Can Nutrition Play a Role in Ameliorating Digital Eye Strain?
Abstract
:1. Introduction
1.1. Ocular and Vision-Related Symptoms
1.1.1. Dry Eye Disease
1.1.2. Asthenopia
1.2. Extraocular Symptoms
2. Omega-3 Fatty Acids
3. Phytochemicals
4. Carotenoids
Author (Year) | Participants | Duration | No. of Groups | Interventions per Day | Results |
---|---|---|---|---|---|
Kan (2020) [206] | 360 adults with DES; aged (38.3 ± 8.3) years in China | 90 days | 4 | 12 mg L + 1.2 mg Z; 20 mg L + 2 mg Z; 28 mg L + 2.8 mg Z; placebo | Significant improvement in TBUT, Schirmer’s test, and eye fatigue symptoms (p < 0.01, for all) |
Kawabata (2011) [201] | 20 adults with heavy VDT use; aged (25.2 ± 1.2) years in Japan | 4 weeks | 2 | 17.5 mg L (multivitamin); placebo | Safely improved subjective complaints of asthenopia and mental fatigue from VDTs |
Kizawa (2021) [199] | 44 adults with DES; aged (36.6 ± 9.1) years in Japan | 6 weeks | 2 | 5 mg L + 3 mg Ax (multivitamin); placebo | Ameliorated reduction in accommodative function and visual performance (both p < 0.05) |
Kono (2014) [200] | 48 adults with eye strain; aged (52.8 ± 0.9) years in Japan | 4 weeks | 2 | 10 mg L + 4 mg Ax (multivitamin); placebo | Protection against accommodative amplitude decline from VDT use (p < 0.05) |
Ma (2009) [295] | 37 adults with DES; aged (24.8 ± 2.0) years in China | 12 weeks | 3 | 6 mg L; 12 mg L; placebo | Higher intake of lutein may offer enhanced benefit in visual performance measures |
Nagaki (2002) [325] | 26 adults with VDT use; aged (47.7 ± 4.4) years in Japan | 4 weeks | 2 | 5 mg Ax; placebo | Marked increase in accommodative amplitude (p < 0.01) |
Stringham (2016) [282] | 59 healthy young adults; aged (21.7 ± 1.0) years in USA | 12 months | 3 | 10 mg L + 1 mg Z + 1 mg MZ; 20 mg L + 2 mg Z + 2 mg MZ; placebo | Significant increase in MPOD resulted in improved PSR and DG (p < 0.001, for all) |
Stringham (2017) [268] | 48 healthy adults with +6 h/day screen time; aged (21.2) years in USA | 6 months | 2 | 20 mg L + 2.5 mg Z + 1.5 mg MZ; placebo | MPOD increased significantly along with enhanced visual performance measures and sleep quality (p < 0.05, for all) |
Stringham (2018) [283] | 59 healthy young adults; aged (21.5) years in USA | 12 months | 3 | 10.86 mg L + 2.27 mg Z-MZ isomers; 22.3 mg L + 4.7 Z-MZ isomers; placebo | Statistically significant relationship between increased MPOD and reductions in serum cortisol (p < 0.001) and psychological stress (p = 0.002) |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Academy of Ophthalmology; Tripathy, K.; Chandrasekaran, P.R. Computer Vision Syndrome (Digital Eye Strain). Available online: https://eyewiki.aao.org/Computer_Vision_Syndrome_(Digital_Eye_Strain) (accessed on 20 September 2021).
- American Optometric Association. Computer Vision Syndrome. Available online: https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/computer-vision-syndrome?sso=y (accessed on 20 September 2021).
- Parihar, J.K.; Jain, V.K.; Chaturvedi, P.; Kaushik, J.; Jain, G.; Parihar, A.K. Computer and visual display terminals (VDT) vision syndrome (CVDTS). Med. J. Armed Forces India 2016, 72, 270–276. [Google Scholar] [CrossRef]
- Blehm, C.; Vishnu, S.; Khattak, A.; Mitra, S.; Yee, R.W. Computer vision syndrome: A review. Surv. Ophthalmol. 2005, 50, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Gowrisankaran, S.; Sheedy, J.E. Computer vision syndrome: A review. Work 2015, 52, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, A.L.; Wolffsohn, J.S. Digital eye strain: Prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018, 3, e000146. [Google Scholar] [CrossRef]
- Kushima, M.; Kojima, R.; Shinohara, R.; Horiuchi, S.; Otawa, S.; Ooka, T.; Akiyama, Y.; Miyake, K.; Yokomichi, H.; Yamagata, Z.; et al. Association Between Screen Time Exposure in Children at 1 Year of Age and Autism Spectrum Disorder at 3 Years of Age: The Japan Environment and Children’s Study. JAMA Pediatr. 2022, 176, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Coles-Brennan, C.; Sulley, A.; Young, G. Management of digital eye strain. Clin. Exp. Optom. 2019, 102, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.R.; Sheedy, J.E.; Stelmack, J.A.; Heaney, C.A. Computer use, symptoms, and quality of life. Optom. Vis. Sci. 2007, 84, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Tauste, A.; Ronda, E.; Molina, M.J.; Segui, M. Effect of contact lens use on Computer Vision Syndrome. Ophthalmic Physiol. Opt. 2016, 36, 112–119. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, G.; Wang, W.; Xiong, S.; Xu, X. Correlation between handheld digital device use and asthenopia in Chinese college students: A Shanghai study. Acta Ophthalmol. 2019, 97, e442–e447. [Google Scholar] [CrossRef]
- The Vision Council Shines Light on Protecting Sight—And Health—In a Multi-Screen Era|The Vision Council. Available online: https://www.thevisioncouncil.org/blog/vision-council-shines-light-protecting-sight-and-health-multi-screen-era (accessed on 21 September 2021).
- Aguilar-Farias, N.; Toledo-Vargas, M.; Miranda-Marquez, S.; Cortinez-O’Ryan, A.; Cristi-Montero, C.; Rodriguez-Rodriguez, F.; Martino-Fuentealba, P.; Okely, A.D.; Del Pozo Cruz, B. Sociodemographic Predictors of Changes in Physical Activity, Screen Time, and Sleep among Toddlers and Preschoolers in Chile during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 18, 176. [Google Scholar] [CrossRef]
- Ozturk Eyimaya, A.; Yalcin Irmak, A. Relationship Between Parenting Practices and Children’s Screen Time During the COVID-19 Pandemic in Turkey. J. Pediatr. Nurs. 2021, 56, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Cartes, C.; Segovia, C.; Salinas-Toro, D.; Goya, C.; Alonso, M.J.; Lopez-Solis, R.; Zapata, C.; Cabezas, M.; Yanez, P.; Flores-Rodriguez, P.; et al. Dry Eye and Visual Display Terminal-Related Symptoms among University Students during the Coronavirus Disease Pandemic. Ophthalmic Epidemiol. 2021, 29, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hwang, Y.; Kang, S.; Kim, M.; Kim, T.S.; Kim, J.; Seo, J.; Ahn, H.; Yoon, S.; Yun, J.P.; et al. Association between Exposure to Smartphones and Ocular Health in Adolescents. Ophthalmic Epidemiol. 2016, 23, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Sen, P.; Shah, C.; Datt, K.; Jain, E. Binocular Accommodation and Vergence Dysfunction in Children Attending Online Classes During the COVID-19 Pandemic: Digital Eye Strain in Kids (DESK) Study-2. J. Pediatr. Ophthalmol. Strabismus 2021, 58, 224–231. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, K.W.; Moon, N.J. Smartphone use is a risk factor for pediatric dry eye disease according to region and age: A case control study. BMC Ophthalmol. 2016, 16, 188. [Google Scholar] [CrossRef]
- Mylona, I.; Deres, E.S.; Dere, G.S.; Tsinopoulos, I.; Glynatsis, M. The Impact of Internet and Videogaming Addiction on Adolescent Vision: A Review of the Literature. Front. Public Health 2020, 8, 63. [Google Scholar] [CrossRef]
- Alabdulkader, B. Effect of digital device use during COVID-19 on digital eye strain. Clin. Exp. Optom. 2021, 104, 698–704. [Google Scholar] [CrossRef]
- Antona, B.; Barrio, A.R.; Gasco, A.; Pinar, A.; Gonzalez-Perez, M.; Puell, M.C. Symptoms associated with reading from a smartphone in conditions of light and dark. Appl. Ergon. 2018, 68, 12–17. [Google Scholar] [CrossRef]
- Wood, B.; Rea, M.S.; Plitnick, B.; Figueiro, M.G. Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Appl. Ergon. 2013, 44, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, M.; Jahan, S.; Nunez, K.; Chan, K. Cognitive demand, digital screens and blink rate. Comput. Hum. Behav. 2015, 51, 403–406. [Google Scholar] [CrossRef]
- Vilela, M.A.; Pellanda, L.C.; Cesa, C.C.; Castagno, V.D. Asthenopia Prevalence and Risk Factors Associated with Professional Computer Use—A Systematic Review. Int. J. Adv. Med. Sci. 2015, 3, 51–60. [Google Scholar] [CrossRef]
- Long, J.; Cheung, R.; Duong, S.; Paynter, R.; Asper, L. Viewing distance and eyestrain symptoms with prolonged viewing of smartphones. Clin. Exp. Optom. 2017, 100, 133–137. [Google Scholar] [CrossRef]
- Lawrenson, J.G.; Hull, C.C.; Downie, L.E. The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: A systematic review of the literature. Ophthalmic Physiol. Opt. 2017, 37, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Courtin, R.; Pereira, B.; Naughton, G.; Chamoux, A.; Chiambaretta, F.; Lanhers, C.; Dutheil, F. Prevalence of dry eye disease in visual display terminal workers: A systematic review and meta-analysis. BMJ Open 2016, 6, e009675. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Toro, D.; Cartes, C.; Segovia, C.; Alonso, M.J.; Soberon, B.; Sepulveda, M.; Zapata, C.; Yanez, P.; Traipe, L.; Goya, C.; et al. High frequency of digital eye strain and dry eye disease in teleworkers during the coronavirus disease (2019) pandemic. Int. J. Occup. Saf. Ergon. 2021, 28, 1787–1792. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Lim, T.C.; Shikhare, S.N.; Munk, P.L.; Peh, W.C.G. Computer Vision Syndrome: Darkness Under the Shadow of Light. Can. Assoc. Radiol. J. 2019, 70, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Al Rashidi, S.H.; Alhumaidan, H. Computer vision syndrome prevalence, knowledge and associated factors among Saudi Arabia University Students: Is it a serious problem? Int. J. Health Sci. 2017, 11, 17–19. [Google Scholar]
- Logaraj, M.; Madhupriya, V.; Hegde, S. Computer vision syndrome and associated factors among medical and engineering students in chennai. Ann. Med. Health Sci. Res. 2014, 4, 179–185. [Google Scholar] [CrossRef]
- Mowatt, L.; Gordon, C.; Santosh, A.B.R.; Jones, T. Computer vision syndrome and ergonomic practices among undergraduate university students. Int. J. Clin. Pract. 2018, 72, e13035. [Google Scholar] [CrossRef]
- Iqbal, M.; El-Massry, A.; Elagouz, M.; Elzembely, H. Computer Vision Syndrome Survey among the Medical Students in Sohag University Hospital, Egypt. Ophthalmol. Res. Int. J. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Shantakumari, N.; Eldeeb, R.; Sreedharan, J.; Gopal, K. Computer use and vision-related problems among university students in ajman, United arab emirate. Ann. Med. Health Sci. Res. 2014, 4, 258–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wei, X.; Deng, Y. Computer Vision Syndrome During SARS-CoV-2 Outbreak in University Students: A Comparison Between Online Courses and Classroom Lectures. Front. Public Health 2021, 9, 696036. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Raj, A.; Dhasmana, R.; Bahadur, H. Effect of Late Night Studying and Excessive Use of Video Display Terminals on the Ocular Health of Medical Undergraduate Students in A Tertiary Care Hospital. J. Clin. Exp. Ophthalmol. 2018, 9, 773. [Google Scholar] [CrossRef]
- Ichhpujani, P.; Singh, R.B.; Foulsham, W.; Thakur, S.; Lamba, A.S. Visual implications of digital device usage in school children: A cross-sectional study. BMC Ophthalmol. 2019, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Dadson, P.; Brown, T.; Stagnitti, K. Relationship between screen-time and hand function, play and sensory processing in children without disabilities aged 4-7 years: A exploratory study. Aust. Occup. Ther. J. 2020, 67, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Aoyagi, K.; Shibata, A.; Koohsari, M.J.; Carver, A.; Oka, K. Joint Associations of Leisure Screen Time and Physical Activity with Academic Performance in a Sample of Japanese Children. Int. J. Environ. Res. Public Health 2020, 17, 757. [Google Scholar] [CrossRef] [PubMed]
- Breen, R.; Pyper, S.; Rusk, Y.; Dockrell, S. An investigation of children’s posture and discomfort during computer use. Ergonomics 2007, 50, 1582–1592. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Zhu, D.; Cao, Y. Smartphone Overuse and Visual Impairment in Children and Young Adults: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e21923. [Google Scholar] [CrossRef]
- Vilela, M.A.; Pellanda, L.C.; Fassa, A.G.; Castagno, V.D. Prevalence of asthenopia in children: A systematic review with meta-analysis. J. Pediatr. 2015, 91, 320–325. [Google Scholar] [CrossRef]
- Domingues-Montanari, S. Clinical and psychological effects of excessive screen time on children. J. Paediatr. Child. Health 2017, 53, 333–338. [Google Scholar] [CrossRef]
- Al Tawil, L.; Aldokhayel, S.; Zeitouni, L.; Qadoumi, T.; Hussein, S.; Ahamed, S.S. Prevalence of self-reported computer vision syndrome symptoms and its associated factors among university students. Eur. J. Ophthalmol. 2020, 30, 189–195. [Google Scholar] [CrossRef]
- Ye, Z.; Abe, Y.; Kusano, Y.; Takamura, N.; Eida, K.; Takemoto, T.; Aoyagi, K. The influence of visual display terminal use on the physical and mental conditions of administrative staff in Japan. J. Physiol. Anthr. 2007, 26, 69–73. [Google Scholar] [CrossRef]
- Rosenfield, M. Computer vision syndrome: A review of ocular causes and potential treatments. Ophthalmic Physiol. Opt. 2011, 31, 502–515. [Google Scholar] [CrossRef]
- Segui Mdel, M.; Cabrero-Garcia, J.; Crespo, A.; Verdu, J.; Ronda, E. A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace. J. Clin. Epidemiol. 2015, 68, 662–673. [Google Scholar] [CrossRef]
- Vaz, F.T.; Henriques, S.P.; Silva, D.S.; Roque, J.; Lopes, A.S.; Mota, M. Digital Asthenopia: Portuguese Group of Ergophthalmology Survey. Acta Med. Port. 2019, 32, 260–265. [Google Scholar] [CrossRef]
- Mehra, D.; Galor, A. Digital Screen Use and Dry Eye: A Review. Asia Pac. J. Ophthalmol. 2020, 9, 491–497. [Google Scholar] [CrossRef]
- Lem, D.W.; Davey, P.G. Tackle Digital Eye Strain. Available online: https://www.optometricmanagement.com/issues/2020/september-2020/tackle-digital-eye-strain (accessed on 20 August 2022).
- Kim, D.J.; Lim, C.Y.; Gu, N.; Park, C.Y. Visual Fatigue Induced by Viewing a Tablet Computer with a High-resolution Display. Korean J. Ophthalmol. 2017, 31, 388–393. [Google Scholar] [CrossRef]
- Akkaya, S.; Atakan, T.; Acikalin, B.; Aksoy, S.; Ozkurt, Y. Effects of long-term computer use on eye dryness. North. Clin. Istanb. 2018, 5, 319–322. [Google Scholar] [CrossRef]
- Sanchez-Valerio, M.D.R.; Mohamed-Noriega, K.; Zamora-Ginez, I.; Baez Duarte, B.G.; Vallejo-Ruiz, V. Dry Eye Disease Association with Computer Exposure Time Among Subjects with Computer Vision Syndrome. Clin. Ophthalmol. 2020, 14, 4311–4317. [Google Scholar] [CrossRef]
- Portello, J.K.; Rosenfield, M.; Chu, C.A. Blink rate, incomplete blinks and computer vision syndrome. Optom. Vis. Sci. 2013, 90, 482–487. [Google Scholar] [CrossRef]
- Iribarren, R.; Fornaciari, A.; Hung, G.K. Effect of cumulative nearwork on accommodative facility and asthenopia. Int. Ophthalmol. 2001, 24, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Asper, L.; Long, J.; Lee, A.; Harrison, K.; Golebiowski, B. Ocular and visual discomfort associated with smartphones, tablets and computers: What we do and do not know. Clin. Exp. Optom. 2019, 102, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Yeh, F.M.; Wu, B.W.; Yang, C.H. The effects of reflected glare and visual field lighting on computer vision syndrome. Clin. Exp. Optom. 2019, 102, 513–520. [Google Scholar] [CrossRef]
- Fjaervoll, K.; Fjaervoll, H.; Magno, M.; Noland, S.T.; Dartt, D.A.; Vehof, J.; Utheim, T.P. Review on the possible pathophysiological mechanisms underlying visual display terminal-associated dry eye disease. Acta Ophthalmol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Seen, S.; Tong, L. Dry eye disease and oxidative stress. Acta Ophthalmol. 2018, 96, e412–e420. [Google Scholar] [CrossRef] [PubMed]
- Uchino, M.; Yokoi, N.; Uchino, Y.; Dogru, M.; Kawashima, M.; Komuro, A.; Sonomura, Y.; Kato, H.; Kinoshita, S.; Schaumberg, D.A.; et al. Prevalence of dry eye disease and its risk factors in visual display terminal users: The Osaka study. Am. J. Ophthalmol. 2013, 156, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, M.; Yamatsuji, M.; Yokoi, N.; Fukui, M.; Ichihashi, Y.; Kato, H.; Nishida, M.; Uchino, M.; Kinoshita, S.; Tsubota, K. Screening of dry eye disease in visual display terminal workers during occupational health examinations: The Moriguchi study. J. Occup. Health 2015, 57, 253–258. [Google Scholar] [CrossRef]
- Toomingas, A.; Hagberg, M.; Heiden, M.; Richter, H.; Westergren, K.E.; Tornqvist, E.W. Risk factors, incidence and persistence of symptoms from the eyes among professional computer users. Work 2014, 47, 291–301. [Google Scholar] [CrossRef]
- American Academy of Ophthalmology. What Is Dry Eye? Available online: https://www.aao.org/eye-health/diseases/what-is-dry-eye (accessed on 20 August 2022).
- American Optometric Association. Dry Eye. Available online: https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/dry-eye?sso=y (accessed on 20 August 2022).
- Uchino, M.; Uchino, Y.; Dogru, M.; Kawashima, M.; Yokoi, N.; Komuro, A.; Sonomura, Y.; Kato, H.; Kinoshita, S.; Schaumberg, D.A.; et al. Dry eye disease and work productivity loss in visual display users: The Osaka study. Am. J. Ophthalmol. 2014, 157, 294–300. [Google Scholar] [CrossRef]
- Uchino, Y.; Kawakita, T.; Miyazawa, M.; Ishii, T.; Onouchi, H.; Yasuda, K.; Ogawa, Y.; Shimmura, S.; Ishii, N.; Tsubota, K. Oxidative stress induced inflammation initiates functional decline of tear production. PLoS ONE 2012, 7, e45805. [Google Scholar] [CrossRef]
- The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 2007, 5, 75–92. [CrossRef]
- Chidi-Egboka, N.C.; Jalbert, I.; Golebiowski, B. Smartphone gaming induces dry eye symptoms and reduces blinking in school-aged children. Eye 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Argiles, M.; Cardona, G.; Perez-Cabre, E.; Rodriguez, M. Blink Rate and Incomplete Blinks in Six Different Controlled Hard-Copy and Electronic Reading Conditions. Invest. Ophthalmol. Vis. Sci. 2015, 56, 6679–6685. [Google Scholar] [CrossRef] [PubMed]
- Cardona, G.; Garcia, C.; Seres, C.; Vilaseca, M.; Gispets, J. Blink rate, blink amplitude, and tear film integrity during dynamic visual display terminal tasks. Curr. Eye Res. 2011, 36, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.J.; Iskander, D.R.; Saunders, A.; Hook, S.; Anthony, E.; Gillon, R. Blinking patterns and corneal staining. Eye Contact Lens 2006, 32, 287–293. [Google Scholar] [CrossRef]
- Doughty, M.J. Consideration of three types of spontaneous eyeblink activity in normal humans: During reading and video display terminal use, in primary gaze, and while in conversation. Optom. Vis. Sci. 2001, 78, 712–725. [Google Scholar] [CrossRef]
- Jie, Y.; Sella, R.; Feng, J.; Gomez, M.L.; Afshari, N.A. Evaluation of incomplete blinking as a measurement of dry eye disease. Ocul. Surf. 2019, 17, 440–446. [Google Scholar] [CrossRef]
- Tsubota, K.; Nakamori, K. Effects of ocular surface area and blink rate on tear dynamics. Arch. Ophthalmol. 1995, 113, 155–158. [Google Scholar] [CrossRef]
- Golebiowski, B.; Long, J.; Harrison, K.; Lee, A.; Chidi-Egboka, N.; Asper, L. Smartphone Use and Effects on Tear Film, Blinking and Binocular Vision. Curr. Eye Res. 2020, 45, 428–434. [Google Scholar] [CrossRef]
- Pellegrini, M.; Senni, C.; Bernabei, F.; Cicero, A.F.G.; Vagge, A.; Maestri, A.; Scorcia, V.; Giannaccare, G. The Role of Nutrition and Nutritional Supplements in Ocular Surface Diseases. Nutrients 2020, 12, 952. [Google Scholar] [CrossRef]
- Aragona, P.; Rolando, M. Towards a dynamic customised therapy for ocular surface dysfunctions. Br. J. Ophthalmol. 2013, 97, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Albietz, J.M. Prevalence of dry eye subtypes in clinical optometry practice. Optom. Vis Sci. 2000, 77, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Versura, P.; Cellini, M.; Torreggiani, A.; Profazio, V.; Bernabini, B.; Caramazza, R. Dryness symptoms, diagnostic protocol and therapeutic management: A report on 1,200 patients. Ophthalmic Res. 2001, 33, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, C.; Jacobi, A.; Kruse, F.E.; Cursiefen, C. Tear film osmolarity measurements in dry eye disease using electrical impedance technology. Cornea 2011, 30, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, C.; Messmer, E.M.; Aragona, P.; Geerling, G.; Akova, Y.A.; Benitez-del-Castillo, J.; Boboridis, K.G.; Merayo-Lloves, J.; Rolando, M.; Labetoulle, M. Revisiting the vicious circle of dry eye disease: A focus on the pathophysiology of meibomian gland dysfunction. Br. J. Ophthalmol. 2016, 100, 300–306. [Google Scholar] [CrossRef]
- Bron, A.J.; Tiffany, J.M. The contribution of meibomian disease to dry eye. Ocul. Surf. 2004, 2, 149–165. [Google Scholar] [CrossRef]
- Butovich, I.A. Meibomian glands, meibum, and meibogenesis. Exp. Eye Res. 2017, 163, 2–16. [Google Scholar] [CrossRef]
- Foulks, G.N. The correlation between the tear film lipid layer and dry eye disease. Surv. Ophthalmol. 2007, 52, 369–374. [Google Scholar] [CrossRef]
- Foulks, G.N.; Bron, A.J. Meibomian gland dysfunction: A clinical scheme for description, diagnosis, classification, and grading. Ocul. Surf. 2003, 1, 107–126. [Google Scholar] [CrossRef]
- Nelson, J.D.; Shimazaki, J.; Benitez-del-Castillo, J.M.; Craig, J.P.; McCulley, J.P.; Den, S.; Foulks, G.N. The international workshop on meibomian gland dysfunction: Report of the definition and classification subcommittee. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1930–1937. [Google Scholar] [CrossRef]
- Schaumberg, D.A.; Nichols, J.J.; Papas, E.B.; Tong, L.; Uchino, M.; Nichols, K.K. The international workshop on meibomian gland dysfunction: Report of the subcommittee on the epidemiology of, and associated risk factors for, MGD. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1994–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Cui, L.; Li, Y.; Choi, J.S.; Choi, J.H.; Li, Z.; Kim, G.E.; Choi, W.; Yoon, K.C. Influence of Light Emitting Diode-Derived Blue Light Overexposure on Mouse Ocular Surface. PLoS ONE 2016, 11, e0161041. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Kim, S.H.; Lee, S.C.; Kim, H.G.; Ahn, H.G.; Li, Z.; Yoon, K.C. Blue light-induced oxidative stress in human corneal epithelial cells: Protective effects of ethanol extracts of various medicinal plant mixtures. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4119–4127. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Dong, N.; Yang, F.; Lin, Z.; Shang, X.; Li, C. Meibomian gland dysfunction determines the severity of the dry eye conditions in visual display terminal workers. PLoS ONE 2014, 9, e105575. [Google Scholar] [CrossRef] [PubMed]
- Fenga, C.; Aragona, P.; Cacciola, A.; Spinella, R.; Di Nola, C.; Ferreri, F.; Rania, L. Meibomian gland dysfunction and ocular discomfort in video display terminal workers. Eye 2008, 22, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Lian, C.; Ying, L.; Kim, G.E.; You, I.C.; Park, S.H.; Yoon, K.C. Expression of Lipid Peroxidation Markers in the Tear Film and Ocular Surface of Patients with Non-Sjogren Syndrome: Potential Biomarkers for Dry Eye Disease. Curr. Eye. Res. 2016, 41, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Dogru, M.; Kojima, T.; Simsek, C.; Tsubota, K. Potential Role of Oxidative Stress in Ocular Surface Inflammation and Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES163–DES168. [Google Scholar] [CrossRef]
- Choi, J.H.; Li, Y.; Kim, S.H.; Jin, R.; Kim, Y.H.; Choi, W.; You, I.C.; Yoon, K.C. The influences of smartphone use on the status of the tear film and ocular surface. PLoS ONE 2018, 13, e0206541. [Google Scholar] [CrossRef]
- Mizoguchi, S.; Iwanishi, H.; Arita, R.; Shirai, K.; Sumioka, T.; Kokado, M.; Jester, J.V.; Saika, S. Ocular surface inflammation impairs structure and function of meibomian gland. Exp. Eye Res. 2017, 163, 78–84. [Google Scholar] [CrossRef]
- Valero-Vello, M.; Peris-Martinez, C.; Garcia-Medina, J.J.; Sanz-Gonzalez, S.M.; Ramirez, A.I.; Fernandez-Albarral, J.A.; Galarreta-Mira, D.; Zanon-Moreno, V.; Casaroli-Marano, R.P.; Pinazo-Duran, M.D. Searching for the Antioxidant, Anti-Inflammatory, and Neuroprotective Potential of Natural Food and Nutritional Supplements for Ocular Health in the Mediterranean Population. Foods 2021, 10, 1231. [Google Scholar] [CrossRef]
- Wei, Y.; Asbell, P.A. The core mechanism of dry eye disease is inflammation. Eye Contact Lens 2014, 40, 248–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pflugfelder, S.C.; de Paiva, C.S.; Li, D.Q.; Stern, M.E. Epithelial-immune cell interaction in dry eye. Cornea 2008, 27 (Suppl. 1), S9–S11. [Google Scholar] [CrossRef]
- Pflugfelder, S.C.; Solomon, A.; Stern, M.E. The diagnosis and management of dry eye: A twenty-five-year review. Cornea 2000, 19, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Dursun, D.; Liu, Z.; Xie, Y.; Macri, A.; Pflugfelder, S.C. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2283–2292. [Google Scholar]
- Tosini, G.; Ferguson, I.; Tsubota, K. Effects of blue light on the circadian system and eye physiology. Mol. Vis. 2016, 22, 61–72. [Google Scholar] [PubMed]
- Kuse, Y.; Ogawa, K.; Tsuruma, K.; Shimazawa, M.; Hara, H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci. Rep. 2014, 4, 5223. [Google Scholar] [CrossRef]
- Roehlecke, C.; Schaller, A.; Knels, L.; Funk, R.H. The influence of sublethal blue light exposure on human RPE cells. Mol. Vis. 2009, 15, 1929–1938. [Google Scholar]
- Niwano, Y.; Iwasawa, A.; Tsubota, K.; Ayaki, M.; Negishi, K. Protective effects of blue light-blocking shades on phototoxicity in human ocular surface cells. BMJ Open Ophthalmol. 2019, 4, e000217. [Google Scholar] [CrossRef]
- Gowrisankaran, S.; Nahar, N.K.; Hayes, J.R.; Sheedy, J.E. Asthenopia and blink rate under visual and cognitive loads. Optom. Vis. Sci. 2012, 89, 97–104. [Google Scholar] [CrossRef]
- Hashemi, H.; Saatchi, M.; Yekta, A.; Ali, B.; Ostadimoghaddam, H.; Nabovati, P.; Aghamirsalim, M.; Khabazkhoob, M. High Prevalence of Asthenopia among a Population of University Students. J. Ophthalmic Vis. Res. 2019, 14, 474–482. [Google Scholar] [CrossRef]
- Sheedy, J.E.; Hayes, J.N.; Engle, J. Is all asthenopia the same? Optom. Vis. Sci. 2003, 80, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Touma Sawaya, R.I.; El Meski, N.; Saba, J.B.; Lahoud, C.; Saab, L.; Haouili, M.; Shatila, M.; Aidibe, Z.; Musharrafieh, U. Asthenopia Among University Students: The Eye of the Digital Generation. J. Fam. Med. Prim. Care 2020, 9, 3921–3932. [Google Scholar] [CrossRef]
- Iwasaki, T.; Kurimoto, S. Eye-strain and changes in accommodation of the eye and in visual evoked potential following quantified visual load. Ergonomics 1988, 31, 1743–1751. [Google Scholar] [CrossRef]
- Murata, K.; Araki, S.; Kawakami, N.; Saito, Y.; Hino, E. Central nervous system effects and visual fatigue in VDT workers. Int. Arch. Occup. Environ. Health 1991, 63, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Hue, J.E.; Rosenfield, M.; Saa, G. Reading from electronic devices versus hardcopy text. Work 2014, 47, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Ahn, Y.J.; Kim, S.J.; You, J.; Park, K.E.; Kim, S.R. Changes in Accommodative Function of Young Adults in their Twenties following Smartphone Use. J. Korean Ophthalmic Opt. Soc. 2014, 19, 253–260. [Google Scholar] [CrossRef]
- Thorud, H.M.; Helland, M.; Aaras, A.; Kvikstad, T.M.; Lindberg, L.G.; Horgen, G. Eye-related pain induced by visually demanding computer work. Optom. Vis. Sci. 2012, 89, E452–E464. [Google Scholar] [CrossRef]
- Singh, H.; Tigga, M.J.; Khan, N. Prevention of ocular morbidity among medical students by prevalence assessment of asthenopia and its risk factors. J. Evid. Based Med. Healthc. 2016, 3, 532–536. [Google Scholar] [CrossRef]
- Jaschinski, W.; Konig, M.; Mekontso, T.M.; Ohlendorf, A.; Welscher, M. Computer vision syndrome in presbyopia and beginning presbyopia: Effects of spectacle lens type. Clin. Exp. Optom. 2015, 98, 228–233. [Google Scholar] [CrossRef]
- Noreen, K.; Batool, Z.; Fatima, T.; Zamir, T. Prevalence of Computer Vision Syndrome and Its Associated Risk Factors among Under Graduate Medical Students. Pak. J. Ophthalmol. 2016, 32, 140–146. [Google Scholar] [CrossRef]
- Patil, A.; Chaudhury, S.; Srivastava, S. Eyeing computer vision syndrome: Awareness, knowledge, and its impact on sleep quality among medical students. Ind. Psychiatry J. 2019, 28, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Treaster, D.; Marras, W.S.; Burr, D.; Sheedy, J.E.; Hart, D. Myofascial trigger point development from visual and postural stressors during computer work. J. Electromyogr. Kinesiol. 2006, 16, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, J.A.; Marras, W.S.; Sheedy, J.E.; Hart, D.E. Effects of postural and visual stressors on myofascial trigger point development and motor unit rotation during computer work. J. Electromyogr. Kinesiol. 2011, 21, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Bener, A.; Bhugra, D. Lifestyle and depressive risk factors associated with problematic internet use in adolescents in an Arabian Gulf culture. J. Addict. Med. 2013, 7, 236–242. [Google Scholar] [CrossRef]
- Jenaro, C.; Flores, N.; Gómez-Vela, M.; González-Gil, F.; Caballo, C. Problematic internet and cell-phone use: Psychological, behavioral, and health correlates. Addict. Res. Theory 2007, 15, 309–320. [Google Scholar] [CrossRef]
- Lam, L.T. Internet gaming addiction, problematic use of the internet, and sleep problems: A systematic review. Curr. Psychiatry Rep. 2014, 16, 444. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, Y.; Lu, Y.; Li, L. Exploring Associations between Problematic Internet Use, Depressive Symptoms and Sleep Disturbance among Southern Chinese Adolescents. Int. J. Environ. Res. Public Health 2016, 13, 313. [Google Scholar] [CrossRef]
- Tonioni, F.; D’Alessandris, L.; Lai, C.; Martinelli, D.; Corvino, S.; Vasale, M.; Fanella, F.; Aceto, P.; Bria, P. Internet addiction: Hours spent online, behaviors and psychological symptoms. Gen. Hosp. Psychiatry 2012, 34, 80–87. [Google Scholar] [CrossRef]
- Trnka, R.; Martinkova, Z.; Tavel, P. An integrative review of coping related to problematic computer use in adolescence. Int. J. Public Health 2016, 61, 317–327. [Google Scholar] [CrossRef]
- Wu, X.; Tao, S.; Zhang, Y.; Zhang, S.; Tao, F. Low physical activity and high screen time can increase the risks of mental health problems and poor sleep quality among Chinese college students. PLoS ONE 2015, 10, e0119607. [Google Scholar] [CrossRef]
- Touitou, Y.; Touitou, D.; Reinberg, A. Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J. Physiol. Paris 2016, 110, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.M.; Aeschbach, D.; Duffy, J.F.; Czeisler, C.A. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc. Natl. Acad. Sci. USA 2015, 112, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Duraccio, K.M.; Zaugg, K.K.; Blackburn, R.C.; Jensen, C.D. Does iPhone night shift mitigate negative effects of smartphone use on sleep outcomes in emerging adults? Sleep Health 2021, 7, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Son, H.; Park, M.; Han, J.; Kim, K.; Lee, B.; Gwak, H. Internet overuse and excessive daytime sleepiness in adolescents. Psychiatry Clin. Neurosci. 2009, 63, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Akerstedt, T. Psychosocial stress and impaired sleep. Scand. J. Work Environ. Health 2006, 32, 493–501. [Google Scholar] [CrossRef]
- Lucassen, E.A.; Zhao, X.; Rother, K.I.; Mattingly, M.S.; Courville, A.B.; de Jonge, L.; Csako, G.; Cizza, G.; Sleep Extension Study, G. Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals. PLoS ONE 2013, 8, e56519. [Google Scholar] [CrossRef]
- Merikanto, I.; Kortesoja, L.; Benedict, C.; Chung, F.; Cedernaes, J.; Espie, C.A.; Morin, C.M.; Dauvilliers, Y.; Partinen, M.; De Gennaro, L.; et al. Evening-types show highest increase of sleep and mental health problems during the COVID-19 pandemic—Multinational study on 19,267 adults. Sleep 2021, 45, zsab216. [Google Scholar] [CrossRef]
- Thielmann, B.; Schierholz, R.S.; Bockelmann, I. Subjective and Objective Consequences of Stress in Subjects with Subjectively Different Sleep Quality-A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 9990. [Google Scholar] [CrossRef]
- Manglick, M.; Rajaratnam, S.M.; Taffe, J.; Tonge, B.; Melvin, G. Persistent sleep disturbance is associated with treatment response in adolescents with depression. Aust. N. Z. J. Psychiatry 2013, 47, 556–563. [Google Scholar] [CrossRef]
- Cheung, T.; Yip, P.S. Depression, Anxiety and Symptoms of Stress among Hong Kong Nurses: A Cross-sectional Study. Int. J. Environ. Res. Public Health 2015, 12, 11072–11100. [Google Scholar] [CrossRef] [PubMed]
- Szakats, I.; Sebestyen, M.; Nemeth, J.; Birkas, E.; Purebl, G. The Role of Health Anxiety and Depressive Symptoms in Dry Eye Disease. Curr. Eye Res. 2016, 41, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Yang, H.K.; Hyon, J.Y.; Wee, W.R. Association of dry eye disease with psychiatric or neurological disorders in elderly patients. Clin. Interv. Aging 2017, 12, 785–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, R.; Batra, J. Oxidative stress and psychological functioning among medical students. Ind. Psychiatry J. 2014, 23, 127–133. [Google Scholar] [CrossRef]
- Long, S.J.; Benton, D. A double-blind trial of the effect of docosahexaenoic acid and vitamin and mineral supplementation on aggression, impulsivity, and stress. Hum. Psychopharmacol. 2013, 28, 238–247. [Google Scholar] [CrossRef]
- El Ansari, W.; Adetunji, H.; Oskrochi, R. Food and mental health: Relationship between food and perceived stress and depressive symptoms among university students in the United Kingdom. Cent. Eur. J. Public Health 2014, 22, 90–97. [Google Scholar] [CrossRef]
- Zellner, D.A.; Loaiza, S.; Gonzalez, Z.; Pita, J.; Morales, J.; Pecora, D.; Wolf, A. Food selection changes under stress. Physiol. Behav. 2006, 87, 789–793. [Google Scholar] [CrossRef]
- Glabska, D.; Guzek, D.; Groele, B.; Gutkowska, K. Fruit and Vegetable Intake and Mental Health in Adults: A Systematic Review. Nutrients 2020, 12, 115. [Google Scholar] [CrossRef]
- Meyer, B.J.; Kolanu, N.; Griffiths, D.A.; Grounds, B.; Howe, P.R.; Kreis, I.A. Food groups and fatty acids associated with self-reported depression: An analysis from the Australian National Nutrition and Health Surveys. Nutrition 2013, 29, 1042–1047. [Google Scholar] [CrossRef]
- Calder, P.C. N-3 polyunsaturated fatty acids and inflammation: From molecular biology to the clinic. Lipids 2003, 38, 343–352. [Google Scholar] [CrossRef]
- Gordon, W.C.; Bazan, N.G. Mediator lipidomics in ophthalmology: Targets for modulation in inflammation, neuroprotection and nerve regeneration. Curr. Eye Res. 2013, 38, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D. Fatty acids and immune responses--a new perspective in searching for clues to mechanism. Annu. Rev. Nutr. 2000, 20, 431–456. [Google Scholar] [CrossRef] [PubMed]
- James, M.J.; Gibson, R.A.; Cleland, L.G. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 2000, 71, 343S–348S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thode, A.R.; Latkany, R.A. Current and Emerging Therapeutic Strategies for the Treatment of Meibomian Gland Dysfunction (MGD). Drugs 2015, 75, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Al-Namaeh, M. A systematic review of the effect of omega-3 supplements on meibomian gland dysfunction. Ther. Adv. Ophthalmol. 2020, 12, 2515841420952188. [Google Scholar] [CrossRef]
- Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010, 68, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Eckert, G.P.; Lipka, U.; Muller, W.E. Omega-3 fatty acids in neurodegenerative diseases: Focus on mitochondria. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Reggi, A.; Parini, A.; Borghi, C. Application of polyunsaturated fatty acids in internal medicine: Beyond the established cardiovascular effects. Arch. Med. Sci. 2012, 8, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Yessoufou, A.; Nekoua, M.P.; Gbankoto, A.; Mashalla, Y.; Moutairou, K. Beneficial effects of omega-3 polyunsaturated Fatty acids in gestational diabetes: Consequences in macrosomia and adulthood obesity. J. Diabetes Res. 2015, 2015, 731434. [Google Scholar] [CrossRef]
- Iwig, M.; Glaesser, D.; Fass, U.; Struck, H.G. Fatty acid cytotoxicity to human lens epithelial cells. Exp. Eye Res. 2004, 79, 689–704. [Google Scholar] [CrossRef]
- Lu, M.; Taylor, A.; Chylack, L.T., Jr.; Rogers, G.; Hankinson, S.E.; Willett, W.C.; Jacques, P.F. Dietary fat intake and early age-related lens opacities. Am. J. Clin. Nutr. 2005, 81, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P.F.; Taylor, A.; Moeller, S.; Hankinson, S.E.; Rogers, G.; Tung, W.; Ludovico, J.; Willett, W.C.; Chylack, L.T., Jr. Long-term nutrient intake and 5-year change in nuclear lens opacities. Arch. Ophthalmol. 2005, 123, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Mitchell, P.; Leeder, S.R. Dietary fat and fish intake and age-related maculopathy. Arch. Ophthalmol. 2000, 118, 401–404. [Google Scholar] [CrossRef]
- Robman, L.; Vu, H.; Hodge, A.; Tikellis, G.; Dimitrov, P.; McCarty, C.; Guymer, R. Dietary lutein, zeaxanthin, and fats and the progression of age-related macular degeneration. Can. J. Ophthalmol. 2007, 42, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Seddon, J.M.; Cote, J.; Rosner, B. Progression of age-related macular degeneration: Association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch. Ophthalmol. 2003, 121, 1728–1737. [Google Scholar] [CrossRef]
- Seddon, J.M.; George, S.; Rosner, B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: The US Twin Study of Age-Related Macular Degeneration. Arch. Ophthalmol. 2006, 124, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kam, W.R.; Sullivan, D.A. Influence of Omega 3 and 6 Fatty Acids on Human Meibomian Gland Epithelial Cells. Cornea 2016, 35, 1122–1126. [Google Scholar] [CrossRef]
- Qiao, J.; Yan, X. Emerging treatment options for meibomian gland dysfunction. Clin. Ophthalmol. 2013, 7, 1797–1803. [Google Scholar] [CrossRef]
- Ramprasath, V.R.; Eyal, I.; Zchut, S.; Jones, P.J. Enhanced increase of omega-3 index in healthy individuals with response to 4-week n-3 fatty acid supplementation from krill oil versus fish oil. Lipids Health Dis. 2013, 12, 178. [Google Scholar] [CrossRef]
- Chinnery, H.R.; Naranjo Golborne, C.; Downie, L.E. Omega-3 supplementation is neuroprotective to corneal nerves in dry eye disease: A pilot study. Ophthalmic Physiol. Opt. 2017, 37, 473–481. [Google Scholar] [CrossRef]
- Giannaccare, G.; Pellegrini, M.; Sebastiani, S.; Bernabei, F.; Roda, M.; Taroni, L.; Versura, P.; Campos, E.C. Efficacy of Omega-3 Fatty Acid Supplementation for Treatment of Dry Eye Disease: A Meta-Analysis of Randomized Clinical Trials. Cornea 2019, 38, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Chi, S.C.; Tuan, H.I.; Kang, Y.N. Effects of Polyunsaturated Fatty Acids on Nonspecific Typical Dry Eye Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019, 11, 942. [Google Scholar] [CrossRef] [PubMed]
- Mulqueeny, S.; Davis, R.L.; Townsend, W.D.; Koffler, B.H. The ONIT Study–Ocular Nutrition Impact on Tear Film. Adv. Ophthalmol. Amp Vis. Syst. 2015, 2, 38. [Google Scholar] [CrossRef]
- Kangari, H.; Eftekhari, M.H.; Sardari, S.; Hashemi, H.; Salamzadeh, J.; Ghassemi-Broumand, M.; Khabazkhoob, M. Short-term consumption of oral omega-3 and dry eye syndrome. Ophthalmology 2013, 120, 2191–2196. [Google Scholar] [CrossRef]
- Bhargava, R.; Kumar, P.; Phogat, H.; Kaur, A.; Kumar, M. Oral omega-3 fatty acids treatment in computer vision syndrome related dry eye. Cont. Lens Anterior Eye 2015, 38, 206–210. [Google Scholar] [CrossRef]
- Deinema, L.A.; Vingrys, A.J.; Wong, C.Y.; Jackson, D.C.; Chinnery, H.R.; Downie, L.E. A Randomized, Double-Masked, Placebo-Controlled Clinical Trial of Two Forms of Omega-3 Supplements for Treating Dry Eye Disease. Ophthalmology 2017, 124, 43–52. [Google Scholar] [CrossRef]
- Epitropoulos, A.T.; Donnenfeld, E.D.; Shah, Z.A.; Holland, E.J.; Gross, M.; Faulkner, W.J.; Matossian, C.; Lane, S.S.; Toyos, M.; Bucci, F.A., Jr.; et al. Effect of Oral Re-esterified Omega-3 Nutritional Supplementation on Dry Eyes. Cornea 2016, 35, 1185–1191. [Google Scholar] [CrossRef]
- Korb, D.R.; Blackie, C.A.; Finnemore, V.M.; Douglass, T. Effect of using a combination of lid wipes, eye drops, and omega-3 supplements on meibomian gland functionality in patients with lipid deficient/evaporative dry eye. Cornea 2015, 34, 407–412. [Google Scholar] [CrossRef]
- Macsai, M.S. The role of omega-3 dietary supplementation in blepharitis and meibomian gland dysfunction (an AOS thesis). Trans. Am. Ophthalmol. Soc. 2008, 106, 336–356. [Google Scholar]
- Malhotra, C.; Singh, S.; Chakma, P.; Jain, A.K. Effect of oral omega-3 Fatty Acid supplementation on contrast sensitivity in patients with moderate meibomian gland dysfunction: A prospective placebo-controlled study. Cornea 2015, 34, 637–643. [Google Scholar] [CrossRef]
- Olenik, A.; Jimenez-Alfaro, I.; Alejandre-Alba, N.; Mahillo-Fernandez, I. A randomized, double-masked study to evaluate the effect of omega-3 fatty acids supplementation in meibomian gland dysfunction. Clin. Interv. Aging 2013, 8, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R.; Kumar, P.; Arora, Y. Short-Term Omega 3 Fatty Acids Treatment for Dry Eye in Young and Middle-Aged Visual Display Terminal Users. Eye Contact Lens 2016, 42, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, A.; Khanal, S.; Ramaesh, K.; Diaper, C.; McFadyen, A. Tear film osmolarity: Determination of a referent for dry eye diagnosis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4309–4315. [Google Scholar] [CrossRef] [PubMed]
- Lemp, M.A.; Bron, A.J.; Baudouin, C.; Benitez Del Castillo, J.M.; Geffen, D.; Tauber, J.; Foulks, G.N.; Pepose, J.S.; Sullivan, B.D. Tear osmolarity in the diagnosis and management of dry eye disease. Am. J. Ophthalmol. 2011, 151, 792–798.e791. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; McGuinness, M.B.; Anderson, A.J.; Downie, L.E. Interventions for the management of computer vision syndrome: A systematic review and meta-analysis. Ophthalmology 2022, 129, 1192–1215. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Nomi, Y.; Iwasaki-Kurashige, K.; Matsumoto, H. Therapeutic Effects of Anthocyanins for Vision and Eye Health. Molecules 2019, 24, 3311. [Google Scholar] [CrossRef]
- Krstic, L.; Gonzalez-Garcia, M.J.; Diebold, Y. Ocular Delivery of Polyphenols: Meeting the Unmet Needs. Molecules 2021, 26, 370. [Google Scholar] [CrossRef]
- Kalt, W.; Hanneken, A.; Milbury, P.; Tremblay, F. Recent research on polyphenolics in vision and eye health. J. Agric. Food Chem. 2010, 58, 4001–4007. [Google Scholar] [CrossRef]
- Misle, E.; Garrido, E.; Contardo, H.; González, W. Maqui [Aristotelia chilensis (Mol.) Stuntz]-the Amazing Chilean Tree: A Review. J. Agric. Sci. Technol. B1 2011, 1, 473. [Google Scholar]
- Munoz, O.; Christen, P.; Cretton, S.; Backhouse, N.; Torres, V.; Correa, O.; Costa, E.; Miranda, H.; Delporte, C. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol. 2011, 63, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Ohguro, H.; Ohguro, I.; Katai, M.; Tanaka, S. Two-year randomized, placebo-controlled study of black currant anthocyanins on visual field in glaucoma. Ophthalmologica 2012, 228, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Ohguro, I.; Ohguro, H. Black currant anthocyanins normalized abnormal levels of serum concentrations of endothelin-1 in patients with glaucoma. J. Ocul. Pharmacol. Ther. 2013, 29, 480–487. [Google Scholar] [CrossRef]
- Matsumoto, H.; Nakamura, Y.; Tachibanaki, S.; Kawamura, S.; Hirayama, M. Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J. Agric. Food Chem. 2003, 51, 3560–3563. [Google Scholar] [CrossRef]
- Kosehira, M.; Machida, N.; Kitaichi, N. A 12-Week-Long Intake of Bilberry Extract (Vaccinium myrtillus L.) Improved Objective Findings of Ciliary Muscle Contraction of the Eye: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Trial. Nutrients 2020, 12, 600. [Google Scholar] [CrossRef]
- Ozawa, Y.; Kawashima, M.; Inoue, S.; Inagaki, E.; Suzuki, A.; Ooe, E.; Kobayashi, S.; Tsubota, K. Bilberry extract supplementation for preventing eye fatigue in video display terminal workers. J. Nutr. Health Aging 2015, 19, 548–554. [Google Scholar] [CrossRef]
- Park, C.Y.; Gu, N.; Lim, C.Y.; Oh, J.H.; Chang, M.; Kim, M.; Rhee, M.Y. The effect of Vaccinium uliginosum extract on tablet computer-induced asthenopia: Randomized placebo-controlled study. BMC Complement. Altern. Med. 2016, 16, 296. [Google Scholar] [CrossRef]
- Riva, A.; Togni, S.; Franceschi, F.; Kawada, S.; Inaba, Y.; Eggenhoffner, R.; Giacomelli, L. The effect of a natural, standardized bilberry extract (Mirtoselect(R)) in dry eye: A randomized, double blinded, placebo-controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2518–2525. [Google Scholar]
- Sekikawa, T.; Kizawa, Y.; Takeoka, A.; Sakiyama, T.; Li, Y.; Yamada, T. The effect of consuming an anthocyanin-containing supplement derived from Bilberry (Vaccinium myrtillus) on eye function: A Randomized, Double-Blind, Placebo-Controlled Parallel Study. Funct. Foods Health Dis. 2021, 11, 116. [Google Scholar] [CrossRef]
- Yamashita, S.I.; Suzuki, N.; Yamamoto, K.; Iio, S.I.; Yamada, T. Effects of MaquiBright((R)) on improving eye dryness and fatigue in humans: A randomized, double-blind, placebo-controlled trial. J. Tradit. Complement. Med. 2019, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Kizawa, Y.; Sekikawa, T.; Kageyama, M.; Tomobe, H.; Kobashi, R.; Yamada, T. Effects of anthocyanin, astaxanthin, and lutein on eye functions: A randomized, double-blind, placebo-controlled study. J. Clin. Biochem. Nutr. 2021, 69, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Kono, K.; Shimizu, Y.; Takahashi, S.; Matsuoka, S.; Yui, K. Effect of Multiple Dietary Supplement Containing Lutein, Astaxanthin, Cyanidin-3-Glucoside, and DHA on Accommodative Ability. Curr. Med. Chem. 2014, 14, 114–125. [Google Scholar] [CrossRef]
- Kawabata, F.; Tsuji, T. Effects of dietary supplementation with a combination of fish oil, bilberry extract, and lutein on subjective symptoms of asthenopia in humans. Biomed. Res. 2011, 32, 387–393. [Google Scholar] [CrossRef]
- Rossi, G.C.M.; Scudeller, L.; Bettio, F.; Milano, G. A Pilot, Phase II, Observational, Case-Control, 1-Month Study on Asthenopia in Video Terminal Operators without Dry Eye: Contrast Sensitivity and Quality of Life before and after the Oral Consumption of a Fixed Combination of Zinc, L-Carnitine, Extract of Elderberry, Currant and Extract of Eleutherococcus. Nutrients 2021, 13, 4449. [Google Scholar] [CrossRef]
- Maducdoc, M.M.; Haider, A.; Nalbandian, A.; Youm, J.H.; Morgan, P.V.; Crow, R.W. Visual consequences of electronic reader use: A pilot study. Int. Ophthalmol. 2017, 37, 433–439. [Google Scholar] [CrossRef]
- Park, K.-J.; Lee, W.-J.; Lee, N.-G.; Lee, J.-Y.; Son, J.-S.; Yu, D.-S. Changes in Near Lateral Phoria and Near Point of Convergence After Viewing Smartphones. J. Korean Ophthalmic Opt. Soc. 2012, 17, 171–176. [Google Scholar]
- Padavettan, C.; Nishanth, S.; Vidhyalakshmi, S.; Madhivanan, N.; Madhivanan, N. Changes in vergence and accommodation parameters after smartphone use in healthy adults. Indian J. Ophthalmol. 2021, 69, 1487–1490. [Google Scholar] [CrossRef]
- Kan, J.; Wang, M.; Liu, Y.; Liu, H.; Chen, L.; Zhang, X.; Huang, C.; Liu, B.Y.; Gu, Z.; Du, J. A novel botanical formula improves eye fatigue and dry eye: A randomized, double-blind, placebo-controlled study. Am. J. Clin. Nutr. 2020, 112, 334–342. [Google Scholar] [CrossRef]
- Ju, L.H.; Lee, D.H.; Lee, D.H.; Kim, J.H. The Relationship between the High-Frequency Component of Accommodative Microfluctuation, Accommodative Lag and Accommodative Amplitude in Presbyopic Eyes. J. Korean Ophthalmol. Soc. 2014, 55, 1606. [Google Scholar] [CrossRef]
- Campbell, F.W.; Robson, J.G.; Westheimer, G. Fluctuations of accommodation under steady viewing conditions. J. Physiol. 1959, 145, 579–594. [Google Scholar] [CrossRef]
- Gray, L.S.; Winn, B.; Gilmartin, B. Effect of target luminance on microfluctuations of accommodation. Ophthalmic Physiol. Opt. 1993, 13, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Kamm, K.E.; Stull, J.T.; Azuma, H. Delphinidin-3-rutinoside relaxes the bovine ciliary smooth muscle through activation of ETB receptor and NO/cGMP pathway. Exp. Eye Res. 2005, 80, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.F.; Lin, F.T. A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks. Hum. Factors 1998, 40, 577–590. [Google Scholar] [CrossRef]
- Gray, L.S.; Gilmartin, B.; Winn, B. Accommodation microfluctuations and pupil size during sustained viewing of visual display terminals. Ophthalmic Physiol. Opt. 2000, 20, 5–10. [Google Scholar] [CrossRef]
- Saito, S.; Sotoyama, M.; Saito, S.; Taptagaporn, S. Physiological indices of visual fatigue due to VDT operation: Pupillary reflexes and accommodative responses. Ind. Health 1994, 32, 57–66. [Google Scholar] [CrossRef]
- Sterner, B.; Gellerstedt, M.; Sjostrom, A. Accommodation and the relationship to subjective symptoms with near work for young school children. Ophthalmic Physiol. Opt. 2006, 26, 148–155. [Google Scholar] [CrossRef]
- Tosha, C.; Borsting, E.; Ridder, W.H., 3rd; Chase, C. Accommodation response and visual discomfort. Ophthalmic Physiol. Opt. 2009, 29, 625–633. [Google Scholar] [CrossRef]
- Fisher, R.F. Presbyopia and the changes with age in the human crystalline lens. J. Physiol. 1973, 228, 765–779. [Google Scholar] [CrossRef]
- Glasser, A.; Campbell, M.C. Presbyopia and the optical changes in the human crystalline lens with age. Vis. Res. 1998, 38, 209–229. [Google Scholar] [CrossRef]
- Kajita, M.; Ono, M.; Suzuki, S.; Kato, K. Accommodative microfluctuation in asthenopia caused by accommodative spasm. Fukushima J. Med. Sci. 2001, 47, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Koretz, J.F.; Handelman, G.H. Model of the accommodative mechanism in the human eye. Vis. Res. 1982, 22, 917–927. [Google Scholar] [CrossRef]
- Strenk, S.A.; Semmlow, J.L.; Strenk, L.M.; Munoz, P.; Gronlund-Jacob, J.; DeMarco, J.K. Age-related changes in human ciliary muscle and lens: A magnetic resonance imaging study. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1162–1169. [Google Scholar]
- Murata, K.; Araki, S.; Yokoyama, K.; Yamashita, K.; Okumatsu, T.; Sakou, S. Accumulation of VDT work-related visual fatigue assessed by visual evoked potential, near point distance and critical flicker fusion. Ind. Health 1996, 34, 61–69. [Google Scholar] [CrossRef]
- Luczak, A.; Sobolewski, A. Longitudinal changes in critical flicker fusion frequency: An indicator of human workload. Ergonomics 2005, 48, 1770–1792. [Google Scholar] [CrossRef]
- Eisen-Enosh, A.; Farah, N.; Burgansky-Eliash, Z.; Polat, U.; Mandel, Y. Evaluation of Critical Flicker-Fusion Frequency Measurement Methods for the Investigation of Visual Temporal Resolution. Sci. Rep. 2017, 7, 15621. [Google Scholar] [CrossRef]
- Lin, J.B.; Gerratt, B.W.; Bassi, C.J.; Apte, R.S. Short-Wavelength Light-Blocking Eyeglasses Attenuate Symptoms of Eye Fatigue. Investig. Ophthalmol. Vis. Sci. 2017, 58, 442–447. [Google Scholar] [CrossRef]
- Nakamura, S.; Tanaka, J.; Imada, T.; Shimoda, H.; Tsubota, K. Delphinidin 3,5-O-diglucoside, a constituent of the maqui berry (Aristotelia chilensis) anthocyanin, restores tear secretion in a rat dry eye model. J. Funct. Foods 2014, 10, 346–354. [Google Scholar] [CrossRef]
- Tanaka, J.; Kadekaru, T.; Ogawa, K.; Hitoe, S.; Shimoda, H.; Hara, H. Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light. Food Chem. 2013, 139, 129–137. [Google Scholar] [CrossRef]
- Bola, C.; Bartlett, H.; Eperjesi, F. Resveratrol and the eye: Activity and molecular mechanisms. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.K.; Kondkar, A.A.; Chalam, K.V. Resveratrol and Ophthalmic Diseases. Nutrients 2016, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Nelson, K.C.; Wu, M.; Sternberg, P., Jr.; Jones, D.P. Oxidative damage and protection of the RPE. Prog. Retin. Eye Res. 2000, 19, 205–221. [Google Scholar] [CrossRef]
- Beatty, S.; Boulton, M.; Henson, D.; Koh, H.H.; Murray, I.J. Macular pigment and age related macular degeneration. Br. J. Ophthalmol. 1999, 83, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef]
- Chamorro, E.; Bonnin-Arias, C.; Perez-Carrasco, M.J.; Munoz de Luna, J.; Vazquez, D.; Sanchez-Ramos, C. Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro. Photochem. Photobiol. 2013, 89, 468–473. [Google Scholar] [CrossRef]
- Jaadane, I.; Villalpando Rodriguez, G.E.; Boulenguez, P.; Chahory, S.; Carre, S.; Savoldelli, M.; Jonet, L.; Behar-Cohen, F.; Martinsons, C.; Torriglia, A. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo. J. Cell. Mol. Med. 2017, 21, 3453–3466. [Google Scholar] [CrossRef]
- Lin, C.W.; Yang, C.M.; Yang, C.H. Effects of the Emitted Light Spectrum of Liquid Crystal Displays on Light-Induced Retinal Photoreceptor Cell Damage. Int. J. Mol. Sci. 2019, 20, 2318. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.W.; Yang, C.M.; Yang, C.H. Protective Effect of Astaxanthin on Blue Light Light-Emitting Diode-Induced Retinal Cell Damage via Free Radical Scavenging and Activation of PI3K/Akt/Nrf2 Pathway in 661W Cell Model. Mar. Drugs 2020, 18, 387. [Google Scholar] [CrossRef]
- Gruszecki, W.I.; Sielewiesiuk, J. Orientation of xanthophylls in phosphatidylcholine multibilayers. Biochim. Biophys. Acta 1990, 1023, 405–412. [Google Scholar] [CrossRef]
- Kijlstra, A.; Tian, Y.; Kelly, E.R.; Berendschot, T.T. Lutein: More than just a filter for blue light. Prog. Retin. Eye Res. 2012, 31, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Junghans, A.; Sies, H.; Stahl, W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch. Biochem. Biophys. 2001, 391, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Landrum, J.T.; Bone, R.A. Mechanistic Evidence for Eye Disease and Carotenoids; Krinsky, N.I., Mayne, S.T., Sies, H., Eds.; CRC Press: New York, NY, USA, 2004. [Google Scholar]
- Youssef, P.N.; Sheibani, N.; Albert, D.M. Retinal light toxicity. Eye 2011, 25, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.A.; Landrum, J.T.; Cao, Y.; Howard, A.N.; Alvarez-Calderon, F. Macular pigment response to a supplement containing meso-zeaxanthin, lutein and zeaxanthin. Nutr. Metab. 2007, 4, 12. [Google Scholar] [CrossRef]
- Howells, O.; Eperjesi, F.; Bartlett, H. Measuring macular pigment optical density in vivo: A review of techniques. Graefe’s Arch. Clin. Exp. Ophthalmol. 2011, 249, 315–347. [Google Scholar] [CrossRef]
- Howells, O.; Eperjesi, F.; Bartlett, H. Improving the repeatability of heterochromatic flicker photometry for measurement of macular pigment optical density. Graefe’s Arch. Clin. Exp. Ophthalmol. 2013, 251, 871–880. [Google Scholar] [CrossRef]
- Li, B.; George, E.W.; Rognon, G.T.; Gorusupudi, A.; Ranganathan, A.; Chang, F.Y.; Shi, L.; Frederick, J.M.; Bernstein, P.S. Imaging lutein and zeaxanthin in the human retina with confocal resonance Raman microscopy. Proc. Natl. Acad. Sci. USA 2020, 117, 12352–12358. [Google Scholar] [CrossRef]
- Lem, D.W.; Davey, P.G.; Gierhart, D.L.; Rosen, R.B. A Systematic Review of Carotenoids in the Management of Age-Related Macular Degeneration. Antioxidants 2021, 10, 1255. [Google Scholar] [CrossRef]
- Lem, D.W.; Gierhart, D.L.; Davey, P.G. Management of Diabetic Eye Disease using Carotenoids and Nutrients. In Antioxidants—Benefits, Sources, and Mechanisms of Action; Waisundara, V.Y., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Lem, D.W.; Gierhart, D.L.; Davey, P.G. Carotenoids in the Management of Glaucoma: A Systematic Review of the Evidence. Nutrients 2021, 13, 1949. [Google Scholar] [CrossRef]
- Lem, D.W.; Gierhart, D.L.; Davey, P.G. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients 2021, 13, 2441. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, P.S.; Delori, F.C.; Richer, S.; van Kuijk, F.J.; Wenzel, A.J. The value of measurement of macular carotenoid pigment optical densities and distributions in age-related macular degeneration and other retinal disorders. Vis. Res. 2010, 50, 716–728. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.A.; Landrum, J.T.; Hime, G.W.; Cains, A.; Zamor, J. Stereochemistry of the human macular carotenoids. Investig. Ophthalmol. Vis. Sci. 1993, 34, 2033–2040. [Google Scholar]
- Scripsema, N.K.; Hu, D.N.; Rosen, R.B. Lutein, Zeaxanthin, and meso-Zeaxanthin in the Clinical Management of Eye Disease. J. Ophthalmol. 2015, 2015, 13. [Google Scholar] [CrossRef]
- Li, L.H.; Lee, J.C.; Leung, H.H.; Lam, W.C.; Fu, Z.; Lo, A.C.Y. Lutein Supplementation for Eye Diseases. Nutrients 2020, 12, 1721. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef]
- Nolan, J.M.; Stack, J.; O’Donovan, O.; Loane, E.; Beatty, S. Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp. Eye Res. 2007, 84, 61–74. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Mayne, S.T.; Gomez, C.M.; Tibor, S.E.; Twaroska, E.E. Macular pigment in donor eyes with and without AMD: A case-control study. Investig. Ophthalmol. Vis. Sci. 2001, 42, 235–240. [Google Scholar]
- Akuffo, K.O.; Beatty, S.; Stack, J.; Dennison, J.; O’Regan, S.; Meagher, K.A.; Peto, T.; Nolan, J. Central Retinal Enrichment Supplementation Trials (CREST): Design and methodology of the CREST randomized controlled trials. Ophthalmic Epidemiol. 2014, 21, 111–123. [Google Scholar] [CrossRef]
- Berendschot, T.T.; Goldbohm, R.A.; Klopping, W.A.; van de Kraats, J.; van Norel, J.; van Norren, D. Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3322–3326. [Google Scholar]
- Bone, R.A.; Davey, P.G.; Roman, B.O.; Evans, D.W. Efficacy of Commercially Available Nutritional Supplements: Analysis of Serum Uptake, Macular Pigment Optical Density and Visual Functional Response. Nutrients 2020, 12, 1321. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.M.; Dou, H.L.; Huang, F.F.; Xu, X.R.; Zou, Z.Y.; Lin, X.M. Effect of supplemental lutein and zeaxanthin on serum, macular pigmentation, and visual performance in patients with early age-related macular degeneration. Biomed Res. Int. 2015, 2015, 564738. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.H.; Murray, I.J.; Nolan, D.; Carden, D.; Feather, J.; Beatty, S. Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: A pilot study. Exp. Eye Res. 2004, 79, 21–27. [Google Scholar] [CrossRef]
- Landrum, J.T.; Bone, R.A.; Joa, H.; Kilburn, M.D.; Moore, L.L.; Sprague, K.E. A one year study of the macular pigment: The effect of 140 days of a lutein supplement. Exp. Eye Res. 1997, 65, 57–62. [Google Scholar] [CrossRef]
- Ma, L.; Yan, S.F.; Huang, Y.M.; Lu, X.R.; Qian, F.; Pang, H.L.; Xu, X.R.; Zou, Z.Y.; Dong, P.C.; Xiao, X.; et al. Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology 2012, 119, 2290–2297. [Google Scholar] [CrossRef]
- Richer, S.; Devenport, J.; Lang, J.C. LAST II: Differential temporal responses of macular pigment optical density in patients with atrophic age-related macular degeneration to dietary supplementation with xanthophylls. Optometry 2007, 78, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Trieschmann, M.; Beatty, S.; Nolan, J.M.; Hense, H.W.; Heimes, B.; Austermann, U.; Fobker, M.; Pauleikhoff, D. Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: The LUNA study. Exp. Eye Res. 2007, 84, 718–728. [Google Scholar] [CrossRef]
- Weigert, G.; Kaya, S.; Pemp, B.; Sacu, S.; Lasta, M.; Werkmeister, R.M.; Dragostinoff, N.; Simader, C.; Garhofer, G.; Schmidt-Erfurth, U.; et al. Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8174–8178. [Google Scholar] [CrossRef]
- Yagi, A.; Fujimoto, K.; Michihiro, K.; Goh, B.; Tsi, D.; Nagai, H. The effect of lutein supplementation on visual fatigue: A psychophysiological analysis. Appl. Ergon. 2009, 40, 1047–1054. [Google Scholar] [CrossRef]
- Stringham, J.M.; Stringham, N.T.; O’Brien, K.J. Macular Carotenoid Supplementation Improves Visual Performance, Sleep Quality, and Adverse Physical Symptoms in Those with High Screen Time Exposure. Foods 2017, 6, 47. [Google Scholar] [CrossRef]
- Johnson, E.J.; Avendano, E.E.; Mohn, E.S.; Raman, G. The association between macular pigment optical density and visual function outcomes: A systematic review and meta-analysis. Eye 2020, 35, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Stringham, J.M.; Fuld, K.; Wenzel, A.J. Action spectrum for photophobia. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2003, 20, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, A.J.; Fuld, K.; Stringham, J.M.; Curran-Celentano, J. Macular pigment optical density and photophobia light threshold. Vis. Res. 2006, 46, 4615–4622. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.R., Jr.; Fletcher, L.M.; Elliott, J.G. Glare disability, photostress recovery, and chromatic contrast: Relation to macular pigment and serum lutein and zeaxanthin. Investig. Ophthalmol. Vis. Sci. 2013, 54, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Stringham, J.M.; Garcia, P.V.; Smith, P.A.; McLin, L.N.; Foutch, B.K. Macular pigment and visual performance in glare: Benefits for photostress recovery, disability glare, and visual discomfort. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7406–7415. [Google Scholar] [CrossRef]
- Stringham, J.M.; Hammond, B.R. Macular pigment and visual performance under glare conditions. Optom. Vis. Sci. 2008, 85, 82–88. [Google Scholar] [CrossRef]
- Hammond, B.R., Jr.; Wooten, B.R. CFF thresholds: Relation to macular pigment optical density. Ophthalmic Physiol. Opt. 2005, 25, 315–319. [Google Scholar] [CrossRef]
- Renzi, L.M.; Hammond, B.R., Jr. The relation between the macular carotenoids, lutein and zeaxanthin, and temporal vision. Ophthalmic Physiol. Opt. 2010, 30, 351–357. [Google Scholar] [CrossRef]
- Stringham, N.T.; Stringham, J.M. Temporal Visual Mechanisms May Mediate Compensation for Macular Pigment. Perception 2015, 44, 1400–1415. [Google Scholar] [CrossRef]
- Loughman, J.; Nolan, J.M.; Howard, A.N.; Connolly, E.; Meagher, K.; Beatty, S. The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7871–7880. [Google Scholar] [CrossRef]
- Nolan, J.M.; Power, R.; Stringham, J.; Dennison, J.; Stack, J.; Kelly, D.; Moran, R.; Akuffo, K.O.; Corcoran, L.; Beatty, S. Enrichment of Macular Pigment Enhances Contrast Sensitivity in Subjects Free of Retinal Disease: Central Retinal Enrichment Supplementation Trials—Report 1. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3429–3439. [Google Scholar] [CrossRef] [PubMed]
- Stringham, J.M.; O’Brien, K.J.; Stringham, N.T. Contrast Sensitivity and Lateral Inhibition Are Enhanced With Macular Carotenoid Supplementation. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2291–2295. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Qiu, Q.H.; Wu, X.W.; Cai, Z.Y.; Xu, S.; Liang, X.Q. Lutein supplementation improves visual performance in Chinese drivers: 1-year randomized, double-blind, placebo-controlled study. Nutrition 2013, 29, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Stringham, J.M.; O’Brien, K.J.; Stringham, N.T. Macular carotenoid supplementation improves disability glare performance and dynamics of photostress recovery. Eye Vis. 2016, 3, 30. [Google Scholar] [CrossRef]
- Stringham, N.T.; Holmes, P.V.; Stringham, J.M. Supplementation with macular carotenoids reduces psychological stress, serum cortisol, and sub-optimal symptoms of physical and emotional health in young adults. Nutr. Neurosci. 2018, 21, 286–296. [Google Scholar] [CrossRef]
- Benedetto, S.; Carbone, A.; Drai-Zerbib, V.; Pedrotti, M.; Baccino, T. Effects of luminance and illuminance on visual fatigue and arousal during digital reading. Comput. Hum. Behav. 2014, 41, 112–119. [Google Scholar] [CrossRef]
- Yammouni, R.; Evans, B.J.W. Is reading rate in digital eyestrain influenced by binocular and accommodative anomalies? J. Optom. 2021, 14, 229–239. [Google Scholar] [CrossRef]
- Ridder, W.H., 3rd; Zhang, Y.; Huang, J.F. Evaluation of reading speed and contrast sensitivity in dry eye disease. Optom. Vis. Sci. 2013, 90, 37–44. [Google Scholar] [CrossRef]
- Deschamps, N.; Ricaud, X.; Rabut, G.; Labbe, A.; Baudouin, C.; Denoyer, A. The impact of dry eye disease on visual performance while driving. Am. J. Ophthalmol. 2013, 156, 184–189.e183. [Google Scholar] [CrossRef]
- Mathews, P.M.; Ramulu, P.Y.; Swenor, B.S.; Utine, C.A.; Rubin, G.S.; Akpek, E.K. Functional impairment of reading in patients with dry eye. Br. J. Ophthalmol. 2017, 101, 481–486. [Google Scholar] [CrossRef]
- Wolska, A.; Switula, M. Luminance of the surround and visual fatigue of VDT operators. Int. J. Occup. Saf. Ergon. 1999, 5, 553–581. [Google Scholar] [CrossRef] [PubMed]
- Richer, S.; Stiles, W.; Statkute, L.; Pulido, J.; Frankowski, J.; Rudy, D.; Pei, K.; Tsipursky, M.; Nyland, J. Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: The Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 2004, 75, 216–230. [Google Scholar] [CrossRef]
- Richer, S.P.; Stiles, W.; Graham-Hoffman, K.; Levin, M.; Ruskin, D.; Wrobel, J.; Park, D.W.; Thomas, C. Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration: The Zeaxanthin and Visual Function Study (ZVF) FDA IND #78, 973. Optometry 2011, 82, 667–680.e6. [Google Scholar] [CrossRef]
- Akuffo, K.O.; Beatty, S.; Peto, T.; Stack, J.; Stringham, J.; Kelly, D.; Leung, I.; Corcoran, L.; Nolan, J.M. The Impact of Supplemental Antioxidants on Visual Function in Nonadvanced Age-Related Macular Degeneration: A Head-to-Head Randomized Clinical Trial. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5347–5360. [Google Scholar] [CrossRef] [PubMed]
- Loughman, J.; Akkali, M.C.; Beatty, S.; Scanlon, G.; Davison, P.A.; O’Dwyer, V.; Cantwell, T.; Major, P.; Stack, J.; Nolan, J.M. The relationship between macular pigment and visual performance. Vis. Res. 2010, 50, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Stringham, J.M.; Hammond, B.R., Jr. The glare hypothesis of macular pigment function. Optom. Vis. Sci. 2007, 84, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Lin, X.M.; Zou, Z.Y.; Xu, X.R.; Li, Y.; Xu, R. A 12-week lutein supplementation improves visual function in Chinese people with long-term computer display light exposure. Br. J. Nutr. 2009, 102, 186–190. [Google Scholar] [CrossRef]
- Stangos, N.; Voutas, S.; Topouzis, F.; Karampatakis, V. Contrast sensitivity evaluation in eyes predisposed to age-related macular degeneration and presenting normal visual acuity. Ophthalmologica 1995, 209, 194–198. [Google Scholar] [CrossRef]
- Nolan, J.M.; Loughman, J.; Akkali, M.C.; Stack, J.; Scanlon, G.; Davison, P.; Beatty, S. The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vis. Res. 2011, 51, 459–469. [Google Scholar] [CrossRef]
- Kuffler, S.W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 1953, 16, 37–68. [Google Scholar] [CrossRef]
- Silverstein, L.D. Foundations of Vision, by Brian A. Wandell, Sinauer Associates, Inc., Sunderland, MA, 1995. xvi + 476 pp., hardcover $49.95. Color Res. Appl. 1996, 21, 142–144. [Google Scholar] [CrossRef]
- Stringham, J.M.; Stringham, N.T. Nitric Oxide and Lutein: Function, Performance, and Protection of Neural Tissue. Foods 2015, 4, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Vielma, A.; Delgado, L.; Elgueta, C.; Osorio, R.; Palacios, A.G.; Schmachtenberg, O. Nitric oxide amplifies the rat electroretinogram. Exp. Eye Res. 2010, 91, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Stringham, N.T.; Holmes, P.V.; Stringham, J.M. Effects of macular xanthophyll supplementation on brain-derived neurotrophic factor, pro-inflammatory cytokines, and cognitive performance. Physiol. Behav. 2019, 211, 112650. [Google Scholar] [CrossRef]
- Stringham, J.M.; Johnson, E.J.; Hammond, B.R. Lutein across the Lifespan: From Childhood Cognitive Performance to the Aging Eye and Brain. Curr. Dev. Nutr. 2019, 3, nzz066. [Google Scholar] [CrossRef]
- Johnson, E.J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev. 2014, 72, 605–612. [Google Scholar] [CrossRef]
- Craft, N.E.; Haitema, T.B.; Garnett, K.M.; Fitch, K.A.; Dorey, C.K. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J. Nutr. Health Aging 2004, 8, 156–162. [Google Scholar]
- Feeney, J.; Finucane, C.; Savva, G.M.; Cronin, H.; Beatty, S.; Nolan, J.M.; Kenny, R.A. Low macular pigment optical density is associated with lower cognitive performance in a large, population-based sample of older adults. Neurobiol. Aging 2013, 34, 2449–2456. [Google Scholar] [CrossRef]
- Johnson, E.J.; McDonald, K.; Caldarella, S.M.; Chung, H.Y.; Troen, A.M.; Snodderly, D.M. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr. Neurosci. 2008, 11, 75–83. [Google Scholar] [CrossRef]
- Vishwanathan, R.; Iannaccone, A.; Scott, T.M.; Kritchevsky, S.B.; Jennings, B.J.; Carboni, G.; Forma, G.; Satterfield, S.; Harris, T.; Johnson, K.C.; et al. Macular pigment optical density is related to cognitive function in older people. Age Ageing 2014, 43, 271–275. [Google Scholar] [CrossRef]
- Vishwanathan, R.; Neuringer, M.; Snodderly, D.M.; Schalch, W.; Johnson, E.J. Macular lutein and zeaxanthin are related to brain lutein and zeaxanthin in primates. Nutr. Neurosci. 2013, 16, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghuis, B.G.; Ratliff, C.P.; Smith, R.G. Impact of light-adaptive mechanisms on mammalian retinal visual encoding at high light levels. J. Neurophysiol. 2018, 119, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Marsland, A.L.; Kuan, D.C.; Sheu, L.K.; Krajina, K.; Kraynak, T.E.; Manuck, S.B.; Gianaros, P.J. Systemic inflammation and resting state connectivity of the default mode network. Brain Behav. Immun. 2017, 62, 162–170. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, L.J.; Hong, K.E.; Sapolsky, R.M. Glucocorticoids may alter antioxidant enzyme capacity in the brain: Baseline studies. Brain Res. 1998, 791, 209–214. [Google Scholar] [CrossRef]
- Tahkamo, L.; Partonen, T.; Pesonen, A.K. Systematic review of light exposure impact on human circadian rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef]
- Szot, M.; Karpecka-Galka, E.; Drozdz, R.; Fraczek, B. Can Nutrients and Dietary Supplements Potentially Improve Cognitive Performance Also in Esports? Healthcare 2022, 10, 186. [Google Scholar] [CrossRef]
- Hammond, B.R., Jr.; Renzi-Hammond, L. Comment on: The Blue Light Hazard Versus Blue Light Hype. Am. J. Ophthalmol. 2022, 241, 282–283. [Google Scholar] [CrossRef]
- Mainster, M.A.; Findl, O.; Dick, H.B.; Desmettre, T.; Ledesma-Gil, G.; Curcio, C.A.; Turner, P.L. The Blue Light Hazard Versus Blue Light Hype. Am. J. Ophthalmol. 2022, 240, 51–57. [Google Scholar] [CrossRef]
- Mainster, M.A.; Findl, O.; Dick, H.B.; Desmettre, T.; Ledesma-Gil, G.; Curcio, C.A.; Turner, P.L. Reply to Comment on: The Blue Light Hazard Versus Blue Light Hype. Am. J. Ophthalmol. 2022, 241, 284–285. [Google Scholar] [CrossRef]
- Leung, T.W.; Li, R.W.; Kee, C.S. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances. PLoS ONE 2017, 12, e0169114. [Google Scholar] [CrossRef] [PubMed]
- Donoso, A.; Gonzalez-Duran, J.; Munoz, A.A.; Gonzalez, P.A.; Agurto-Munoz, C. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacol. Res. 2021, 166, 105479. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018, 136, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Pellegrini, M.; Senni, C.; Bernabei, F.; Scorcia, V.; Cicero, A.F.G. Clinical Applications of Astaxanthin in the Treatment of Ocular Diseases: Emerging Insights. Mar. Drugs 2020, 18, 239. [Google Scholar] [CrossRef]
- Saito, M.; Yoshida, K.; Saito, W.; Fujiya, A.; Ohgami, K.; Kitaichi, N.; Tsukahara, H.; Ishida, S.; Ohno, S. Astaxanthin increases choroidal blood flow velocity. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 239–245. [Google Scholar] [CrossRef]
- Miyawaki, H.; Takahashi, J.; Tsukahara, H.; Takehara, I. Effects of astaxanthin on human blood rheology. J. Clin. Biochem. Nutr. 2008, 43, 69–74. [Google Scholar] [CrossRef]
- Nagaki, Y.; Hayasaka, S.; Yamada, T.; Hayasaka, Y.; Sanada, M.; Uonomi, T. Effects of astaxanthin on accommodation, critical flicker fusion, and pattern visual evoked potential in visual display terminal workers. J. Tradit. Med. 2002, 19, 170–173. [Google Scholar]
- Naguib, Y.M. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 2000, 48, 1150–1154. [Google Scholar] [CrossRef]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef]
- Moroi, S.E.; Reed, D.M.; Sanders, D.S.; Almazroa, A.; Kagemann, L.; Shah, N.; Shekhawat, N.; Richards, J.E. Precision medicine to prevent glaucoma-related blindness. Curr. Opin. Ophthalmol. 2019, 30, 187–198. [Google Scholar] [CrossRef]
- Kan, J.; Li, A.; Zou, H.; Chen, L.; Du, J. A Machine Learning Based Dose Prediction of Lutein Supplements for Individuals With Eye Fatigue. Front. Nutr. 2020, 7, 577923. [Google Scholar] [CrossRef] [PubMed]
- Davey, P.G.; Rosen, R.B.; Gierhart, D.L. Macular Pigment Reflectometry: Developing Clinical Protocols, Comparison with Heterochromatic Flicker Photometry and Individual Carotenoid Levels. Nutrients 2021, 13, 2553. [Google Scholar] [CrossRef] [PubMed]
- Sanabria, J.C.; Bass, J.; Spors, F.; Gierhart, D.L.; Davey, P.G. Measurement of Carotenoids in Perifovea using the Macular Pigment Reflectometer. J. Vis. Exp. 2020, 155, e60429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Author (Year) | Participants | Duration | Interventions per Day | Results |
---|---|---|---|---|
Bhargava (2015) [171] | 478 patients with CVS; aged (23.3 ± 4.7) years in India | 3 months | 360 mg EPA + 240 mg DHA; placebo | Significant improvements in TBUT, Schirmer scores, and DESS scores (p < 0.01, for all) |
Bhargava (2016) [178] | 266 patients with CVS; aged (2±9.4 ± 4.8) years in India | 45 days | 1440 mg EPA + 960 mg DHA; placebo | Significant improvements in TBUT (p < 0.01) and DESS scores (p < 0.001) |
Deinema (2017) [172] | 54 patients with mild/moderate DE; aged (42.6 ± 3.9) years in Australia | 90 days | 1000 mg EPA + 500 mg DHA (in fish oil); 945 mg EPA + 510 mg DHA (in krill oil); placebo | Marked reduction in tear osmolarity (p < 0.001) and improvements in tear film stability (p < 0.05) |
Epitropoulos (2016) [173] | 105 patients with DE & MGD; aged (56.8 ± 17) years in USA | 12 weeks | 1680 mg EPA + 560 mg DHA; “placebo” (3136 mg linoleic acid) | Statistically significant reduction in tear osmolarity, OSDI scores, and TBUT (p < 0.01, for all) |
Kangari (2013) [170] | 64 patients with DE; aged (61.2 ± 8.3) years in USA | 1 month | 360 mg EPA + 240 mg DHA; placebo | Remarkable improvements in TBUT (p < 0.001), Schirmer’s scores, and OSDI (both p < 0.05) |
Korb (2015) [174] | 26 patients with Evaporative DE; aged (41.7 ± 19.8) years in USA | 3 months | 1000 mg omega-3 PUFA; placebo | Mean OSDI scores improved (+55%) significantly from baseline (p < 0.001) |
Macsai (2008) [175] | 38 patients with MGD; aged (50.7 ± 9.1) years in USA | 12 months | ~3300 mg ALA (in flaxseed oil, 6 g); placebo | Significant improvements in meibum scores (p = 0.003), TBUT (p = 0.002), and omega-6 to omega-3 PUFA ratio in plasma and RBC (both p < 0.05) |
Malhotra (2015) [176] | 60 patients with moderate MGD; aged (53.3 ± 6.9) years in India | 12 weeks | 720 mg EPA + 480 mg DHA; placebo | Enhanced benefits in OSDI scores, TBUT, and CS (p < 0.05, for all) |
Olenik (2017) [177] | 61 patients with MGD; aged (mean 56) years in Spain | 3 months | 1050 mg DHA + 127 mg EPA + 90 mg DPA (1.2 g total); placebo | TBUT, mean OSDI scores, lipid margin inflammation improved significantly (p < 0.05, for all) |
Author (Year) | Participants | Duration | Interventions per Day | VDT-Task | Results |
---|---|---|---|---|---|
Kizawa (2021) [199] | 44 adults with DES; aged (36.6 ± 9.1) years in Japan | 6 weeks | 200 mg bilberry extract (multivitamin); placebo | Video game (60 min) | Reversed adverse effect on pupillary response with VDT-task (p < 0.05) |
Kono (2014) [200] | 48 adults with eye strain; aged (52.8 ± 0.9) years in Japan | 4 weeks | 20 mg bilberry extract & 26.5 mg black soybean hull extract (multivitamin); placebo | n/a | Improved near-point accommodation variation in both eyes (p < 0.05) |
Kosehira (2020) [193] | 109 adults with heavy VDT use; aged (35.8 ± 7.0) years in Japan | 12 weeks | 240 mg standard bilberry extract; placebo | Video game (40 min) | Relieved tonic accommodation in ciliary muscle triggered by VDT-task (p < 0.05) |
Ozawa (2017) [194] | 88 adults with heavy VDT use; aged (30.7 ± 0.9) years in Japan | 8 weeks | 480 mg bilberry extract; placebo | Video game (60 min) | Marked improvement in CFF (p = 0.023) and subjective DES symptoms (p < 0.05) |
Park (2016) [195] | 60 adults with CVS; aged (38.9 ± 10.6) years in Korea | 4 weeks | 1000 mg bilberry extract; placebo | Watch movie (60 min) | Significant improvement in subjective asthenopic symptoms induced by VDT-task (p < 0.05) |
Riva (2017) [196] | 22 adults with heavy VDT use; aged (45.5 ± 7.3) years in Italy | 4 weeks | 160 mg Mirtoselect® standard bilberry extract (≥36% anthocyanins); placebo | Video game (45 min) | Statistically significant improvement in Schirmer’s test score (p = 0.02) |
Rossi (2021) [202] | 30 adults with heavy VDT use; aged (44.9 ± 9.1) years in Italy | 1 month | 300 mg elderberry & 100 mg black currant extracts (multivitamin); control | n/a | Remarkable improvements in CVSS questionnaire scores and contrast sensitivity at higher spatial frequencies (p < 0.01, for all) |
Sekikawa (2021) [197] | 32 healthy adults with DES; aged (37.1 ± 8.4) years in Japan | 6 weeks | 43.2 mg bilberry extract; placebo | Video game (60 min) | Protective effect against accommodative function decline with VDT-task (p < 0.05) |
Yamashita (2019) [198] | 74 adults with DES; aged (44.8 ± 7.4) years in Japan | 4 weeks | 60 mg MaquiBright® SMBE (≥35% anthocyanins); placebo | Video game (45 min) | Significant improvements in Schirmer’s test (p = 0.005), along with VAS and DEQS scores (both p < 0.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lem, D.W.; Gierhart, D.L.; Davey, P.G. Can Nutrition Play a Role in Ameliorating Digital Eye Strain? Nutrients 2022, 14, 4005. https://doi.org/10.3390/nu14194005
Lem DW, Gierhart DL, Davey PG. Can Nutrition Play a Role in Ameliorating Digital Eye Strain? Nutrients. 2022; 14(19):4005. https://doi.org/10.3390/nu14194005
Chicago/Turabian StyleLem, Drake W., Dennis L. Gierhart, and Pinakin Gunvant Davey. 2022. "Can Nutrition Play a Role in Ameliorating Digital Eye Strain?" Nutrients 14, no. 19: 4005. https://doi.org/10.3390/nu14194005
APA StyleLem, D. W., Gierhart, D. L., & Davey, P. G. (2022). Can Nutrition Play a Role in Ameliorating Digital Eye Strain? Nutrients, 14(19), 4005. https://doi.org/10.3390/nu14194005