Association of Existence of Sarcopenia and Poor Recovery of Swallowing Function in Post-Stroke Patients with Severe Deglutition Disorder: A Multicenter Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Baseline Data
2.3. Sarcopenia Assessment
2.4. Outcome Measures
2.5. Sample Size Calculation
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Cock, E.; Batens, K.; Hemelsoet, D.; Boon, P.; Oostra, K.; De Herdt, V. Dysphagia, dysarthria and aphasia following a first acute ischaemic stroke: Incidence and associated factors. Eur. J. Neurol. 2020, 27, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, C.; Gemmell, E.; Kenworthy, J.; Speyer, R. A systematic review of the prevalence of oropharyngeal dysphagia in stroke, Parkinson’s disease, Alzheimer’s disease, head injury, and pneumonia. Dysphagia 2016, 31, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.C.; Lin, Y.C.; Chang, Y.H.; Chen, C.H.; Chiang, H.C.; Huang, L.C.; Yang, Y.H.; Hung, C.H. The mortality and the risk of aspiration pneumonia related with dysphagia in stroke patients. J. Stroke Cerebrovasc. Dis. 2019, 28, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.T.; Ribeiro, P.W.; de Paiva, S.A.R.; Tanni, S.E.; Minicucci, M.F.; Zornoff, L.A.M.; Polegato, B.F.; Bazan, S.G.Z.; Modolo, G.P.; Bazan, R.; et al. Dysphagia and tube feeding after stroke are associated with poorer functional and mortality outcomes. Clin. Nutr. 2020, 39, 2786–2792. [Google Scholar] [CrossRef] [PubMed]
- Bath, P.M.; Lee, H.; Everton, L.F. Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst. Rev. 2018, 10, CD000323. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Kishima, M.; Itoda, M.; Fujishima, I.; Kunieda, K.; Ohno, T.; Shigematsu, T.; Oshima, F.; Mori, T.; Ogawa, N.; et al. Diagnosis and treatment of sarcopenic dysphagia: A scoping review. Dysphagia 2021, 36, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, I.; Fujiu-Kurachi, M.; Arai, H.; Hyodo, M.; Kagaya, H.; Maeda, K.; Mori, T.; Nishioka, S.; Oshima, F.; Ogawa, S.; et al. Sarcopenia and dysphagia: Position paper by four professional organizations. Geriatr. Gerontol. Int. 2019, 19, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavé, P.; Shaker, R. Dysphagia: Current reality and scope of the problem. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 259–270. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kuroda, R. Relationship between thinness and swallowing function in Japanese older adults: Implications for sarcopenic dysphagia. J. Am. Geriatr. Soc. 2012, 60, 1785–1786. [Google Scholar] [CrossRef]
- Maeda, K.; Akagi, J. Decreased tongue pressure is associated with sarcopenia and sarcopenic dysphagia in the elderly. Dysphagia 2015, 30, 80–87. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Matsushima, M.; Uwano, R.; Watanabe, N.; Oritsu, H.; Shimizu, Y. Skeletal muscle mass is associated with severe dysphagia in cancer patients. J. Cachexia Sarcopenia Muscle 2015, 6, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, N.; Mori, T.; Fujishima, I.; Wakabayashi, H.; Itoda, M.; Kunieda, K.; Shigematsu, T.; Nishioka, S.; Tohara, H.; Yamada, M.; et al. Ultrasonography to measure swallowing muscle mass and quality in older patients with sarcopenic dysphagia. J. Am. Med. Dir. Assoc. 2018, 19, 516–522. [Google Scholar] [CrossRef]
- Zhao, W.T.; Yang, M.; Wu, H.M.; Yang, Y.; Zhang, X.M.; Huang, Y. Systematic review and meta-analysis of the association between sarcopenia and dysphagia. J. Nutr. Health Aging 2018, 22, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Tanıgör, G.; Eyigör, S. Evaluation of dysphagia in patients with sarcopenia in a rehabilitation setting: Insights from the vicious cycle. Eur. Geriatr. Med. 2020, 11, 333–340. [Google Scholar] [CrossRef]
- Mori, T.; Fujishima, I.; Wakabayashi, H.; Oshima, F.; Itoda, M.; Kunieda, K.; Kayashita, J.; Nishioka, S.; Sonoda, A.; Kuroda, Y.; et al. Development, reliability, and validity of a diagnostic algorithm for sarcopenic dysphagia. JCSM Clin. Rep. 2017, 2, 1–10. [Google Scholar]
- Nishioka, S.; Yamasaki, K.; Ogawa, K.; Oishi, K.; Yano, Y.; Okazaki, Y.; Nakashima, R.; Kurihara, M. Impact of nutritional status, muscle mass and oral status on recovery of full oral intake among stroke patients receiving enteral nutrition: A retrospective cohort study. Nutr. Diet. 2020, 77, 456–466. [Google Scholar] [CrossRef]
- Shimizu, A.; Fujishima, I.; Maeda, K.; Murotani, K.; Ohno, T.; Nomoto, A.; Nagami, S.; Nagano, A.; Sato, K.; Ueshima, J.; et al. Delayed dysphagia may be sarcopenic dysphagia in patients after stroke. J. Am. Med. Dir. Assoc. 2021, 22, 2527–2533e1. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, N.; Sandek, A.; Doehner, W. Stroke-related sarcopenia: Specific characteristics. J. Am. Med. Dir. Assoc. 2015, 16, 272–276. [Google Scholar] [CrossRef]
- Matsushita, T.; Nishioka, S.; Taguchi, S.; Yamanouchi, A. Sarcopenia as a predictor of activities of daily living capability in stroke patients undergoing rehabilitation. Geriatr. Gerontol. Int. 2019, 19, 1124–1128. [Google Scholar] [CrossRef]
- Shiraishi, A.; Yoshimura, Y.; Wakabayashi, H.; Tsuji, Y. Prevalence of stroke-related sarcopenia and its association with poor oral status in post-acute stroke patients: Implications for oral sarcopenia. Clin. Nutr. 2018, 37, 204–207. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Yamaga, M.; Koga, H. Sarcopenia is associated with worse recovery of physical function and dysphagia and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition 2019, 61, 111–118. [Google Scholar] [CrossRef]
- Nishioka, S.; Kokura, Y.; Okamoto, T.; Takayama, M.; Miyai, I. Risk of weight loss in adult patients and the effect of staffing registered dietitians in Kaifukuki (convalescent) rehabilitation wards: A retrospective analysis of a nationwide survey. Healthcare 2021, 9, 753. [Google Scholar] [CrossRef] [PubMed]
- Miyai, I.; Sonoda, S.; Nagai, S.; Takayama, Y.; Inoue, Y.; Kakehi, A.; Kurihara, M.; Ishikawa, M. Results of new policies for inpatient rehabilitation coverage in Japan. Neurorehabilit. Neural Repair 2011, 25, 540–547. [Google Scholar] [CrossRef]
- Kunieda, K.; Ohno, T.; Fujishima, I.; Hojo, K.; Morita, T. Reliability and validity of a tool to measure the severity of dysphagia: The Food Intake LEVEL Scale. J. Pain Symptom Manag. 2013, 46, 201–206. [Google Scholar] [CrossRef]
- Tamiya, N.; Noguchi, H.; Nishi, A.; Reich, M.R.; Ikegami, N.; Hashimoto, H.; Shibuya, K.; Kawachi, I.; Campbell, J.C. Population ageing and wellbeing: Lessons from Japan’s long-term care insurance policy. Lancet 2011, 378, 1183–1192. [Google Scholar] [CrossRef]
- Brunnstrom, S. Motor testing procedures in hemiplegia: Based on sequential recovery stages. Phys. Ther. 1966, 46, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.N.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The reliability of the functional independence measure: A quantitative review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Malnutrition Action Group (MAG). The “MUST” Explanatory Booklet. Available online: http://www.bapen.org.uk/pdfs/must/must_explan.pdf (accessed on 26 July 2022).
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Shimizu, A.; Fujishima, I.; Maeda, K.; Wakabayashi, H.; Nishioka, S.; Ohno, T.; Nomoto, A.; Kayashita, J.; Mori, N.; The Japanese Working Group on Sarcopenic Dysphagia. Nutritional management enhances the recovery of swallowing ability in older patients with sarcopenic dysphagia. Nutrients 2021, 13, 596. [Google Scholar]
- Nishioka, S.; Okamoto, T.; Takayama, M.; Urushihara, M.; Watanabe, M.; Kiriya, Y.; Shintani, K.; Nakagomi, H.; Kageyama, N. Malnutrition risk predicts recovery of full oral intake among older adult stroke patients undergoing enteral nutrition: Secondary analysis of a multicentre survey (the APPLE study). Clin. Nutr. 2017, 36, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Katayama, M.; Nakajima, J.; Inoue, S.; Koizumi, S.; Okada, S.; Suga, S.; Nomura, T.; Matsuura, N. Temporal muscle thickness is associated with the severity of dysphagia in patients with acute stroke. Arch. Gerontol. Geriatr. 2021, 96, 104439. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Uwano, R. Rehabilitation nutrition for possible sarcopenic dysphagia after lung cancer surgery: A case report. Am. J. Phys. Med. Rehabil. 2016, 95, e84–e89. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Akagi, J. Treatment of sarcopenic dysphagia with rehabilitation and nutritional support: A comprehensive approach. J. Acad. Nutr. Diet. 2016, 116, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Can, B.; İsmagulova, N.; Enver, N.; Tufan, A.; Cinel, I. Sarcopenic dysphagia following COVID-19 infection: A new danger. Nutr. Clin. Pract. 2021, 36, 828–832. [Google Scholar] [CrossRef]
- Jang, Y.; Im, S.; Han, Y.; Koo, H.; Sohn, D.; Park, G.Y. Can initial sarcopenia affect poststroke rehabilitation outcome? J. Clin. Neurosci. 2020, 71, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, S.; Macchi, C.; Liperoti, R.; Laudisio, A.; Coraci, D.; Loreti, C.; Vannetti, F.; Onder, G.; Padua, L.; Bonaccorsi, G.; et al. Association of body fat with health-related quality of life and depression in nonagenarians: The Mugello Study. J. Am. Med. Dir. Assoc. 2019, 20, 564–568. [Google Scholar] [CrossRef]
- Laudisio, A.; Giovannini, S.; Finamore, P.; Loreti, C.; Vannetti, F.; Coraci, D.; Incalzi, R.A.; Zuccal, G.; Macchi, C.; Padua, L.; et al. Muscle strength is related to mental and physical quality of life in the oldest old. Arch. Gerontol. Geriatr. 2020, 89, 104109. [Google Scholar] [CrossRef]
- Roth, E.J.; Heinemann, A.W.; Lovell, L.L.; Harvey, R.L.; McGuire, J.R.; Diaz, S. Impairment and disability: Their relation during stroke rehabilitation. Arch. Phys. Med. Rehabil. 1998, 79, 329–335. [Google Scholar] [CrossRef]
Non-Sarcopenia (n = 40) | Sarcopenia (n = 153) | p-Value | |
---|---|---|---|
Female, n (%) | 14 (35.0%) | 88 (57.5%) | 0.011 |
Age, years | 75 (72–78.5) | 82 (76–86) | <0.001 |
Onset-to-admission duration, days | 23.5 (16–30) | 27 (21–39) | 0.018 |
Length of rehabilitation ward stay | 89 (64–111) | 93 (64–126) | 0.26 |
Diagnosis | |||
Cerebral infarction | 32 (80.0%) | 94 (61.4%) | 0.045 |
Intracerebral hemorrhage | 8 (20.0%) | 46 (30.1%) | |
Subarachnoid hemorrhage | 0 (0.0%) | 13 (8.5%) | |
Pre-stroke need for care, n (%) | 4 (10.0%) | 41 (26.8%) | 0.025 |
Daily rehabilitation dose (min/day) | 163 (155–171) | 162 (150–178) | 0.97 |
Hemiplegia | |||
None | 9 (22.5%) | 20 (13.1%) | 0.37 |
Right | 13 (32.5%) | 62 (40.5%) | |
Left | 17 (42.5%) | 62 (40.5%) | |
Bilateral | 1 (2.5%) | 9 (5.9%) | |
CCI updated, points | 1 (1–2) | 1 (1–2) | 0.76 |
Height, cm, mean (SD) | 159.2 (9.1) | 154.3 (8.5) | 0.001 |
Weight, kg, mean (SD) | 58.6 (10.0) | 48.1 (8.8) | <0.001 |
BMI, kg/m2, mean (SD) | 23.1 (3.2) | 20.2 (3.0) | <0.001 |
FIM motor score, points | 42.5 (36.5–53) | 25 (15–37) | <0.001 |
FIM cognitive score, points | 23 (17–28.5) | 16 (12–22) | 0.001 |
FIM total score, points | 66.5 (55.5–77.5) | 42 (29–57) | <0.001 |
FILS, level | 7 (7–7) | 7 (3–7) | 0.022 |
SMI, kg/m2 | 6.8 (6.0–7.2) | 5.0 (4.3–5.8) | <0.001 |
Phase angle, °, mean (SD) * | 4.3 (0.9) | 3.5 (0.8) | <0.001 |
Handgrip strength, kg | 26.3 (18.5–30.2) | 11.6 (8.2–16.4) | <0.001 |
MUST score, points | 1.5 (0–3) | 2 (1–4) | 0.001 |
Energy intake, kcal/day, mean (SD) | 25.4 (6.1) | 26.3 (8.4) | 0.53 |
Protein intake, g/day, mean (SD) | 1.0 (0.2) | 1.1 (0.4) | 0.18 |
Non-Sarcopenia (n = 40) | Sarcopenia (n = 153) | p-Value | |
---|---|---|---|
FILS, points | 9 (8–9) | 8 (7–9) | <0.001 |
FILS gain ≥ 2, n (%) | 30 (75.0%) | 78 (51.0%) | 0.006 |
FIM motor score, points | 76.5 (63–84) | 50 (31–66) | <0.001 |
FIM cognitive score, points | 26.5 (22.5–32) | 20 (15–27) | <0.001 |
FIM total score, points | 105 (83.5–113) | 70 (48–89) | <0.001 |
FIM gain | |||
Points | 33.5 (19.5–42) | 22 (12–35) | 0.021 |
>22 points, n (%) * | 29 (72.5%) | 74 (48.4%) | 0.006 |
FIM efficiency | |||
Points/day | 0.34 (0.22–0.48) | 0.26 (0.15–0.37) | 0.013 |
>0.27 points/day, n (%) * | 26 (65.0%) | 71 (46.4%) | 0.036 |
BMI, kg/m2, mean (SD) | 22.6 (2.9) | 20.3 (2.7) | <0.001 |
Discharge destination, n (%) | 0.12 | ||
Home | 28 (70.0%) | 75 (49.0%) | |
Long-term care facilities | 11 (27.5%) | 56 (36.6%) | |
Long-term care hospitals | 0 (0%) | 7 (4.6%) | |
Acute care hospitals | 1 (2.5%) | 14 (9.2%) | |
Death | 0 (0%) | 1 (0.7%) |
OR | 95% CI for AOR | p-Value | |||
---|---|---|---|---|---|
Crude | Adjusted | Lower | Upper | ||
Age | 0.94 | 0.97 | 0.92 | 1.03 | 0.35 |
Female sex | 0.65 | 0.89 | 0.41 | 1.93 | 0.77 |
Pre-stroke need for care | 0.55 | 0.70 | 0.31 | 1.61 | 0.41 |
CCI, updated | 0.72 | 0.67 | 0.50 | 0.91 | 0.010 |
FIM total score | 1.00 | 1.01 | 0.99 | 1.02 | 0.47 |
FILS score | 0.73 | 0.68 | 0.56 | 0.83 | <0.001 |
Hemorrhage stroke | 1.53 | 1.13 | 0.53 | 2.40 | 0.75 |
Phase angle | 1.59 | 1.24 | 0.74 | 2.07 | 0.42 |
Sarcopenia | 0.35 | 0.34 | 0.13 | 0.86 | 0.023 |
OR | 95% CI for AOR | p-Value | |||
---|---|---|---|---|---|
Crude | Adjusted | Lower | Upper | ||
FIM gain (>22 points) * | |||||
Age | 0.94 | 0.97 | 0.92 | 1.01 | 0.21 |
Female sex | 0.66 | 0.79 | 0.38 | 1.64 | 0.55 |
Pre-stroke need for care | 0.34 | 0.53 | 0.24 | 1.16 | 0.11 |
CCI, updated | 0.77 | 0.74 | 0.56 | 0.97 | 0.031 |
FIM total score | 1.00 | 0.99 | 0.98 | 1.01 | 0.25 |
FILS score | 1.08 | 1.14 | 0.96 | 1.34 | 0.14 |
Hemorrhage stroke | 1.02 | 1.01 | 0.49 | 2.07 | 0.97 |
Phase angle | 1.68 | 1.30 | 0.80 | 2.10 | 0.29 |
Sarcopenia | 0.36 | 0.63 | 0.27 | 1.46 | 0.28 |
FIM efficiency (>0.27 points/day) * | |||||
Age | 0.99 | 1.00 | 0.95 | 1.05 | 1.00 |
Female sex | 0.79 | 0.97 | 0.48 | 1.97 | 0.93 |
Pre-stroke need for care | 0.74 | 0.87 | 0.41 | 1.85 | 0.72 |
CCI, updated | 0.93 | 0.92 | 0.71 | 1.19 | 0.51 |
FIM total score | 1.02 | 1.02 | 1.00 | 1.03 | 0.045 |
FILS score | 1.15 | 1.08 | 0.92 | 1.27 | 0.37 |
Hemorrhage stroke | 0.65 | 0.74 | 0.37 | 1.50 | 0.41 |
Phase angle | 1.30 | 1.12 | 0.71 | 1.75 | 0.64 |
Sarcopenia | 0.47 | 0.78 | 0.34 | 1.82 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishioka, S.; Fujishima, I.; Kishima, M.; Ohno, T.; Shimizu, A.; Shigematsu, T.; Itoda, M.; Wakabayashi, H.; Kunieda, K.; Oshima, F.; et al. Association of Existence of Sarcopenia and Poor Recovery of Swallowing Function in Post-Stroke Patients with Severe Deglutition Disorder: A Multicenter Cohort Study. Nutrients 2022, 14, 4115. https://doi.org/10.3390/nu14194115
Nishioka S, Fujishima I, Kishima M, Ohno T, Shimizu A, Shigematsu T, Itoda M, Wakabayashi H, Kunieda K, Oshima F, et al. Association of Existence of Sarcopenia and Poor Recovery of Swallowing Function in Post-Stroke Patients with Severe Deglutition Disorder: A Multicenter Cohort Study. Nutrients. 2022; 14(19):4115. https://doi.org/10.3390/nu14194115
Chicago/Turabian StyleNishioka, Shinta, Ichiro Fujishima, Masako Kishima, Tomohisa Ohno, Akio Shimizu, Takashi Shigematsu, Masataka Itoda, Hidetaka Wakabayashi, Kenjiro Kunieda, Fumiko Oshima, and et al. 2022. "Association of Existence of Sarcopenia and Poor Recovery of Swallowing Function in Post-Stroke Patients with Severe Deglutition Disorder: A Multicenter Cohort Study" Nutrients 14, no. 19: 4115. https://doi.org/10.3390/nu14194115
APA StyleNishioka, S., Fujishima, I., Kishima, M., Ohno, T., Shimizu, A., Shigematsu, T., Itoda, M., Wakabayashi, H., Kunieda, K., Oshima, F., Ogawa, S., Fukuma, K., Ogawa, N., Kayashita, J., Yamada, M., Mori, T., & Onizuka, S. (2022). Association of Existence of Sarcopenia and Poor Recovery of Swallowing Function in Post-Stroke Patients with Severe Deglutition Disorder: A Multicenter Cohort Study. Nutrients, 14(19), 4115. https://doi.org/10.3390/nu14194115