The Prevalence of Hyperuricemia and Its Correlates among Adults in China: Results from CNHS 2015–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Participants
2.2. Data Collection and Measurements
2.3. Quality Control
2.4. Definition of HUA
2.5. Dietary Intake Assessment
2.6. Covariates
2.7. Statistical Analysis
2.8. Ethics Statements
3. Results
3.1. Basic Characteristics
3.2. Dietary Intakes
3.3. Prevalence of HUA among Participants
3.4. Influencing Factors of HUA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Hou, W.; Zhang, X.; Hu, L.; Tang, Z. Hyperuricemia and risk of stroke: A systematic review and meta-analysis of prospective studies. Atherosclerosis 2014, 232, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Doghramji, P.P.; Wortmann, R.L. Hyperuricemia and gout: New concepts in diagnosis and management. Postgrad. Med. 2012, 124, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Vogt, B. Urate oxidase (rasburicase) for treatment of severe tophaceous gout. Nephrol. Dial. Transplant. 2005, 20, 431–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, L.L.; Liu, A.P.; Wuyun, G.; Wu, H.P.; Wang, P.Y. Prevalence of Hyperuricemia and the Relationship between Serum Uric Acid and Metabolic Syndrome in the Asian Mongolian Area. J. Atheroscler. Thromb. 2014, 21, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Ford, E.S.; Li, C.; Curhan, G. Prevalence of the metabolic syndrome in patients with gout: The Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007, 57, 109–115. [Google Scholar] [CrossRef]
- Ghamri, R.A.; Galai, T.A.; Ismail, R.A.; Aljuhani, J.M.; Alotaibi, D.S.; Aljahdali, M.A. Prevalence of hyperuricemia and the relationship between serum uric acid concentrations and lipid parameters among King Abdulaziz University Hospital patients. Niger. J. Clin. Pract. 2022, 25, 439–447. [Google Scholar] [CrossRef]
- Maloberti, A.; Qualliu, E.; Occhi, L.; Sun, J.; Grasso, E.; Tognola, C.; Tavecchia, G.; Cartella, I.; Milani, M.; Vallerio, P.; et al. Hyperuricemia prevalence in healthy subjects and its relationship with cardiovascular target organ damage. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 178–185. [Google Scholar] [CrossRef]
- Khosla, U.M.; Zharikov, S.; Finch, J.L.; Nakagawa, T.; Roncal, C.; Mu, W.; Krotova, K.; Block, E.R.; Prabhakar, S.; Johnson, R.J. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005, 67, 1739–1742. [Google Scholar] [CrossRef] [Green Version]
- Qian, T.; Sun, H.; Xu, Q.; Hou, X.; Hu, W.; Zhang, G.; Drummond, G.R.; Sobey, C.G.; Charchar, F.J.; Golledge, J.; et al. Hyperuricemia is independently associated with hypertension in men under 60 years in a general Chinese population. J. Hum. Hypertens. 2021, 35, 1020–1028. [Google Scholar] [CrossRef]
- Aiumtrakul, N.; Wiputhanuphongs, P.; Supasyndh, O.; Satirapoj, B. Hyperuricemia and Impaired Renal Function: A Prospective Cohort Study. Kidney Dis. 2021, 7, 210–218. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, X.X.; Wu, J.; Huang, Z.J.; Zhao, Z.P.; Zhang, X.; Xue, Y.; Wan, W.G.; Li, C.; Zhang, W.R.; et al. Prevalence of Hyperuricemia Among Chinese Adults: Findings From Two Nationally Representative Cross-Sectional Surveys in 2015–16 and 2018–19. Front. Immunol. 2022, 12, 791983. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.B.; Zhang, W.Q.; Tang, W.W.; Liu, Y.; Ning, Y.; Huang, C.; Liu, J.X.; Yi, Y.J.; Xu, R.H.; Wang, T.D. Prevalence and associated factors of hyperuricemia among urban adults aged 35–79 years in southwestern China: A community-based cross-sectional study. Sci. Rep. 2020, 10, 15683. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.K.; Zhang, H.L.; Wang, F.; Liu, X.T.; Yang, K.L.; Tu, R.Q.; Wei, M.; Wang, L.; Mao, Z.X.; Zhang, G.Y.; et al. Epidemiology and prevalence of hyperuricemia among men and women in Chinese rural population: The Henan Rural Cohort Study. Mod. Rheumatol. 2020, 30, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef]
- Cho, S.K.; Winkler, C.A.; Lee, S.J.; Chang, Y.; Ryu, S. The Prevalence of Hyperuricemia Sharply Increases from the Late Menopausal Transition Stage in Middle-Aged Women. J. Clin. Med. 2019, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Qi, D.; Liu, J.; Wang, C.; Wang, L.; Zhang, X.; Lin, Q.; Tu, J.; Wang, J.; Ning, X.; Cui, J. Sex-specific differences in the prevalence of and risk factors for hyperuricemia among a low-income population in China: A cross-sectional study. Postgrad. Med. 2020, 132, 559–567. [Google Scholar] [CrossRef]
- Cui, L.; Meng, L.; Wang, G.; Yuan, X.; Li, Z.; Mu, R.; Wu, S. Prevalence and risk factors of hyperuricemia: Results of the Kailuan cohort study. Mod. Rheumatol. 2017, 27, 1066–1071. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, F.; Chen, C.; Cai, C.; Zhang, K.; Sun, N.; Tian, J.; Shi, W.; Zhang, M.; Zang, Y.; et al. Higher triglyceride level predicts hyperuricemia: A prospective study of 6-year follow-up. J. Clin. Lipidol. 2018, 12, 185–192. [Google Scholar] [CrossRef]
- Kaneko, K.; Aoyagi, Y.; Fukuuchi, T.; Inazawa, K.; Yamaoka, N. Total purine and purine base content of common foodstuffs for facilitating nutritional therapy for gout and hyperuricemia. Biol. Pharm. Bull. 2014, 37, 709–721. [Google Scholar] [CrossRef] [Green Version]
- Yokose, C.; McCormick, N.; Choi, H.K. The role of diet in hyperuricemia and gout. Curr. Opin. Rheumatol. 2021, 33, 135–144. [Google Scholar] [CrossRef]
- Hong, F.; Zheng, A.; Xu, P.; Wang, J.; Xue, T.; Dai, S.; Pan, S.; Guo, Y.; Xie, X.; Li, L.; et al. High-Protein Diet Induces Hyperuricemia in a New Animal Model for Studying Human Gout. Int. J. Mol. Sci. 2020, 21, 2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.J.; Man, Q.Q.; Song, S.; Song, P.K.; Liu, Z.; Li, Y.Q.; Jia, S.S.; Wang, J.Z.; Zhao, W.H.; Zhang, J. Relationships of Insulin Action to Age, Gender, Body Mass Index, and Waist Circumference Present Diversely in Different Glycemic Statuses among Chinese Population. J. Diabetes Res. 2018, 2018, 1682959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Sun, J.; Zhang, P.; Zhong, F.; Cai, J.; Ma, A. Association of dietary fiber intake with hyperuricemia in U.S. adults. Food Funct. 2019, 10, 4932–4940. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.B.D.D. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.Q.; Yu, D.M.; Ju, L.H.; Cheng, X.; Zhao, L.Y. Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015. Nutrients 2022, 14, 146. [Google Scholar] [CrossRef]
- van der Ploeg, H.P.; Bull, F.C. Invest in physical activity to protect and promote health: The 2020 WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 145. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Yang, Z.H.; Wu, Y.; Yin, R.X.; Liao, Y.H.; Wang, J.W.; Gao, B.X.; Zhang, L.X.; Grp, C.K.D.W. The prevalence, awareness, treatment and control of dyslipidemia among adults in China. Atherosclerosis 2016, 248, 2–9. [Google Scholar] [CrossRef]
- Yang, Y.; Piao, W.; Huang, K.; Fang, H.; Ju, L.; Zhao, L.; Yu, D.; Ma, Y. Dietary Pattern Associated with the Risk of Hyperuricemia in Chinese Elderly: Result from China Nutrition and Health Surveillance 2015–2017. Nutrients 2022, 14, 844. [Google Scholar] [CrossRef]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Trifiro, G.; Morabito, P.; Cavagna, L.; Ferrajolo, C.; Pecchioli, S.; Simonetti, M.; Bianchini, E.; Medea, G.; Cricelli, C.; Caputi, A.P.; et al. Epidemiology of gout and hyperuricaemia in Italy during the years 2005–2009: A nationwide population-based study. Ann. Rheum. Dis. 2013, 72, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Pathmanathan, K.; Robinson, P.C.; Hill, C.L.; Keen, H.I. The prevalence of gout and hyperuricaemia in Australia: An updated systematic review. Semin. Arthritis Rheum. 2021, 51, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Uaratanawong, S.; Suraamornkul, S.; Angkeaw, S.; Uaratanawong, R. Prevalence of hyperuricemia in Bangkok population. Clin. Rheumatol. 2011, 30, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kang, J.; Kim, G.T. Prevalence of hyperuricemia and its associated factors in the general Korean population: An analysis of a population-based nationally representative sample. Clin. Rheumatol. 2018, 37, 2529–2538. [Google Scholar] [CrossRef]
- Yu, S.; Yang, H.; Guo, X.; Zhang, X.; Zhou, Y.; Ou, Q.; Zheng, L.; Sun, Y. Prevalence of hyperuricemia and its correlates in rural Northeast Chinese population: From lifestyle risk factors to metabolic comorbidities. Clin. Rheumatol. 2016, 35, 1207–1215. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Wan, S.P.; Shan, G.L.; Wu, W.B.; Yong, Z.P.; Pei, J. Prevalence of Hyperuricemia and Associated Factors in the Yi Farmers and Migrants of Southwestern China: A Cross-sectional Study. Biomed. Environ. Sci. 2020, 33, 448–453. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Zhang, C.; Zhao, Y.; Sun, S.; Wang, S.; Zhao, Y.; Zhang, Y.; Li, J.; Lu, F. The prevalence of hyperuricemia and its correlates in an inland Chinese adult population, urban and rural of Jinan. Rheumatol. Int. 2013, 33, 1511–1517. [Google Scholar] [CrossRef]
- Guan, S.C.; Tang, Z.; Fang, X.H.; Wu, X.G.; Liu, H.J.; Wang, C.X.; Hou, C.B. Prevalence of hyperuricemia among Beijing post-menopausal women in 10 years. Arch. Gerontol. Geriat. 2016, 64, 162–166. [Google Scholar] [CrossRef]
- Roddy, E.; Zhang, W.; Doherty, M. The changing epidemiology of gout. Nat. Clin. Pract. Rheumatol. 2007, 3, 443–449. [Google Scholar] [CrossRef]
- De Vera, M.A.; Rahman, M.M.; Bhole, V.; Kopec, J.A.; Choi, H.K. Independent impact of gout on the risk of acute myocardial infarction among elderly women: A population-based study. Ann. Rheum. Dis. 2010, 69, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Dasharathy, S.S.; Pollack, A.Z.; Perkins, N.J.; Mattison, D.R.; Cole, S.R.; Wactawski-Wende, J.; Schisterman, E.F. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: Findings from the BioCycle study. Hum. Reprod. 2013, 28, 1853–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, F.M.; Garcia Puig, J.; Ramos, T.; Gonzalez, P.; Ordas, J. Sex differences in uric acid metabolism in adults: Evidence for a lack of influence of estradiol-17 beta (E2) on the renal handling of urate. Metabolism 1986, 35, 343–348. [Google Scholar] [CrossRef]
- Mu, L.S.; Pan, J.X.; Yang, L.L.; Chen, Q.Q.; Chen, Y.; Teng, Y.L.; Wang, P.Y.; Tang, R.; Huang, X.F.; Chen, X.; et al. Association between the prevalence of hyperuricemia and reproductive hormones in polycystic ovary syndrome. Reprod. Biol. Endocrin. 2018, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Iyadomi, M.; Higaki, Y.; Tanaka, H.; Hara, M.; Tanaka, K. Influence of physical activity intensity and aerobic fitness on the anthropometric index and serum uric acid concentration in people with obesity. Intern. Med. 2011, 50, 2121–2128. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Villegas, R.; Xiang, Y.B.; Elasy, T.; Xu, W.H.; Cai, H.; Cai, Q.; Linton, M.F.; Fazio, S.; Zheng, W.; Shu, X.O. Purine-rich foods, protein intake, and the prevalence of hyperuricemia: The Shanghai Men’s Health Study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Matzkies, F.; Berg, G.; Madl, H. The Uricosuric Action of Protein in Man. In Advances in Experimental Medicine and Biology; Spinger: New York, NY, USA, 1980; Volume 122A, pp. 227–231. [Google Scholar] [CrossRef]
- Zhang, T.; Rayamajhi, S.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.; Gu, Y.; Wang, Y.; Zhang, S.; Wang, X.; et al. Dietary patterns and risk for hyperuricemia in the general population: Results from the TCLSIH cohort study. Nutrition 2022, 93, 111501. [Google Scholar] [CrossRef]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Alcohol intake and risk of incident gout in men: A prospective study. Lancet 2004, 363, 1277–1281. [Google Scholar] [CrossRef]
- Beck, L.H. Clinical disorders of uric acid metabolism. Med. Clin. N. Am. 1981, 65, 401–411. [Google Scholar] [CrossRef]
Male | Female | Overall | |||
---|---|---|---|---|---|
N | % | N | % | N | |
Total | 24,425 | 46.4 | 28,202 | 53.6 | 52,627 |
Residence location | |||||
Urban | 9576 | 45.3 | 11,567 | 54.7 | 21,143 |
Rural | 14,849 | 47.2 | 16,635 | 52.8 | 31,484 |
Area of the country | |||||
East | 9495 | 46.1 | 11,117 | 53.9 | 20,612 |
Central | 6889 | 46.3 | 7979 | 53.7 | 14,868 |
West | 8041 | 46.9 | 9106 | 53.1 | 17,147 |
Age (years) | |||||
18~29 | 2493 | 44.2 | 3149 | 55.8 | 5642 |
30~39 | 3534 | 45.3 | 4262 | 54.7 | 7796 |
40~49 | 6595 | 45.8 | 7804 | 54.2 | 14,399 |
50~64 | 11,803 | 47.6 | 12,987 | 52.4 | 24,790 |
Education level | |||||
Low | 8247 | 37.0 | 14,069 | 63.0 | 22,316 |
Moderate | 9658 | 53.7 | 8326 | 46.3 | 17,984 |
High | 6520 | 52.9 | 5807 | 47.1 | 12,327 |
Household income | |||||
Low | 16,324 | 46.8 | 18,593 | 53.3 | 34,917 |
Moderate | 3914 | 46.1 | 4576 | 53.9 | 8490 |
High | 430 | 46.3 | 499 | 53.7 | 929 |
Unknown | 3757 | 45.3 | 4534 | 54.7 | 8291 |
BMI | |||||
Wasting | 856 | 41.4 | 1211 | 58.6 | 2067 |
Normal | 11,133 | 45.8 | 13,161 | 54.2 | 24,294 |
Overweight | 8907 | 48.0 | 9641 | 52.0 | 18,548 |
Obese | 3529 | 45.7 | 4189 | 54.3 | 7718 |
smoking | |||||
Never | 8327 | 23.3 | 27,390 | 76.7 | 35,717 |
Former | 13,471 | 95.3 | 671 | 4.7 | 14,142 |
Current | 2627 | 94.9 | 141 | 5.1 | 2768 |
Physically active | |||||
Insufficient | 12,984 | 43.3 | 16,978 | 56.7 | 29,962 |
sufficient | 11,441 | 50.5 | 11,224 | 49.5 | 22,665 |
Hypertension | |||||
No | 15,917 | 44.5 | 19,826 | 55.5 | 35,743 |
Yes | 8508 | 50.4 | 8376 | 49.6 | 16,884 |
Diabetes mellitus | |||||
No | 22,381 | 46.2 | 26,106 | 53.8 | 48,487 |
Yes | 2044 | 49.4 | 2096 | 50.6 | 4140 |
Dyslipidemia | |||||
No | 13,197 | 41.6 | 18,527 | 58.4 | 31,724 |
Yes | 11,228 | 53.7 | 9675 | 46.3 | 20,903 |
Bean and nut intake | |||||
Insufficient | 10,614 | 44.4 | 13,305 | 55.6 | 23,919 |
sufficient | 13,811 | 48.1 | 14,897 | 51.9 | 28,708 |
Vegetable intake | |||||
Insufficient | 12,914 | 45.2 | 15,645 | 54.8 | 28,559 |
sufficient | 11,511 | 47.8 | 12,557 | 52.2 | 24,068 |
Fruit intake | |||||
Insufficient | 20,441 | 47.9 | 22,201 | 52.1 | 42,642 |
sufficient | 3984 | 39.9 | 6001 | 60.1 | 9985 |
Milk intake | |||||
Insufficient | 24,053 | 46.6 | 27,604 | 53.4 | 51,657 |
sufficient | 372 | 38.4 | 598 | 61.7 | 970 |
Red meat intake | |||||
Insufficient | 5503 | 36.6 | 9523 | 63.4 | 15,026 |
Moderate | 1805 | 40.4 | 2658 | 59.6 | 4463 |
excessive | 17,117 | 51.7 | 16,021 | 48.4 | 33,138 |
alcohol consumption | |||||
Never | 11,883 | 31.4 | 25,927 | 68.6 | 37,810 |
Low risk | 8746 | 81.7 | 1966 | 18.4 | 10,712 |
Medium risk | 1346 | 89.0 | 167 | 11.0 | 1513 |
High and very high risk | 2450 | 94.5 | 142 | 5.5 | 2592 |
Vegetarian | |||||
No | 1059 | 36.9 | 1808 | 63.1 | 2867 |
Yes | 23,366 | 47.0 | 26,394 | 53.0 | 49,760 |
Prevalence % (95% CI) | Rao–Scott X2 | p-Value | |
---|---|---|---|
Total | 15.1 (13.6, 16.6) | ||
Gender | |||
Male | 21.2 (19.1, 23.4) | 696.3878 | <0.0001 |
Female | 8.5 (7.5, 9.5) | ||
Residence location | |||
Urban | 17.2 (14.7, 19.6) | 13.9459 | 0.0002 |
Rural | 12.8 (11.5, 14.0) | ||
Area of the country | |||
East | 16.9 (14.2, 19.7) | 8.3070 | 0.0157 |
Central | 12.9 (11.2, 14.7) | ||
West | 14.4 (12.5, 16.2) | ||
Age (years) | |||
18~29 | 17.8 (15.2, 20.4) | 23.4681 | <0.0001 |
30~39 | 14.8 (13.2, 16.3) | ||
40~49 | 14.0 (11.8, 16.1) | ||
50~64 | 13.6 (12.4, 14.7) | ||
Education level | |||
Low | 11.9 (10.6, 13.3) | 74.0552 | <0.0001 |
Moderate | 14.8 (13.1, 16.5) | ||
High | 17.9 (15.9, 19.9) | ||
Household income | |||
Low | 14.3 (12.7, 16.0) | 21.6375 | <0.0001 |
Moderate | 17.7 (16.0, 19.5) | ||
High | 14.6 (10.6, 18.6) | ||
BMI | |||
Wasting | 8.0 (5.2, 10.9) | 133.0930 | <0.0001 |
Normal | 9.9 (7.7, 12.2) | ||
Overweight | 18.2 (16.3, 20.1) | ||
Obese | 27.3 (24.8, 29.8) | ||
Smoking | |||
Never | 12.5 (11.0, 14.0) | 119.7219 | <0.0001 |
Former | 20.1 (18.3, 21.8) | ||
Current | 22.9 (18.0, 27.7) | ||
Physically active | |||
Insufficient | 16.1 (14.3, 17.9) | 20.9569 | <0.0001 |
Sufficient | 13.2 (11.9, 14.6) | ||
Hypertension | |||
No | 13.6 (11.9, 15.3) | 38.8866 | <0.0001 |
Yes | 19.9 (18.0, 21.8) | ||
Diabetes mellitus | |||
No | 15.0 (13.4, 16.6) | 1.2533 | 0.2629 |
Yes | 16.4 (14.3, 18.5) | ||
Dyslipidemia | |||
No | 10.2 (8.6, 11.8) | 175.3248 | <0.0001 |
Yes | 22.9 (21.2, 24.7) | ||
Bean and nut intake | |||
Insufficient | 15.3 (13.8, 16.9) | 0.3804 | 0.5374 |
Sufficient | 14.9 (13.1, 16.6) | ||
Vegetable intake | |||
Insufficient | 16.0 (14.1, 17.9) | 6.7256 | 0.0095 |
Sufficient | 14.3 (12.9, 15.7) | ||
Fruit intake | |||
Insufficient | 15.2 (13.4, 17.0) | 0.4620 | 0.4967 |
Sufficient | 14.6 (13.1, 16.0) | ||
Milk intake | |||
Insufficient | 15.1 (13.5, 16.6) | 0.0624 | 0.0624 |
Sufficient | 14.5 (10.1, 18.9) | ||
Red meat intake | |||
Insufficient | 10.8 (9.5, 12.1) | 75.4133 | <0.0001 |
Moderate | 12.6 (10.1, 15.1) | ||
Excessive | 17.1 (15.4, 18.9) | ||
Alcohol consumption | |||
Never | 12.2 (11.3, 13.2) | 84.3755 | <0.0001 |
Low risk | 21.1 (17.0, 25.2) | ||
Medium risk | 25.3 (18.9, 31.8) | ||
High and very high risk | 21.9 (18.8, 25.1) | ||
Vegetarian | |||
No | 15.4 (13.8, 17.0) | 24.3736 | <0.0001 |
Yes | 9.1 (7.1, 11.1) |
Influencing Factors | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Gender | <0.0001 | <0.0001 | <0.0001 | |||
Male | Ref. | Ref. | Ref. | |||
Female | 0.346 (0.311, 0.385) | 0.406 (0.346, 0.476) | 0.469 (0.406, 0.541) | |||
Residence location | 0.0215 | 0.0854 | 0.0706 | |||
Urban | Ref. | Ref. | Ref. | |||
Rural | 0.776 (0.626, 0.963) | 0.810 (0.637, 1.030) | 0.812 (0.648, 1.018) | |||
Area of the country | 0.1097 | 0.0734 | 0.1556 | |||
East | Ref. | Ref. | Ref. | |||
Central | 0.776 (0.610, 0.986) | 0.745 (0.563, 0.987) | 0.777 (0.592, 1.021) | |||
West | 0.889 (0.699, 1.130) | 0.925 (0.700, 1.221) | 0.916 (0.71, 1.183) | |||
Age (years) | 0.0039 | <0.0001 | <0.0001 | |||
18~29 | Ref. | Ref. | Ref. | |||
30~39 | 0.783 (0.646, 0.948) | 0.646 (0.543, 0.769) | 0.631 (0.527, 0.756) | |||
40~49 | 0.773 (0.666, 0.896) | 0.571 (0.485, 0.671) | 0.546 (0.463, 0.644) | |||
50~64 | 0.749 (0.625, 0.897) | 0.532 (0.441, 0.642) | 0.518 (0.428, 0.627) | |||
Education level | 0.5866 | 0.464 | 0.6253 | |||
Low | Ref. | Ref. | Ref. | |||
Moderate | 0.982 (0.870, 1.108) | 0.935 (0.827, 1.056) | 0.952 (0.841, 1.077) | |||
High | 1.063 (0.882, 1.280) | 0.992 (0.823, 1.195) | 1.002 (0.832, 1.206) | |||
Household income | 0.1145 | 0.1334 | 0.1408 | |||
Low | Ref. | Ref. | Ref. | |||
Moderate | 1.116 (0.944, 1.321) | 1.138 (0.973, 1.332) | 1.114 (0.949, 1.309) | |||
High | 0.821 (0.584, 1.153) | 0.897 (0.623, 1.291) | 0.849 (0.584, 1.235) | |||
BMI | <0.0001 | <0.0001 | ||||
Wasting | Ref. | Ref. | ||||
Normal | 1.390 (0.796, 2.426) | 1.382 (0.815, 2.346) | ||||
Overweight | 2.501 (1.500, 4.170) | 2.492 (1.519, 4.089) | ||||
Obese | 3.879 (2.340, 6.428) | 3.906 (2.384, 6.398) | ||||
smoking | 0.2249 | 0.3176 | ||||
Never | Ref. | Ref. | ||||
Former | 1.036 (0.877, 1.223) | 0.939 (0.751, 1.173) | ||||
Current | 1.210 (0.968, 1.512) | 1.142 (0.934, 1.397) | ||||
Physically active | 0.0036 | 0.0014 | ||||
Insufficient | Ref. | Ref. | ||||
sufficient | 0.844 (0.754, 0.946) | 0.824 (0.732, 0.927) | ||||
Hypertension | <0.0001 | <0.0001 | ||||
No | ||||||
Yes | 1.314 (1.171, 1.476) | 1.317 (1.172, 1.480) | ||||
Diabetes mellitus | 0.0099 | 0.0056 | ||||
No | Ref. | Ref. | ||||
Yes | 0.789 (0.659, 0.945) | 0.783 (0.659, 0.930) | ||||
Dyslipidemia | <0.0001 | <0.0001 | ||||
No | Ref. | Ref. | ||||
Yes | 1.853 (1.634, 2.102) | 1.878 (1.664, 2.120) | ||||
Bean and nut intake | 0.0002 | |||||
Insufficient | Ref. | |||||
sufficient | 0.801 (0.713, 0.899) | |||||
Vegetable intake | 0.0404 | |||||
Insufficient | Ref. | |||||
sufficient | 0.89 (0.797, 0.995) | |||||
Fruit intake | 0.1793 | |||||
Insufficient | Ref. | |||||
sufficient | 0.881 (0.732, 1.060) | |||||
Milk intake | 0.3563 | |||||
Insufficient | Ref. | |||||
sufficient | 0.823 (0.545, 1.245) | |||||
Red meat intake | 0.0001 | |||||
Insufficient | Ref. | |||||
Moderate | 1.106 (0.861, 1.420) | |||||
excessive | 1.356 (1.160, 1.585) | |||||
alcohol consumption | 0.0106 | |||||
Never | Ref. | |||||
Low risk | 1.278 (0.917, 1.781) | |||||
Medium risk | 1.640 (1.093, 2.459) | |||||
High and very high risk | 1.390 (1.117, 1.730) | |||||
Vegetarian | 0.0023 | |||||
No | Ref. | |||||
Yes | 0.672 (0.520, 0.867) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piao, W.; Zhao, L.; Yang, Y.; Fang, H.; Ju, L.; Cai, S.; Yu, D. The Prevalence of Hyperuricemia and Its Correlates among Adults in China: Results from CNHS 2015–2017. Nutrients 2022, 14, 4095. https://doi.org/10.3390/nu14194095
Piao W, Zhao L, Yang Y, Fang H, Ju L, Cai S, Yu D. The Prevalence of Hyperuricemia and Its Correlates among Adults in China: Results from CNHS 2015–2017. Nutrients. 2022; 14(19):4095. https://doi.org/10.3390/nu14194095
Chicago/Turabian StylePiao, Wei, Liyun Zhao, Yuxiang Yang, Hongyun Fang, Lahong Ju, Shuya Cai, and Dongmei Yu. 2022. "The Prevalence of Hyperuricemia and Its Correlates among Adults in China: Results from CNHS 2015–2017" Nutrients 14, no. 19: 4095. https://doi.org/10.3390/nu14194095
APA StylePiao, W., Zhao, L., Yang, Y., Fang, H., Ju, L., Cai, S., & Yu, D. (2022). The Prevalence of Hyperuricemia and Its Correlates among Adults in China: Results from CNHS 2015–2017. Nutrients, 14(19), 4095. https://doi.org/10.3390/nu14194095