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Abstract: Digital eye strain is a complex, multifactorial condition that can be caused by excessive
screen time exposure to various electronic devices such as smartphones, tablets, e-readers, and com-
puters. Current literature suggests oxidative damage concomitant with a chronic pro-inflammatory
state represent significant etiopathogenic mechanisms. The present review aims to discuss the poten-
tial dietary role for micronutrients with nutraceutical properties to ameliorate various ocular and
vision-related symptoms associated with digital eye strain. For ocular surface dysfunction, enhanced
anti-inflammatory benefits with omega-3 polyunsaturated fatty acids have been well documented for
treatment of dry eye disease. The anti-oxidative and immunosuppressive properties of anthocyanin
phytochemicals may also confer protective effects against visually induced cognitive stress and
digital asthenopia. Meanwhile, nutraceutical strategies involving xanthophyll macular carotenoids
demonstrate enhanced cognitive functioning and overall visual performance that aids digital eye
strain. Collectively, preliminary findings seem to offer a strong line of evidence to substantiate the
need for additional randomized controlled trials aimed at treating digital eye strain with adjunc-
tive nutraceutical strategies. Further RCT and comparisons on commercially available nutritional
supplements are needed to quantify the clinical benefits.

Keywords: digital eye strain; computer vision syndrome; visual display terminal syndrome; digital
asthenopia; dry eye disease; omega-3 polyunsaturated fatty acids; anthocyanins; carotenoids
nutraceuticals

1. Introduction

Digital Eye Strain is a multifactorial disease which encompass a large group of ocular
and vision-related symptoms that can be attributed to prolonged and extended use of
smartphones, tablets, e-readers, and computers [1,2]. In recent years, these electronic
devices have become nearly ubiquitous in modern society and have given way to an
ever-increasing global dependence upon their application across personal, educational,
and occupational settings. While computers and smartphones may serve to enhance our
daily lives and activities, the American Optometric Association found that as few as two
hours of uninterrupted screen time exposure is sufficient for the onset of both ocular
discomfort and vision-related problems to develop [2]. Long-term implications associated
with digital eye strain have yet to be elucidated, however, a large body of evidence has
already demonstrated an array of harmful physiological effects associated with greater
time spent using digital display devices [3–7]. In lieu of this, one can safely predict the
current global COVID-19 pandemic will further exacerbate the prevalence of digital eye
strain into epidemic proportions affecting nearly all age groups.

In this digital era of increasing screen time habits, or time spent looking at these devices
and omnipresent exposure, the incidence of screen-induced ocular health issues and visual
discomfort will continue to present major public health issues [4–6]. Some reports estimate
the overall prevalence may impact up to 90% of individuals in some populations making
this an endemic problem that will require our utmost attention [6,8–11]. Recently, the Vision
Council found that >80% of adults in the United States far exceeded the two hour minimum
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of daily use associated with greater risk for the onset of digital eye strain symptoms [2,12].
In fact, working-age adults are estimated to spend an average of seven hours daily using
computers just for their profession [2], of which, roughly 60% reported experiencing
symptoms of screen-induced visual stress [12]. As one would expect, similar habits are
seen among children and adolescents wherein >70% regularly exceed two hours of daily
exposure [12–14] and are more often using two or more devices simultaneously [15–19].
In consequence, multi-tasking with more than one electronic device often leads to further
risk of developing symptoms and greater incidence of visual fatigue [6,12,20]. Moreover,
several reports also show that both adults and adolescents routinely use smartphones
and hand-held devices roughly one hour before going to sleep and immediately upon
awakening in the morning [15,16,18,21,22].

While it is important to note, the physiological implications are not uniform across
all electronic devices with digital display technology; for example, it appears there are
distinguishable patterns between symptom profiles associated with the overuse of com-
puters versus smartphones [3,16,22,23]. Hence, this may explain, at least in part, the high
prevalence of digital eye strain amongst several types of individuals, including computer
users [24,25], visual display terminal or “teleworkers” [3,26–28], technicians [29], university
students and young adults [15,30–36], as well as children and adolescents [17,19,25,37–43].
Nonetheless, there is considerable evidence that substantiate the positive relationship
between total amount of time spent using digital devices and overall risk of developing
symptoms associated with digital eye strain [6,7,20,31,44,45].

1.1. Ocular and Vision-Related Symptoms

Traditionally, the effects of digital eye strain have been referred to interchangeably as
computer vision syndrome (CVS) [1,2,32,46,47], as well as digital asthenopia [29,48], and
vision display terminal (VDT) syndrome [3,24]. Commonly reported symptoms include
eyestrain, eye soreness, headaches, blurred vision, diplopia, and dry eyes [4–6,8,46,49,50].
These ocular effects can be categorized according to: (1) external symptoms commonly asso-
ciated with dry eye disease regarding changes in ocular surface homeostasis [2,15,49,51–54];
and (2) internal effects relating to aesthenopic symptoms and visual function impair-
ment [6,8,24,55,56]. Although helpful, these distinctions are not mutually exclusive mea-
sures of disease etiology due to the subjective nature of visual sensory processing and high
degree of variability among patient-reported symptoms. In consequence, the diagnostic
parameters used to characterize digital eye strain often vary among available reports.

While the pathophysiology extends beyond the scope of the present review, it is im-
portant to briefly discuss the various contributing factors as they relate to the ability of
nutrition in ameliorating symptoms associated with digital eye strain [6,44,49,57]. A num-
ber of excellent reviews which have discussed several putative mechanisms in more detail
along with the spectrum of physiological effects can be found elsewhere [4–6,8,46,54,58,59].

1.1.1. Dry Eye Disease

Dry eye is among the most common ocular complaint reported by individuals with
digital eye strain [9,51,52,60–62]. Symptoms often range from irritation, burning, and sting-
ing, as well as epiphora and foreign body sensations [63,64]. It has been well-documented
that greater screen time behaviors represent a major component in developing symptoms
of dry eye, often associated with lacrimal gland dysfunction and signs of evaporative dry
eye disease [3,27,44,58,60–62,65–68]. In particular, computer usage significantly influence
various dynamics of blinking patterns (such as frequency, amplitude, and complete vs.
incomplete) thereby further increasing the rate of evaporation and exacerbating tear film
instability [18,23,54,58,68–75]. The combination of sub-optimal tear production and exces-
sive evaporation can lead to tear hyperosmolarity with subsequent inflammation of the
epithelial surface [76–80].

Dry eye-related symptoms of digital eye strain may also be attributed to meibomian
gland dysfunction (MGD) [81–89]. Normal sebum production from these glands serves as
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an important role in preserving ocular surface homeostasis by regulating evaporation of
the tear film. Furthermore normal secretion and movement of meibomian glands depends
on adequate blink dynamics, in fact, some reports indicate that dysfunction of meibomian
glands may be responsible for triggering initial inflammatory response mechanisms in
consequence of abnormal sebum production [82,84,85]. Furthermore, greater time spent
using electronic devices have been shown to positively correlate with diagnostic parameters
for MGD including meibum quality score, lipid margin abnormalities, and meibography
gland drop out [88–91].

Moreover, it appears that a cascade of pro-inflammatory mechanisms which perturb
homeostasis of the ocular surface are implicated in the onset of dry eye symptoms and
ocular discomfort associated with digital eye strain. Among patients with dry eye disease,
conjunctival and tear fluid samples provide indications of a pro-inflammatory condition
marked by increased concentrations of late lipid peroxidation markers concomitant with
reductions in endogenous antioxidant enzymes [92,93]. Early pathophysiology likely
involves a vicious cycle between pro-oxidative and pro-inflammatory mechanisms which
further contribute to worsening dysfunction of the ocular surface [49,59,66,67,81,93–100].

One school of thought suggests prolonged exposure to digital displays may serve
an important role in exacerbating the extent of oxidative damage to various structures
of the eye [59,88,89,101]. Peak spectral emission (visible blue light, 400–490 nm) from
light-emitting diodes commonly used in digital display technology have been implicated
with causing photo-oxidative damage to the outer retina, that is photoreceptors and retinal
pigment epithelial cells [102,103]. It is known that short-wavelength (blue) light is of high
energy and capable of proliferating reactive oxygen species (ROS) formation in a time-
dependent manner [101,102]. Additionally, oxidative damage and apoptosis brought on
by blue light irradiation within ocular surface tissues have been implicated with clinical
manifestations of dry eye disease [59,88,89,104].

1.1.2. Asthenopia

With increasing screen time behavior, digital asthenopia (i.e., eye strain or fatigue)
remains the most common visual complaint alongside blurred and double vision paired
with headaches and ocular soreness [11,24,42,48,55,105–108]. Difficulty focusing between
working distances can be attributed to accommodative and vergence-related stress in
consequence of uncorrected refractive error or continuous fixation at close-viewing dis-
tances [6,8,24,55,56]. In comparison to reading printed text, using hand-held devices such as
smartphones and tablets, impose a greater burden on ocular muscles leading to greater re-
cession in near point of convergence and reductions in accommodative function [109–112].
In many cases, aesthenopic symptoms seem to emerge over time when the cognitive
demands for a visual task overwhelm the individual’s ability to perform them comfort-
ably [1,2,31,34,113–116]. For instance, the visual demands of uninterrupted computer work
can manifest as headaches and ocular discomfort due to glare and increased squinting.

1.2. Extraocular Symptoms

Often presenting as secondary perturbations that may arise in conjunction with vision-
related symptoms, clinical manifestations of digital eye strain are not exclusive to our visual
system tissue. For instance, office workers commonly report experiencing myofascial pain
and discomfort in the neck, shoulders, and upper back regions [3,5,46,117]. Indications
of musculoskeletal symptoms appear strongly associated with the postural demands of
computer work, in addition to poor ergonomic practices and extended periods of physical
inactivity [3,6,46,49,50,118,119].

On the other hand, greater use of hand-held electronic devices have also been asso-
ciated with the preponderance of psychological disorders [43,120–126] and disruption in
circadian rhythms [21,22,46,117,127–129]. It is well-documented that excessive screen time
behaviors before bedtime may significantly alter the sleep-wake cycle which can lead to
significant disturbances in sleeping patterns. Particularly among adolescents and younger
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adults, reports of digital eye strain are often associated with sleeping disorders such as
insomnia and excessive daytime sleepiness [21,22,121,122,127,130,131]. Consequentially,
chronic patterns of sleep loss and circadian misalignment ascribed with an evening chrono-
type are also linked to greater psychosocial stress paired with increased systemic markers
of stress-related hormones [132–135]. Regular behaviors of excessive screen time activities
among students are also strongly associated with greater risk of developing signs of anxiety
and depression [120,123,124,126]. One school of thought suggests dry-eye related symp-
toms may help to explain, at least in part, some similarities observed between sleeping
disorders and changes in mental health condition associated with overuse of hand-held
devices in younger populations [68,123,136–139].

Moreover, chronic exposure to psychological stressors have been linked with triggering
a pro-oxidative state throughout the body, and it appears that ameliorating systemic
oxidative stress may considerably reduce measures of psychological stress as well [140].
Given the relationship between proper dietary behaviors and overall well-being, it is no
surprise that regular consumption of nutraceuticals and foods rich in antioxidants (i.e.,
fresh fruits, leafy green vegetables, and fish) may offer protection against elements of
biopsychosocial deterioration [141–145].

Nutraceuticals are dietary supplements that have greater amounts of nutrients that
are naturally present in nature and consumed by individuals as routine part of diet. The
nutraceuticals are pharmaceutical-grade supplements that have the potential of modulating
disease pathways or disease state. Thus, further reinforcing the potential therapeutic appli-
cation for nutrition to ameliorate the purported systemic oxidative condition associated
with digital eye strain. However, they can only be marketed to support the structure or
function of the body and the label of the nutraceuticals or dietary supplements includes
disclosure that they are not intended to diagnose, treat, cure, or prevent diseases and they
are not evaluated by the Food and Drug Administration (FDA) in the US.

2. Omega-3 Fatty Acids

Given that a core etiopathogenic mechanism of dry eye-related symptoms involve
a chronic pro-inflammatory state, research has been focused on investigating adjunctive
nutraceutical strategies aimed at targeting this component of ocular surface dysfunction.
Due to their inherent anti-inflammatory properties and immunomodulatory potential,
considerable research has been focused on the role of omega-3 polyunsaturated fatty acids
(PUFAs) [146–152]. By increasing dietary consumption of omega-3 fatty acids compared
to omega-6 fatty acids, clinical reports have demonstrated some ability to regulate the
body’s inflammatory state by attenuating pro-inflammatory mediators [146,148]. Omega-3
PUFAs also serve an important role in the prevention of chronic systemic conditions such
as cardiovascular disease [152–155], in addition to exerting protective ocular effects against
cataracts [156–158] and age-related macular degeneration (AMD) [159–162].

For the management of ocular surface symptoms in digital eye strain, the capacity
for omega-3 fatty acids to offer clinical benefits against the underlying mechanisms of
dry eye disease is supported by robust scientific evidence [76,146–148,150,152,163–169].
In randomized clinical trials, short-term dietary supplementation with omega-3 PUFAs
demonstrated enhanced therapeutic benefits in patients with mild-to-moderate dry eye
disease (Table 1) [170–177]. A systematic review and meta-analysis found that patients
receiving omega-3 PUFAs saw significantly better improvements in tear evaporation,
tear osmolarity, and severity of dry eye symptoms compared with placebo [151]. Odds
ratio (OR) for improvements in tear break-up time (TBUT) were significantly greater
among those in the active treatment groups (OR: 8.72; 95% CI: 4.73–16.09; p < 0.001) [151].
Multivariate analyses performed by separate meta-analyses seem to mirror these findings,
wherein short-term supplementation was also associated with increased tear production
and secretion from lacrimal glands (Schirmer’s test scores; p < 0.001) [167,168]. Based
on the available evidence from clinical trials in patients with dry eye disease, one can
postulate that nutraceutical strategies involving omega-3 fatty acids would likely alleviate
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similar signs of ocular dysfunction brought on by prolonged digital device use. This would
particularly be important for individuals that have sub-optimal tear film dynamics and
predisposed to dry eye disease and involved in significant activities with digital devices.

Table 1. Characteristics of the randomized clinical trials using omega-3 PUFA.

Author (Year) Participants Duration Interventions per Day Results

Bhargava (2015) [171] 478 patients with CVS; aged
(23.3 ± 4.7) years in India 3 months 360 mg EPA + 240 mg

DHA; placebo

Significant improvements in
TBUT, Schirmer scores, and DESS

scores (p < 0.01, for all)

Bhargava (2016) [178] 266 patients with CVS; aged
(2±9.4 ± 4.8) years in India 45 days 1440 mg EPA + 960 mg

DHA; placebo

Significant improvements in
TBUT (p < 0.01) and DESS scores

(p < 0.001)

Deinema (2017) [172]

54 patients with
mild/moderate DE; aged

(42.6 ± 3.9) years in
Australia

90 days

1000 mg EPA + 500 mg
DHA (in fish oil); 945 mg
EPA + 510 mg DHA (in

krill oil); placebo

Marked reduction in tear
osmolarity (p < 0.001) and
improvements in tear film

stability (p < 0.05)

Epitropoulos (2016) [173]
105 patients with DE &

MGD; aged (56.8 ± 17) years
in USA

12 weeks
1680 mg EPA + 560 mg

DHA; “placebo” (3136 mg
linoleic acid)

Statistically significant reduction
in tear osmolarity, OSDI scores,

and TBUT (p < 0.01, for all)

Kangari (2013) [170] 64 patients with DE; aged
(61.2 ± 8.3) years in USA 1 month 360 mg EPA + 240 mg

DHA; placebo

Remarkable improvements in
TBUT (p < 0.001), Schirmer’s

scores, and OSDI (both p < 0.05)

Korb (2015) [174]
26 patients with Evaporative
DE; aged (41.7 ± 19.8) years

in USA
3 months 1000 mg omega-3 PUFA;

placebo

Mean OSDI scores improved
(+55%) significantly from baseline

(p < 0.001)

Macsai (2008) [175] 38 patients with MGD; aged
(50.7 ± 9.1) years in USA 12 months ~3300 mg ALA (in

flaxseed oil, 6 g); placebo

Significant improvements in
meibum scores (p = 0.003), TBUT

(p = 0.002), and omega-6 to
omega-3 PUFA ratio in plasma

and RBC (both p < 0.05)

Malhotra (2015) [176]
60 patients with moderate

MGD; aged (53.3 ± 6.9)
years in India

12 weeks 720 mg EPA + 480 mg
DHA; placebo

Enhanced benefits in OSDI scores,
TBUT, and CS (p < 0.05, for all)

Olenik (2017) [177] 61 patients with MGD; aged
(mean 56) years in Spain 3 months

1050 mg DHA + 127 mg
EPA + 90 mg DPA (1.2 g

total); placebo

TBUT, mean OSDI scores, lipid
margin inflammation improved

significantly (p < 0.05, for all)

Abbreviations: CVS, computer vision syndrome; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; TBUT,
tear break-up time; DESS, dry eye scoring system; DE, dry eye disease; MGD, meibomian gland dysfunction;
OSDI, ocular surface disease index; ALA, alpha-linolenic acid; DPA, docosapentaenoic acid.

To date, short-term omega-3 fatty acid supplementation has demonstrated promising
results to offer a similar degree of clinical benefit for symptomatic patients with digital
eye strain (Table 1) [171]. Prospective studies involving younger adults with computer
vision syndrome (≥3 h/day computer use) demonstrated significant improvements in
objective measures of inherent tear film stability and subjective dry eye symptoms in as
few as 45 days of supplementation [171,178]. Marked improvements in Nelson grading
scores upon impression cytology seem to mirror these findings, providing further evidence
of the nutraceutical benefits of omega-3 fatty acids to promote healing of the conjunctival
epithelium [169,171,178]. Given that hyperosmotic stress plays an important role in causing
damage to the ocular surface, these observations wherein short-term supplementation
produced a profound normalization in tear tonicity represent clinically meaningful effects to
improve the severity of dry eye [179,180]. Similarly, these improvements in tear film stability
may also be attributed to the nutraceutical effect of omega-3 fatty acids on ameliorating
signs of MGD [81–85,87]. Given the importance of sebum production in maintaining proper
stability of the tear film layer, the potential for these micronutrients to improve meibum
composition scores and meibomian gland secretions should not be overlooked [174,175,177].
It should be noted that greater aqueous tear production was also observed following three
months of supplementation in patients with computer vision syndrome [171], consistent
with reports in dry eye disease [151,167,168].
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For treatment of digital eye strain, the growing number of preliminary reports offer
promising clinical evidence substantiating the capacity for omega-3 fatty acids to ameliorate
signs of ocular surface dysfunction and dry eye-related symptoms. However, it is important
to acknowledge a recent systematic review and meta-analysis by Singh et al. [181] that
concluded that there is low-certainty evidence of benefits of omega-3 supplementation on
reduction of dry eye symptoms in individuals that are symptomatic computer users.

3. Phytochemicals

Flavonoids, a large group of polyphenolic compounds found in a variety of plant
species, demonstrate unique medicinal properties for ocular health to support the rationale
for their inclusion in nutritional strategies for ameliorating signs of digital eye strain [182].
Among them, anthocyanins have been widely used in traditional medicine specifically for
improving scotopic vision and alleviating eye fatigue in older adults [183–185]. These phy-
tochemicals demonstrate remarkable anti-oxidative, anti-inflammatory, and immunomodu-
lating properties [182–189].

Derived from fruits and leafy vegetables, the protective benefit afforded by these
nutraceuticals often varies based on the composition of anthocyanin complexes acquired
from the dietary source [183,184]. For instance, vasorelaxant properties of anthocyanin-
rich extracts derived from blackcurrant (Ribes nigrum L.) have been shown to improve
retinal microcirculation in normal tension glaucoma [190,191]. On the other hand, bil-
berry (Vaccinium myrtillus L.) extracts containing cyanidin-3-glycoside promote rhodopsin
regeneration in the retina during visual phototransduction cascade [192]. Several major
anthocyanins also exhibit enhanced antioxidant capacity in ocular tissue by attenuating
light-induced oxidative stress and lipid peroxidation [183,184,192]. In lieu of the absence of
recommended daily intake values established by the US Food & Drug Administration, oral
supplementation may be the best dietary strategy to ensure sufficient acquisition of these
micronutrients to promote optimal visual performance.

Prospective interventional studies containing anthocyanin extracts in formulation
seem to demonstrate therapeutic protection against several asthenopic symptoms in pa-
tients with heavy screen time behaviors (Table 2) [193–202]. While the relationship between
desktop computers and digital eye strain symptoms is clear, the putative implications of
mobile smartphones and handheld devices on developing similar ocular discomforts and
binocular vision stress are still under investigation [3,5,16,22,23,56]. Studies have shown
less than one hour of smartphone or tablet use is sufficient to induce eye fatigue and
non-strabismic accommodative alterations in younger adults [25,51,112,203–205]. It may
not appear significant at first glance, however a 1.00 diopter reduction in accommodative
amplitude following such a brief period of exposure raises particular concern regarding
more prolonged durations of use [56,112,205]. Although the exact mechanism by which
these devices may disrupt accommodation and vergence systems is unclear, some suggest
increased cognitive demands from multitasking coupled with varying font size and contrast
may be responsible for these visual anomalies.

Dietary supplementation with anthocyanins, either alone or in combination with other
nutraceuticals, offered some degree of benefit in accommodative function following a
brief VDT task emulating the visual load induced by handheld devices and near-vision
work (Table 2) [193,194,197,199,200,206]. Among those receiving only standard bilberry
extract, researchers saw significantly improved values in the high-frequency component of
accommodative microfluctuation, indicating greater refractive power and ciliary muscle
activity after briefly playing iPhone game [193,207–209]. Perhaps by improving micro-
circulatory dynamics within the relevant ocular muscle groups, dietary intake of the test
food is suggested to relieve tonic accommodation induced by mobile devices [193,210].
Additional reports of ciliary smooth muscle relaxation seem to further corroborate these
findings, wherein significant improvement in pupillary response was also observed fol-
lowing short-term nutraceutical intervention [197,199]. Given that mydriasis and reduced
pupillary constriction can occur after only 20 min of handheld device use, these findings
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offer clinically meaningful evidence whereby anthocyanins may inhibit transient refractive
alterations in accommodative asthenopia [199,209,211,212].

Table 2. Characteristics of the randomized clinical trials using anthocyanin nutraceuticals.

Author (Year) Participants Duration Interventions per Day VDT-Task Results

Kizawa (2021) [199]
44 adults with DES;

aged (36.6 ± 9.1) years
in Japan

6 weeks
200 mg bilberry

extract (multivitamin);
placebo

Video game (60 min)
Reversed adverse effect on

pupillary response with
VDT-task (p < 0.05)

Kono (2014) [200]
48 adults with eye strain;
aged (52.8 ± 0.9) years

in Japan
4 weeks

20 mg bilberry extract
& 26.5 mg black

soybean hull extract
(multivitamin); placebo

n/a
Improved near-point

accommodation variation in
both eyes (p < 0.05)

Kosehira (2020) [193]

109 adults with heavy
VDT use; aged

(35.8 ± 7.0) years
in Japan

12 weeks
240 mg standard
bilberry extract;

placebo
Video game (40 min)

Relieved tonic
accommodation in ciliary

muscle triggered by
VDT-task (p < 0.05)

Ozawa (2017) [194]

88 adults with heavy
VDT use; aged

(30.7 ± 0.9) years
in Japan

8 weeks 480 mg bilberry
extract; placebo Video game (60 min)

Marked improvement in CFF
(p = 0.023) and subjective
DES symptoms (p < 0.05)

Park (2016) [195]
60 adults with CVS;

aged (38.9 ± 10.6) years
in Korea

4 weeks 1000 mg bilberry
extract; placebo Watch movie (60 min)

Significant improvement in
subjective asthenopic
symptoms induced by

VDT-task (p < 0.05)

Riva (2017) [196]
22 adults with heavy

VDT use; aged
(45.5 ± 7.3) years in Italy

4 weeks

160 mg Mirtoselect®

standard bilberry
extract (≥36%
anthocyanins);

placebo

Video game (45 min)
Statistically significant

improvement in Schirmer’s
test score (p = 0.02)

Rossi (2021) [202]
30 adults with heavy

VDT use; aged
(44.9 ± 9.1) years in Italy

1 month

300 mg elderberry &
100 mg black currant

extracts (multivitamin);
control

n/a

Remarkable improvements
in CVSS questionnaire scores

and contrast sensitivity at
higher spatial frequencies

(p < 0.01, for all)

Sekikawa (2021) [197]
32 healthy adults with
DES; aged (37.1 ± 8.4)

years in Japan
6 weeks 43.2 mg bilberry

extract; placebo Video game (60 min)

Protective effect against
accommodative function

decline with VDT-task
(p < 0.05)

Yamashita (2019) [198]
74 adults with DES;

aged (44.8 ± 7.4) years
in Japan

4 weeks

60 mg MaquiBright®

SMBE (≥35%
anthocyanins);

placebo

Video game (45 min)

Significant improvements in
Schirmer’s test (p = 0.005),
along with VAS and DEQS

scores (both p < 0.05)

Abbreviations: DES, digital eye strain; VDT, visual display terminal; CFF, critical flicker fusion; CVSS, computer
vision symptom scale; DES, digital eye strain; SMBE, standard maqui berry extract; VAS, visual analogue scale;
DEQS, dry eye-related quality of life score.

Prospective studies are consistent wherein anthocyanin-rich extracts may also offer
therapeutic mitigation for individuals experiencing subjective symptoms of visual dis-
comfort and presbyopia related to digital eye strain. Current reports indicate intake of
anthocyanins led marked improvements in sensations of ‘tired eyes’, ‘eye fatigue’, and
blurred vision caused by watching a movie on iPad or playing handheld video games for up
to one hour [194,195,198,200]. These findings are encouraging given significant reductions
in binocular accommodative amplitude have also been observed with equivalent periods
of short-term smartphone and computer use [17,75,112,213–215]. Appositely, some suggest
the accommodative insufficiency may be largely responsible for the pervasive number
of visual disturbances and ocular fatigue symptoms [216–220]. However, the effects of
anthocyanin supplementation on near point of accommodation are inconclusive among
current reports [194,200]; suggesting the inclusion of additional micronutrients may explain
the positive effects reported on accommodative amplitude [200].

On the other hand, patients receiving only anthocyanins from bilberry extract show
improved subjective symptom scores concomitant with critical flicker-fusion frequency
(CFF) [194]. An established indicator of visual performance regarding temporal resolution,
attenuation of CFF response has been ascribed to mental fatigue and decreased retinogenic-
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ulate activity (i.e., asthenopia) [109,110,221–223]. Consequential decline in this parameter
while using computers and handheld devices is believed to correlate with worsening eye
fatigue and complaints of visual discomfort [211,224]. Surprisingly, a recent systematic
review and meta-analysis, did not report a statistically significant effect on visual fatigue
using pooled data from several additional anthocyanin-containing berry extract clinical
trials [181]. Researchers suggest the discrepancy may be attributed, at least in part, to
differences in study design regarding visual fatigue questionnaires. Despite this, these
findings may provide early justification for the potential role of anthocyanins to alleviate
symptoms of cognitive fatigue associated with digital eye strain.

Furthermore, preliminary studies also suggest dietary intervention with these phy-
tochemicals may be beneficial for signs of ocular surface dysfunction underlying dry
eye-related symptoms as well [196,198,206]. Short-term consumption of anthocyanin-rich
extracts from either bilberry or maqui berry (Aristotelia chilensis) produced a significant
increase in tear secretion volume after four weeks [196,198]. Researchers suggest the antiox-
idative properties of anthocyanin complexes may be responsible for these improvements in
lacrimal fluid secretion. In fact, a major anthocyanin found in both bilberry and maqui berry
extracts, delphinidin-3,5-O-diglucoside is known to inhibit free radical formation thereby
attenuating tissue dysfunction in the lacrimal glands and corneal epithelium [184,225,226].
Congruously, one study also saw enhancement in potential antioxidant capacity (BAP/d-
ROMs ratio) following dietary intervention with standardized bilberry extract [196]. These
findings seem to indicate anthocyanins may offer additional, synergistic protection against
mechanisms of oxidative stress and changes in cellular redox homeostasis believed to be
associated with digital eye strain.

Resveratrol (3,5,4′-trihydroxy-trans-stilbene), often found in grape skin, is known to
be a potent antioxidant with anti-inflammatory properties that may benefit numerous
ocular diseases like glaucoma, cataract, diabetic retinopathy, and AMD [227,228]. In vitro
and in vivo animal model studies have looked at the biological effects of resveratrol and
proposed several mechanisms of action [227]. However, there is a paucity of clinical
evidence for resveratrol supplementation in treating digital eye strain and future trials
should evaluate this further and my show benefits from including this phytochemical in
formulation [227].

4. Carotenoids

In consequence of its extraordinarily high metabolic demands and inherent exposure to
visible light spectrum, the retinal tissue is known to be particularly vulnerable to free radical
formation and subsequent activation of pro-inflammatory mechanisms [229–231]. Hence,
a major concern is the potential for long-term phototoxicity culminating from pernicious
blue light (400–490 nm) emitted from LED-backlight modules utilized in most consumer
electronics [232–234]. In a time-dependent manner, highly reactive short wavelength
(blue) light is capable of proliferating formation of reactive oxygen species (ROS) in the
most sensitive layers of the neurosensory retina [101,102,231,235–241]. Fortunately, the
human eye possess an intrinsic optical filter comprised of dietary carotenoid pigments,
which demonstrate enhanced neuroprotection against photo-oxidative injury brought on
by aberrant blue light exposure [231,236–239,242–249].

Xanthophyll carotenoids lutein and zeaxanthin, as well as meso-zeaxanthin an isomeric
conversion of lutein known as macular carotenoids, serve a fundamental role in maintain-
ing retinal integrity in addition to promoting optimal central visual acuity [231,236,250].
Given their unique distribution in the central fovea, together they comprise the macu-
lar pigment which is believed to preserve local tissue through two primary mechanisms:
(1) by absorbing harmful blue light; and (2) actively neutralizing free radicals thereby
ameliorating further oxidative damage [236–239,242–244]. By attenuating exposure to
high-energy wavelengths of light, the macular pigment’s peak wavelength of absorption
(~460 nm) serves to limit further ROS generated by photosensitizers (i.e., rods and cones)
in outer retina [237,240,250]. In addition to their potent anti-oxidative properties, macu-
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lar carotenoids may also enhance total antioxidant capacity by promoting endogenous
antioxidant defense mechanisms [231,239,246–249].

Since humans have lost the ability to naturally synthesize lutein and zeaxanthin in the
body [236,251,252], the primary method for acquiring these protective micronutrients is by
consuming carotenoid-rich foods like spinach, kale, and other cruciferous leafy green veg-
etables, along with corn, carrots, orange bell peppers and egg yolk [231,236,243,249,253,254].
Diminution of macular xanthophylls, evidenced by macular pigment optical density
(MPOD) depletion, serves as a clinically relevant biomarker linked to increased risk of
incident retinopathy and visual function impairment [230,231,244,246–249,255]. Mean-
while, an abundance of clinical trials have indicated remarkable therapeutic benefits
by supplementing their levels via adjunctive carotenoid vitamin therapy in diabetic
retinopathy, open-angle glaucoma, and most notably, age-related macular degeneration
(AMD) [231,236,242,247–251,256–266].

While the scientific rationale for dietary strategies involving these nutraceuticals is
quite clear, there is limited evidence pertaining to xanthophyll supplementation in treat-
ing digital eye strain available to date [200,201,206,267,268]. Traditionally, carotenoids by
themselves did not appear to alleviate dry eye or signs of ocular fatigue so they were
often combined with anthocyanins and other antioxidants in multivitamin formula to
improve these symptoms [199–201,206,267]. However, alterations in macular pigment
status have been posited as a surrogate for visual performance in both healthy and dis-
eased states [231,269]. Maintaining greater MPOD levels have been shown to improve
several functional outcomes that likely correspond with symptoms of asthenopia, includ-
ing: light sensitivity (photophobia) [270,271], glare disability [269,272,273], and photostress
recovery [269,272–274], along with visual temporal resolution [275–277] and contrast sen-
sitivity [269,278–281]. Baseline correlations from available reports indicate MPOD was
significantly associated with eye strain frequency, as well as psychological stress scores,
in addition to these visual outcome measures [268,282,283]. Therefore, evidence from pre-
liminary trials wherein carotenoid vitamin therapy is found to enhance macular pigment
concentrations with concomitant benefits in visual performance, may be clinically relevant
for treating individuals with digital eye strain (Table 3).

A major component in digital asthenopia are the effects of glare, which have been
shown to significantly influence reading speed and remain among the most pervasive
screen-related symptoms of digital eye strain [8,21,57,128,284–289]. Visual consequences
engendered by the glare source can originate directly from LED-displays or environmental
lighting conditions [6,8,46,50,57]. In clinical trials lasting up to 12 months, oral supple-
mentation containing all three macular carotenoids offered remarkable improvement on
composite measures of visual performance in glare conditions [268,282]. While similar ther-
apeutic benefits in disability glare thresholds and photostress recovery have been shown
in earlier reports [260,272–274,290–292], researchers suggest the level of improvement in
both glare measures were strongly associated with increased MPOD concentrations in a
dose–response relationship [268,274,282]. A plausible mechanism by which MPOD levels
advantageously influence these aspects of glare sensitivity are likely due to selective fil-
tration. Indeed, the functional capacity of the macular pigments to preferentially absorb
short wavelength (blue) light abate the influence of chromatic aberration thereby modifying
the image formed at the level of perception [268,272–274,278,282,293,294]. Moreover, by
filtering scattered light at the pre-receptoral level, enhancement of MPOD likely attenuates
the proportion of bleached photopigment exposed to bright light conditions leading to
subsequent improvements in recovery speed and visual capacity [268,272,282].

As visual fatigue often ensues after prolonged durations of digital device use, reports
suggest long-term carotenoid vitamin therapy may also elicit synergic neuroprotection
whereby increasing their concentrations in the local tissue seemed to enhance mechanisms
of physiological processing in the visual system [268,282]. This may explain, at least in part,
corresponding changes in contrast sensitivity function which provide a comprehensive as-
sessment of spatial sensitivity [268,295,296]. One school of thought strongly suggest greater
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MPOD levels likely represent an essential condition that must be met for commensurate
change in visual performance to become clinically apparent; for example, measurable im-
provements in contrast sensitivity may only become significant once the macular pigment
had been maintained at higher concentrations for some period of time [246,249,260,293,297].

The neurophysiological basis for contrast sensitivity may further substantiate these
visual benefits afforded by carotenoid vitamin therapy given their exceptional antioxi-
dant proficiency in tissues under extreme metabolic stress [231,239,246,280]. Perhaps by
ameliorating mitochondrial dysfunction in the neurosensory retina, dietary augmentation
of macular xanthophylls facilitate an improved redox state thereby enhancing metabolic
efficiency of the visual cycle [268,280,295]. Interestingly, it appears that MPOD status is
significantly associated with lateral inhibition sensitivity, the core mechanism underlying
contrast sensitivity thresholds which rely upon the visual system’s propensity for edge
detection [280,298,299]. It may be the nutraceutical potential of macular carotenoids to
augment homeostatic redox control pathways consequently optimize nitric oxide levels in
local synaptic networks [277,300,301]. A redox-sensitive neurotransmitter, nitric oxide has
been implicated with improving lateral inhibitory processes by enhancing signal-to-noise
ratio; ultimately resulting in greater contrast sensitivity [277,300,301].

The “neural efficiency” hypothesis has also been posited as a plausible explanation for
these findings whereby measures of temporal visual function appear strongly associated
with MPOD status [268,276]. It is well accepted that temporal metrics are reliable indi-
cations of visual processing capacity [109,110,221–223]. Reports indicate the metabolic
effects of xanthophyll carotenoids on neural encoding processes may extend beyond
the retina and influence visual processing at various levels along the retinogeniculate
pathway [247–249,302–304]. In fact, lutein and zeaxanthin appear to preferentially accumu-
late in the brain, specifically within regions under extremely high metabolic activity and
subsequent oxygen tension [304–309]. Lutein and zeaxanthin deposits in the brain have
also been found to correlate significantly with MPOD levels [309]. Following this line of rea-
soning, it is likely the cumulative increase in both exogenous and endogenous antioxidant
capacity with long-term carotenoid vitamin therapy would yield subsequent neuropro-
tective benefits at the post-receptoral level [246–249,268,280,295,304,310]. These findings
seem to corroborate this hypothesis whereby those with higher MPOD appear to process
visual stimuli more effectively in their retina; particularly in glare conditions [268,282].
Following a repeated-exposure measure to emulate the dynamics of photostress recovery,
substantially faster and more consistent visual recovery performance was observed among
those with greater MPOD [282]. Hence, the therapeutic potential for carotenoid vitamin
therapy in digital eye strain to augment macular pigment concentrations appear to facilitate
an optimal state of visual adaptation under exceedingly bright light conditions (i.e., LED
displays) [268,278,282,283,293,295,311].

Furthermore, therapeutic strategies aimed at enhancing macular xanthophyll concen-
trations are thought to play an important role in alleviating psychological stress as well as
promoting both physical and mental well-being. Following long-term supplementation
with all three macular carotenoids, clinical studies observed remarkable benefits in serum
cortisol, reduced anxiety scores, and improvement in overall sleep quality among healthy
young adults [268,283]. Researchers suggest the observed effect on cortisol reduction fol-
lowing carotenoid vitamin therapy may involve anti-inflammatory actions within local
neurosensory tissues thereby counteracting the physiological implications associated with
the stress response [283,312]. For example, previous reports have reported marked inhibi-
tion of the endogenous antioxidant system in consequence of stress-induced corticosteroid
production [312,313]. Thus, the neuroprotective capacity of these macular carotenoids to
reduce local oxidation and inflammation may explain, at least in part, these systemic effects
observed on serum cortisol levels and psychological stress.

Given the implications of blue light exposure on circadian rhythm disturbances, the po-
tential for carotenoid vitamin therapy to elicit meaningful improvements on sleep outcomes
likely represent clinically relevant findings that warrant further investigation [268]. Early
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reports involving university students with excessive screen time exposure (≥6 h/day) re-
ported significant improvements in overall sleep quality scores (Pittsburgh Sleep Quality in-
dex) following six-months of nutraceutical intervention with macular carotenoids [131,268].
Among the most prevalent age groups with heavy screen time behaviors before bed, adoles-
cents and young adults represent growing populations that may be particularly vulnerable
to psychosocial implications (sleeping disorders, emotional distress, interpersonal anxiety)
associated with digital eye strain [128,129,314,315]. Additionally, while many smartphones
market the ability to limit short-wavelength light exposure at night, high-quality clinical
evidence to substantiate blue-light attenuating filters along with equivalent ophthalmic
lenses to improve sleep quality among healthy individuals is limited and controversial at
best [26,128,129,181,316–319].

Lastly, while clinical trials have shown that oral supplementation containing all three
macular xanthophylls offer protection against mechanisms of retinal neurodegeneration
brought on by blue light irradiation, it is unclear whether these nutraceuticals may prevent
accommodative asthenopia in digital eye strain. However, carotenoid vitamin therapy
containing a similar xanthophyll carotenoid known as astaxanthin has demonstrated ocular
benefits on retinal microcirculatory hemodynamics [199,320–325]. Astaxanthin also possess
the highest degree of antioxidant capacity among carotenoid molecules [326]. Importantly,
one study observed significant improvements in accommodative amplitude among VDT
workers following 4 weeks supplementation containing only astaxanthin [325]. Improved
ciliary body function and reduced eye fatigue are believed to result from astaxanthin’s
ability to augment blood flow to the ciliary muscles [199,325].

Table 3. Characteristics of the randomized clinical trials using carotenoids.

Author (Year) Participants Duration No. of Groups Interventions per Day Results

Kan (2020) [206]
360 adults with DES;

aged (38.3 ± 8.3) years
in China

90 days 4
12 mg L + 1.2 mg Z; 20 mg
L + 2 mg Z; 28 mg L + 2.8

mg Z; placebo

Significant improvement in
TBUT, Schirmer’s test, and eye

fatigue symptoms (p < 0.01,
for all)

Kawabata (2011) [201]
20 adults with heavy VDT

use; aged (25.2 ± 1.2)
years in Japan

4 weeks 2 17.5 mg L (multivitamin);
placebo

Safely improved subjective
complaints of asthenopia and

mental fatigue from VDTs

Kizawa (2021) [199] 44 adults with DES; aged
(36.6 ± 9.1) years in Japan 6 weeks 2 5 mg L + 3 mg Ax

(multivitamin); placebo

Ameliorated reduction in
accommodative function and

visual performance (both
p < 0.05)

Kono (2014) [200]
48 adults with eye strain;
aged (52.8 ± 0.9) years

in Japan
4 weeks 2 10 mg L + 4 mg Ax

(multivitamin); placebo

Protection against
accommodative amplitude

decline from VDT use (p < 0.05)

Ma (2009) [295] 37 adults with DES; aged
(24.8 ± 2.0) years in China 12 weeks 3 6 mg L; 12 mg L; placebo

Higher intake of lutein may
offer enhanced benefit in visual

performance measures

Nagaki (2002) [325]
26 adults with VDT use;
aged (47.7 ± 4.4) years

in Japan
4 weeks 2 5 mg Ax; placebo

Marked increase in
accommodative amplitude

(p < 0.01)

Stringham (2016) [282]
59 healthy young adults;
aged (21.7 ± 1.0) years

in USA
12 months 3

10 mg L + 1 mg Z + 1 mg
MZ; 20 mg L + 2 mg Z +

2 mg MZ; placebo

Significant increase in MPOD
resulted in improved PSR and

DG (p < 0.001, for all)

Stringham (2017) [268]
48 healthy adults with +6
h/day screen time; aged

(21.2) years in USA
6 months 2 20 mg L + 2.5 mg Z +

1.5 mg MZ; placebo

MPOD increased significantly
along with enhanced visual
performance measures and

sleep quality (p < 0.05, for all)

Stringham (2018) [283] 59 healthy young adults;
aged (21.5) years in USA 12 months 3

10.86 mg L + 2.27 mg
Z-MZ isomers; 22.3 mg L +
4.7 Z-MZ isomers; placebo

Statistically significant
relationship between increased

MPOD and reductions in
serum cortisol (p < 0.001) and

psychological stress (p = 0.002)

Abbreviations: DES, digital eye strain; L, lutein; Z, zeaxanthin; TBUT, tear break-up time; VDT, visual display
terminal; Ax, astaxanthin; MZ, meso-zeaxanthin; MPOD, macular pigment optical density; PSR, photostress
recovery; DG, disability glare.
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In recent years, there is a push towards Precision Medicine with National Institute
of Health spear heading this initiative [327]. Precision medicine, also known as Individ-
ualized Medicine, although has its roots in oncology and treatment of various cancers,
the protocols established allows for applications into chronic diseases [328]. In a recent
study Kan et al., [329] have addressed the use of lutein-based formula in the amelioration
of symptoms caused by eye fatigue and dry eye. Using artificial intelligence strategies
particularly extreme gradient boosting (XGBoost) algorithm. They identified 504 features
that included patient demographics, eye related indexes, blood biomarkers and dietary
habits [329]. The features that were found to be most predictive of the Visual Health
Score that represented the overall eye fatigue included measurement of Macular Pigment
Optical Density, Schirmer’s test, visuognosis persistence, eye fatigue symptoms. Using
these features and the XGBoost algorithm they could predict the dose needed to relieve
symptoms of asthenopia. Further they evaluated their XGboost personalized medicine
algorithm they could predict at baseline individuals that needed a 14 mg or could take a
lower dose [329]. Strategies like this [329] and objective in vivo measurement of individual
carotenoids [330,331] will aid in taking us away from current conventional one size fits all
strategy to contemporary practice.

In a recent systematic review and meta-analysis Singh et al., [181] evaluated various
interventions for management of computer vision syndrome. They found low certainty
evidence that suggested the use of omega-3 supplementation in reducing dry eye symptoms,
and low certainty evidence of carotenoids improving CFF compared to a placebo [181].
Singh et al., did not report a statistically significant effect on visual fatigue using pooled
data from several additional anthocyanin-containing berry extract clinical trials [181]. They
report that there were 12 studies that had published outcomes whereas 24 studies were still
ongoing [181]. It is important to acknowledge that there is shortage of large scale RCTs
that have evaluated the benefits of nutritional supplements on digital eye strain and the
current analysis may in part be erroneous due to premature meta-analysis of published
data. Albeit we agree that greater level of evidence is indeed needed.

Equally important is to acknowledge is the complexity of the digital eye strain and
the syndromic nature of the multifactorial condition. This is not a syndrome just related to
optical phenomenon’s but includes oculo-physiological changes and systemic physiological
changes are observed. It is further complicated by the absence of objective biomarkers of
fatigue, asthenopia and digital eye strain and the use surveys and questionnaires are a poor
surrogate at best and may not be able to capture the issues and extent of improvement or
changes by various interventions. Currently, clinicians often recommend for office workers
and heavy computer users to shift their field of vision, every 20 min, toward an object 20 m
away for roughly 20 s [1,2,8,12]. While adhering to this “20-20-20” rule may certainly be
beneficial, reports suggest that improved ergonomic practices alone may not be sufficient
to properly alleviate the array of ocular and visual symptoms brought on by these digital
devices, in addition to hand-held smartphones and tablets.

There is significant molecular and mechanistic basis that purports the use of nutritional
intervention, particularly the use of omega-3, anthocyanins, and carotenoids in manage-
ment of digital eye strain. Perhaps well-suited for managing dry eye symptoms, short-term
supplementation with omega-3 fatty acids demonstrate enhanced capacity to ameliorate
pro-inflammatory mechanisms of ocular surface dysfunction and MGD [151,167–178]. A
growing body of evidence indicates a potential role for anthocyanins to provide dietary
benefits against aesthenopic symptoms along with visual fatigue brought on by hand-held
devices and prolonged near-vision work [193–200,202,206]. Adjunctive carotenoid vita-
min therapy offers synergic benefits to neurosensory retinal tissue which may manifest
as visual performance enhancement with concomitant amelioration of digital asthenopic
symptoms [199–201,206,246,247,249,268,280,282,283,295,325].
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5. Conclusions

Computers, handheld electronic devices are now irreplaceable in our daily lives and
has led to digital eye strain which is unfortunate unforeseen consequence. A comprehensive
strategy for the management of digital eye strain must be tailored to reflect the complex
etiology associated with the syndrome. The role of nutrition for promoting optimal visual
performance and the potential implications associated with poor nutrient intake have be-
come increasingly evident in recent years. In lieu of this, current literature offers promising
evidence that adjunctive nutraceutical strategies may confer additional ocular and systemic
health benefits for individuals experiencing digital eye strain.
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