients and siblings. | N = 19. Patients with inactive Crohn’s disease and 12 of their unaffected siblings. Intake of oligofructose/inulin (15 g/day) for 3 weeks. Fecal microbiota was analyzed by qPCR | ↑Bifidobacterium and B. longum in patients and siblings. ↑ B. adolescentis and Roseburia spp. only in siblings. ↓ Intestinal permeability in patients similar to siblings. ↓ Blood T cell abundance in siblings but not in patients |
Shimada et al., 2021, [128] | RCT | To test if rhamnan sulfate decreases constipation | N = 38. Subjects with low defecation frequencies. Administration of rhamnan sulfate (100 mg/day) for 2 weeks. 16S rRNA sequencing | ↑ Frequency of dejection without side effects, functional alternation of the KEGG pathways |
Yoon and Michels. 2021, [129] | RCT | To evaluate the effect on the intestinal microbiota composition and function of combined calcium and inulin supplementation, calcium supplementation alone, inulin supplementation alone | N = 12. Healthy adults. Consumption of the three interventions in a random sequence for 4 weeks each intervention, 2 g of calcium powder, 15 g of inulin, or a combination of 2 g of calcium and 15 g (once a day). 16S rRNA sequencing | No differences in microbial composition, short-chain fatty acids concentration, or lipopolysaccharide-binding protein concentrations |
Biruete et al., 2021, [130] | RCT | To assess the impact of supplementation of inulin on the gut microbiota composition and microbial metabolites | N = 12. Hemodialysis patients. BMI = 31.6 kg/m2. Intake of inulin (10 g/d for females; 15 g/d for males) or maltodextrin [6 g/d for females; 9 g/d for males] for 4 weeks. 16S rRNA sequencing | Inulin ↑ Verrucomicrobia and its genus Akkermansia, inulin and maltodextrin: ↑ Bacteroidetes abundance and its genus Bacteroides, ↑ fecal acetate and propionate |
Hughes et al., 2021, [117] | RCT | To investigate the effects of RS2 from wheat on glycemic response, its impact on metabolic health, and gut microbiota | N = 30. Healthy subjects, BMI > 18.5 > 39.9 kg/m2. Intake of RS2-enriched wheat and wild-type wheat were provided as supplement food for 7 days. 16S rRNA sequencing | ↓Postprandial glucose and insulin responses, ↑Ruminococcus and Gemmiger in the fecal contents, reflecting the composition in the distal intestine. Additionally, fasting breath. Butyrate and total SCFAs were positively correlated with the relative abundance of Faecalibacterium, Ruminococcus, Roseburia, and Barnesiellaceae |
Morales et al., 2021, [119] | RCT | To evaluate the hypocholesterolemic, immune and microbiota-modulatory effect of a mushroom extract hypercholesterolemic subjects | N = 52. Subjects with untreated mild hypercholesterolemia. Intake of a β-D-glucan-enriched mixture (10.4 g/day) obtained from shiitake mushrooms. 16S rRNA sequencing | No inflammatory or immunomodulatory responses. No changes in IL-1β, IL-6, TNF-α, or oxLDL. A positive association between Prevotella_9, Alistipes and maltodextrin. In β-D-glucan-enriched mixture the most responsive genera were Eubacterium ventriosum group, Erysipelotrichaceae_UCG-003, Akkermansia, Coprobacter, Lachnoclostridium, Bacteroides, and Alistipes |
Neyrinck et al., 2021, [109] | RCT | To test if inulin intake influences fecal microbial-derived metabolites and markers related to gut integrity and inflammation in obese patients | N = 24. Obese patients. Intake of 16 g/day native inulin. Dietary advice to consume inulin-rich versus inulin-poor vegetables for 3 months. Caloric restriction. 16S rRNA sequencing | ↑ Bifidobacterium, ↑ fecal rumenic acid, a conjugated linoleic acid, ↓ calprotectin, both interventions: ↑ the ratio of tauro-conjugated/free bile acids in feces |
Leyrolle et al., 2021, [110] | RCT | The purpose of this study is to establish a potential connection between gut microbiota changes and their effects on mood and cognition following inulin intake | N = 106. Obese patients. Intake of 16 g/day of native inulin. Dietary advice to consume inulin-rich or -poor vegetables for 3 months. Caloric restriction. 16S rRNA sequencing | Moderate beneficial effect on emotional competence and cognitive flexibility. Patients exhibiting higher Coprococcus levels at baseline were more prone to benefit from prebiotic supplementation. Positive responders toward inulin intervention showed worse metabolic and inflammatory profiles at baseline |
Kiewiet et al., 2021, [111] | RCT | To test if chicory long-chain inulin intake changes microbiota composition, microbial fermentation products, and immunity in the elderly | N = 182. Old healthy elderly individuals (55–80 years), Intake of long-chain inulin 8 g/day for 2 months. 16S rRNA sequencing | ↑ Microbial diversity, ↑ abundance of the Bifidobacterium genus, Alistipes shahii, Anaerostipes hadrus, and Parabacteroides distasonis, ↓ isobutyric acid levels |
Berding et al., 2021, [131] | RCT | Efficacy of polydextrose in the improvement of cognitive performance and acute stress responses by manipulation of the gut microbiota in healthy subjects | N = 18. Healthy females. Intake of 12.5 g/day Litesse®Ultra (> 90% PDX polymer) for 4 weeks. 16S rRNA sequencing | Polydextrose improved cognitive flexibility. Better performance in sustained attention,↑ abundance of Ruminiclostridium, attenuation of adhesion receptor CD62L |
Ganda Mall et al., 2020, [122] | RCT | Effect of oat β-glucan and wheat arabinoxylan on the intestinal barrier function and their potential to counteract indomethacin anti-inflammatory induced hyperpermeability in the elderly. | N = 49 elderly subjects (≥65 years). Intake of (12 g/day) of oat β-glucan or arabinoxylan for six weeks. 16S rRNA sequencing | No significant effects were observed after intervention |
Reider et al., 2021, [132] | Clinical Trial | To investigate the microbiota-modeling effects of partially hydrolyzed guar gum | N = 20. Healthy subjects. 3 weeks of a lead-in period, three weeks of intervention (5 g partially hydrolyzed guar gum up to three times per day and a three-week washout period. 16S rRNA sequencing | ↑ Stool frequency and consistency, ↑ Ruminococcus, Fusicatenibacter, Faecalibacterium, and Bacteroides, ↓ Roseburia, Lachnospiracea, and Blautia, ↓ α- diversity |
Hiel et al., 2020, [97] | RCT | To evaluate the impact of native inulin on gut microbiota in obese patients | N = 150. Obese patients. Intake of 16 g/day of native inulin. Advice to consume inulin-rich versus -poor vegetables for 3 months, Caloric restriction. 16S rDNA sequencing | ↓ Energy intake, BMI, systolic blood pressure, and serum g-GT, ↓ Desulfovibrio and Clostridium sensustricto, ↑ Bifidobacterium |
Reimer et al., 2020, [133] | RCT | To examine the effect of two doses of snack bars, comprising chicory root inulin-type fructans, on gut microbiota in healthy adults with habitual low dietary fiber intake | N = 50. Healthy adults with low dietary fiber intake of isocaloric snack bars of either moderate-dose fiber (7 g/day) or control or low-dose fiber (3 g/day). 4 weeks with 4 weeks washout periods. 16S rRNA sequencing | Moderate dose of inulin-type fructans: ↑ Bifidobacterium, Cellulomonas, Nesterenkonia, and Brevibacterium, ↓ Lachnospira, and Oscillospira, Low-dose of inulin-type fructans: ↑ Bifidobacterium |
Chong et al., 2020, [112] | RCT | To determine if inulin supplementation after brief metronidazole therapy reduces alanine ALT and maintains weight loss after achieving a VLCD in NAFLD patients | N = 62. NAFLD patients following a 4-week VLCD. 12-week, three-arm trial: 400 mg metronidazole twice daily in week 1 then inulin 4 g twice daily or placebo twice daily in week one then inulin or placebo-placebo. 16S rRNA sequencing | After VLCD: ↓ BMI and ALT, ↓ Firmicutes/Bacteroidetes, ↓ Roseburia, Streptococcus, and Dialister, ALT further ↓ after metronidazole-inulin treatment |
Deeham 2020, [134] | RCT | To test if small differences in the chemical structure of dietary fiber can induce changes in fecal microbiota composition | N = 10. Healthy humans, 4-week dose-escalation intake of RS4. 16S rRNA sequencing | Crystalline and phosphate cross-linked starch structures induced different effects on the microbiome related to the production of propionate or butyrate, ↓ α-diversity |
Sasidharan et al., 2019, [135] | Clinical Trial | To evaluate the benefit of prebiotic amylase RS in reducing the incidence of acute radiation proctitis, in patients receiving radiation therapy for cancer of the cervix | N = 104. Patients receiving radical chemo-radiotherapy for cervix carcinoma. Intake of 30 g/day of amylase RS and other digestible starch throughout the course of the external radiotherapy. PCR amplification of some bacterial communities | No significant benefit after the intervention of RS over and above normal diet to patients receiving pelvic radiotherapy |
Hess et al., 2020, [113] | RCT | To investigate how calorie restriction combined with dietary fiber affected body weight and gut microbial composition. | N = 116. Overweight or obese subjects, BMI = 28–45 kg/m2. Before initiation: energy-restricted weight-loss period, intake of 10 g inulin plus 10 g resistant maltodextrin per day, 500 kcal/day energy-restricted diet, 12 weeks. 16S rRNA sequencing | ↓ Systolic and diastolic, blood pressure, ↑ Parabacteroides and Bifidobacterium, ↑ diversity of gut microbiota |
Yasukawa et al., 2019, [136] | RCT | Partially hydrolyzed guar gum affects stools, plasma bile acids, quality of life, and gut microbiota of healthy volunteers with diarrheal tendencies | N = 44. Healthy adults have at least 7 bowel movements per week and at least 50% of their stool falls within the Bristol stool scale values of 5 and 6. Intake of the PHGG 5 g/day for 3 months. 16S rRNA sequencing | Stool form improvement Bristol stool scale was significantly normalized. ↑ Bifidobacterium |
Hiel et al., 2019, [114] | Clinical trial | Consumption of inulin-type fructan-rich vegetables on gut microbiota, gastrointestinal symptoms, and food-related behavior in healthy individuals | N = 26 healthy individuals, BMI = 20–25 kg/m2. A controlled diet based on the intake of Inulin-type fructans (15 g/day) for 2 weeks. 16S rRNA sequencing | ↑ Bifidobacterium, ↓ unclassified Clostridiales, greater satiety, ↓ desire to eat sweet, salty, and fatty food, intestinal discomfort was inversely associated with Clostridium cluster IV |
Laffin et al., 2019, [116] | RCT | To test if the supplementation with high-amylose maize RS type 2 benefits the gut microbiome and lows systemic inflammation | N = 20. End-stage of chronic kidney disease patients. Intake of 20 g/day of HAM-RS2 for 1 month and first month 25 g/day during the second month. 16S rRNA sequencing | ↓ Serum urea, IL-6, TNFα, and malondialdehyde, ↑ Faecalibacterium |
Zhang et al., 2019, [98] | RCT | To test the effects of RS in normal body weight subjects | N = 19. Subjects with normal body weight. Intake of 40 g high amylose RS2/day, 16S rRNA sequencing | ↓ Visceral and subcutaneous fat areas, ↑ acetate and early phase insulin, C-peptide, and glucagon-like peptide-1 secretion, ↓ low-density lipoprotein cholesterol and blood urea nitrogen levels, ↑ Ruminococcaceae_UCG-005, ↑ N-acetyl-DL-tryptophan and indole lactic acid |
Velikonja et al., 2019, [120] | RCT | Testing whether consumption of barley beta-glucans modifies gut microbiota composition, SCFA production, and metabolic status in patients with metabolic syndrome | N = 43. High risk for metabolic syndrome development or with diagnosed metabolic syndrome subjects. Intake of bread containing 6 g/day of barley beta glucans for 4 weeks. 16S rRNA sequencing | ↓ Total plasma cholesterol, ↑ propionic acid, ↓ microbial diversity and richness, ↑ Bifidobacterium spp. and Akkermansia muciniphila within a cholesterol-responsive group |
Sandber et al., 2019, [137] | RCT | Evaluation of the Prevotella/Bacteroides ratio (PBR) to distinguish between metabolic responders and nonresponders to barley dietary fiber | Healthy subjects splitting based on Prevotella and Bacteroides before intervention: Highest PBR N = 12; lowest PBR N = 13.; high abundance of both measured bacteria N = 8. BMI < 28 kg/m2, 3-day intervention with barley kernel bread (100 g potentially available starch per day), 16S rRNA sequencing | ↓ Blood glucose responses to the breakfast independently of Prevotella/Bacteroides ratios, highest Prevotella/Bacteroides group: ↓ insulin response and IL-6, high abundance of both measured bacteria ↓ hunger sensations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Mercado, A.I.; Plaza-Diaz, J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients 2022, 14, 4116. https://doi.org/10.3390/nu14194116
Álvarez-Mercado AI, Plaza-Diaz J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients. 2022; 14(19):4116. https://doi.org/10.3390/nu14194116
Chicago/Turabian StyleÁlvarez-Mercado, Ana I., and Julio Plaza-Diaz. 2022. "Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health" Nutrients 14, no. 19: 4116. https://doi.org/10.3390/nu14194116
APA StyleÁlvarez-Mercado, A. I., & Plaza-Diaz, J. (2022). Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients, 14(19), 4116. https://doi.org/10.3390/nu14194116