Association of Visceral Fat Area and Hyperuricemia in Non-Obese US Adults: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Variable and Outcomes
2.3. Covariates
2.4. Statistical Methods
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Incidence of HUA
3.3. VFA and HUA
3.4. The Nonlinear Relationship between VFA and HUA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, X.Y.; Qi, L.W.; Chen, H.F.; Gao, P.; Zhang, Q.; Leng, R.X.; Fan, Y.G.; Li, B.Z.; Pan, H.F.; Ye, D.Q. The Interaction Between Dietary Fructose and Gut Microbiota in Hyperuricemia and Gout. Front. Nutr. 2022, 9, 890730. [Google Scholar] [CrossRef] [PubMed]
- George, C.; Minter, D.A. Hyperuricemia. In StatPearls; StatPearls Publishing Copyright © 2022; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Cleveland, J.D. Gout is associated with a higher risk of chronic renal disease in older adults: A retrospective cohort study of U.S. Medicare population. BMC Nephrol. 2019, 20, 93. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Cai, Y.; Zhao, Q.; Tian, L.; Liu, Y.; Liu, W.J. Effects of allopurinol on renal function in patients with diabetes: A systematic review and meta-analysis. Ren. Fail. 2022, 44, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Oku, F.; Hara, A.; Tsujiguchi, H.; Suzuki, K.; Pham, K.O.; Suzuki, F.; Miyagi, S.; Nakamura, M.; Takazawa, C.; Sato, K.; et al. Association between Dietary Fat Intake and Hyperuricemia in Men with Chronic Kidney Disease. Nutrients 2022, 14, 2637. [Google Scholar] [CrossRef] [PubMed]
- Otaki, Y.; Konta, T.; Ichikawa, K.; Fujimoto, S.; Iseki, K.; Moriyama, T.; Yamagata, K.; Tsuruya, K.; Narita, I.; Kondo, M.; et al. Possible burden of hyperuricaemia on mortality in a community-based population: A large-scale cohort study. Sci. Rep. 2021, 11, 8999. [Google Scholar] [CrossRef]
- Gao, C.; Chen, Z.; Ma, J.; Xie, J.; Zhang, W.; Ren, H.; Chen, X. Prevalence of and risk factors for high-altitude hyperuricaemia in Bai individuals: A cross-sectional study. J. Int. Med. Res. 2021, 49, 3000605211028140. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Cheng, J.; Huangfu, N.; Zhao, R.; Xu, Z.; Zhang, F.; Zheng, W.; Zhang, D. Hyperuricemia and Cardiovascular Disease. Curr. Pharm. Des. 2019, 25, 700–709. [Google Scholar] [CrossRef]
- Kuwabara, M.; Kuwabara, R.; Niwa, K.; Hisatome, I.; Smits, G.; Roncal-Jimenez, C.A.; MacLean, P.S.; Yracheta, J.M.; Ohno, M.; Lanaspa, M.A.; et al. Different Risk for Hypertension, Diabetes, Dyslipidemia, and Hyperuricemia According to Level of Body Mass Index in Japanese and American Subjects. Nutrients 2018, 10, 1011. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, X.; Wang, L.; Chen, L.; Wu, Y.; Gao, P.; Hua, F. Visceral adipose accumulation increased the risk of hyperuricemia among middle-aged and elderly adults: A population-based study. J. Transl. Med. 2019, 17, 341. [Google Scholar] [CrossRef] [Green Version]
- Yamada, A.; Sato, K.K.; Kinuhata, S.; Uehara, S.; Endo, G.; Hikita, Y.; Fujimoto, W.Y.; Boyko, E.J.; Hayashi, T. Association of Visceral Fat and Liver Fat With Hyperuricemia. Arthritis Care Res. 2016, 68, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.H.; Duan-Mu, Y.Y.; Zhang, Y.; Wang, L.; Guo, Z.; Yu, Y.Q.; Wang, Y.S.; Cheng, X.G. Correlation between Non-Alcoholic Fatty Liver Disease and Visceral Adipose Tissue in Non-Obese Chinese Adults: A CT Evaluation. Korean J. Radiol. 2018, 19, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.S.; Kang, Y.; Ren, W.H.; Liu, Q.; Liu, C.; Mao, W.Z. Elevated visceral fat area is associated with adverse postoperative outcome of radical colectomy for colon adenocarcinoma patients. ANZ J. Surg. 2019, 89, E368–E372. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Hashimoto, M.; Kawahara, R.; Yamamoto, H.; Tanaka, M.; Ito, H.; Masuda, I.; Hosoda, K.; Yamamoto, W.; Uozumi, R.; et al. Non-obese visceral adiposity is associated with the risk of atherosclerosis in Japanese patients with rheumatoid arthritis: A cross-sectional study. Rheumatol. Int. 2018, 38, 1679–1689. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Z.; Chen, D.S.; Xu, X.; Li, H.H.; Liu, L.Y.; Zhou, L.; Fan, J. Longitudinal associations between metabolic score for visceral fat and hyperuricemia in non-obese adults. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 1751–1757. [Google Scholar] [CrossRef]
- Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2018, 71, 851–865. [Google Scholar] [CrossRef]
- Wildman, R.P.; Muntner, P.; Chen, J.; Sutton-Tyrrell, K.; He, J. Relation of inflammation to peripheral arterial disease in the national health and nutrition examination survey, 1999–2002. Am. J. Cardiol. 2005, 96, 1579–1583. [Google Scholar] [CrossRef]
- Guo, X.; Wang, H.; Song, Q.; Li, N.; Liang, Q.; Su, W.; Liang, M.; Ding, X.; Sun, C.; Lowe, S.; et al. Association between exposure to organophosphorus pesticides and the risk of diabetes among US Adults: Cross-sectional findings from the National Health and Nutrition Examination Survey. Chemosphere 2022, 301, 134471. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018, 138, e426–e483. [Google Scholar] [CrossRef]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Xin, X.; Song, X.; Zhang, D. Association of total zinc, iron, copper and selenium intakes with depression in the US adults. J. Affect. Disord. 2018, 228, 68–74. [Google Scholar] [CrossRef]
- Mickey, R.M.; Greenland, S. The impact of confounder selection criteria on effect estimation. Am. J. Epidemiol. 1989, 129, 125–137. [Google Scholar] [CrossRef]
- Kong, X.; Huang, X.; Zhao, M.; Xu, B.; Xu, R.; Song, Y.; Yu, Y.; Yang, W.; Zhang, J.; Liu, L.; et al. Platelet Count Affects Efficacy of Folic Acid in Preventing First Stroke. J. Am. Coll. Cardiol. 2018, 71, 2136–2146. [Google Scholar] [CrossRef]
- Yu, X.; Chen, J.; Li, Y.; Liu, H.; Hou, C.; Zeng, Q.; Cui, Y.; Zhao, L.; Li, P.; Zhou, Z.; et al. Threshold effects of moderately excessive fluoride exposure on children’s health: A potential association between dental fluorosis and loss of excellent intelligence. Environ. Int. 2018, 118, 116–124. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Pan, L.; Ren, X.; Wang, D.; Du, J.; Cui, Z.; Zhao, J.; Wang, H.; Wang, X.; Liu, F.; et al. The Effect of Body Weight and Alcohol Consumption on Hyperuricemia and Their Population Attributable Fractions: A National Health Survey in China. Obes. Facts 2022, 15, 216–227. [Google Scholar] [CrossRef]
- Ran, Z.; Xue, X.; Han, L.; Terkeltaub, R.; Merriman, T.R.; Zhao, T.; He, Y.; Wang, C.; Li, X.; Liu, Z.; et al. Decrease in Serum Urate Level Is Associated With Loss of Visceral Fat in Male Gout Patients. Front. Endocrinol. 2021, 12, 724822. [Google Scholar] [CrossRef]
- Neeland, I.J.; Marso, S.P.; Ayers, C.R.; Lewis, B.; Oslica, R.; Francis, W.; Rodder, S.; Pandey, A.; Joshi, P.H. Effects of liraglutide on visceral and ectopic fat in adults with overweight and obesity at high cardiovascular risk: A randomised, double-blind, placebo-controlled, clinical trial. Lancet Diabetes Endocrinol. 2021, 9, 595–605. [Google Scholar] [CrossRef]
- Camhi, S.M.; Bray, G.A.; Bouchard, C.; Greenway, F.L.; Johnson, W.D.; Newton, R.L.; Ravussin, E.; Ryan, D.H.; Smith, S.R.; Katzmarzyk, P.T. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences. Obesity 2011, 19, 402–408. [Google Scholar] [CrossRef]
- Kazlauskaite, R.; Avery-Mamer, E.F.; Li, H.; Chataut, C.P.; Janssen, I.; Powell, L.H.; Kravitz, H.M. Race/ethnic comparisons of waist-to-height ratio for cardiometabolic screening: The study of women’s health across the nation. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2017, 29, e22909. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, F.; Yamashita, S.; Nakamura, T.; Nishida, M.; Nozaki, S.; Funahashi, T.; Matsuzawa, Y.J.M. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism 1998, 47, 929–933. [Google Scholar] [CrossRef]
- Lynam-Lennon, N.; Connaughton, R.; Carr, E.; Mongan, A.M.; O’Farrell, N.J.; Porter, R.K.; Brennan, L.; Pidgeon, G.P.; Lysaght, J.; Reynolds, J.V.; et al. Excess visceral adiposity induces alterations in mitochondrial function and energy metabolism in esophageal adenocarcinoma. BMC Cancer 2014, 14, 907. [Google Scholar] [CrossRef]
- Obata, Y.; Maeda, N.; Yamada, Y.; Yamamoto, K.; Nakamura, S.; Yamaoka, M.; Tanaka, Y.; Masuda, S.; Nagao, H.; Fukuda, S.; et al. Impact of visceral fat on gene expression profile in peripheral blood cells in obese Japanese subjects. Cardiovasc. Diabetol. 2016, 15, 159. [Google Scholar] [CrossRef]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef]
- Kanaya, A.M.; Harris, T.; Goodpaster, B.H.; Tylavsky, F.; Cummings, S.R. Adipocytokines attenuate the association between visceral adiposity and diabetes in older adults. Diabetes Care 2004, 27, 1375–1380. [Google Scholar] [CrossRef]
- Facchini, F.; Chen, Y.D.; Hollenbeck, C.B.; Reaven, G.M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 1991, 266, 3008–3011. [Google Scholar] [CrossRef]
- Tsushima, Y.; Nishizawa, H.; Tochino, Y.; Nakatsuji, H.; Sekimoto, R.; Nagao, H.; Shirakura, T.; Kato, K.; Imaizumi, K.; Takahashi, H.; et al. Uric acid secretion from adipose tissue and its increase in obesity. J. Biol. Chem. 2013, 288, 27138–27149. [Google Scholar] [CrossRef]
- Kim, S.R.; Yoo, J.H.; Song, H.C.; Lee, S.S.; Yoo, S.J.; Kim, Y.D.; Lim, Y.S.; Kim, H.W.; Yang, C.W.; Kim, Y.S.; et al. Relationship of visceral and subcutaneous adiposity with renal function in people with type 2 diabetes mellitus. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2011, 26, 3550–3555. [Google Scholar] [CrossRef]
- Oliveira, I.O.; Mintem, G.C.; Oliveira, P.D.; Freitas, D.F.; Brum, C.B.; Wehrmeister, F.C.; Gigante, D.P.; Horta, B.L.; Menezes, A.M.B. Uric acid is independent and inversely associated to glomerular filtration rate in young adult Brazilian individuals. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, S.S.; Yoo, J.H.; Kim, S.R.; Yoo, S.J.; Song, H.C.; Kim, Y.S.; Choi, E.J.; Kim, Y.K. The relationship between the regional abdominal adipose tissue distribution and the serum uric acid levels in people with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2012, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Hak, A.E.; Choi, H.K. Menopause, postmenopausal hormone use and serum uric acid levels in US women--the Third National Health and Nutrition Examination Survey. Arthritis Res. Ther. 2008, 10, R116. [Google Scholar] [CrossRef] [PubMed]
- Takiue, Y.; Hosoyamada, M.; Kimura, M.; Saito, H. The effect of female hormones upon urate transport systems in the mouse kidney. Nucleosides Nucleotides Nucleic Acids 2011, 30, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hu, X.; Fan, Y.; Li, K.; Zhang, X.; Hou, W.; Tang, Z. Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci. Rep. 2016, 6, 19520. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Yamamoto, R.; Shoji, T.; Shinzawa, M.; Hasuike, Y.; Nagatoya, K.; Yamauchi, A.; Hayashi, T.; Kuragano, T.; Moriyama, T.; et al. Serum Uric Acid Level Predicts Progression of IgA Nephropathy in Females but Not in Males. PLoS ONE 2016, 11, e0160828. [Google Scholar] [CrossRef] [PubMed]
- Virdis, A.; Masi, S.; Casiglia, E.; Tikhonoff, V.; Cicero, A.F.G.; Ungar, A.; Rivasi, G.; Salvetti, M.; Barbagallo, C.M.; Bombelli, M.; et al. Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality Over 20 Years. Hypertension 2020, 75, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Viazzi, F.; Pontremoli, R.; Barbagallo, C.M.; Bombelli, M.; Casiglia, E.; Cicero, A.F.G.; Cirillo, M.; Cirillo, P.; Desideri, G.; et al. Serum Uric Acid and Kidney Disease Measures Independently Predict Cardiovascular and Total Mortality: The Uric Acid Right for Heart Health (URRAH) Project. Front. Cardiovasc. Med. 2021, 8, 713652. [Google Scholar] [CrossRef]
Variables | Total (n = 6224) | Q1 (n = 1556) | Q2 (n = 1556) | Q3 (n = 1556) | Q4 (n = 1556) | p Value |
---|---|---|---|---|---|---|
Sex, n (%) | <0.001 | |||||
Male | 3345 (53.7) | 578 (37.1) | 870 (55.9) | 881 (56.6) | 1016 (65.3) | |
Female | 2879 (46.3) | 978 (62.9) | 686 (44.1) | 675 (43.4) | 540 (34.7) | |
Age, years | 38.6 ± 11.8 | 31.4 ± 10.3 | 35.5 ± 10.9 | 40.3 ± 10.6 | 47.2 ± 8.8 | <0.001 |
Race/ethnicity, % | <0.001 | |||||
Non-Hispanic White | 2316 (37.2) | 573 (36.8) | 599 (38.5) | 539 (34.6) | 605 (38.9) | |
Non-Hispanic Black | 1131 (18.2) | 424 (27.2) | 326 (21.0) | 242 (15.6) | 139 (8.9) | |
Mexican-American | 1388 (22.3) | 226 (14.5) | 298 (19.2) | 382 (24.6) | 482 (31.0) | |
Other | 1389 (22.3) | 333 (21.4) | 333 (21.4) | 393 (25.3) | 330 (21.2) | |
Marital status, % | <0.001 | |||||
Married or living with partner | 3665 (58.9) | 693 (44.5) | 854 (54.9) | 1018 (65.4) | 1100 (70.7) | |
Living alone | 2559 (41.1) | 863 (55.5) | 702 (45.1) | 538 (34.6) | 456 (29.3) | |
Education attainment, % | <0.001 | |||||
Less than High school | 1044 (16.8) | 181 (11.6) | 261 (16.8) | 252 (16.2) | 350 (22.5) | |
Completed High school | 1287 (20.7) | 295 (19.0) | 305 (19.6) | 339 (21.8) | 348 (22.4) | |
More than High school | 3893 (62.5) | 1080 (69.4) | 990 (63.6) | 965 (62.0) | 858 (55.1) | |
VFA, cm2 | 71.6 (48.2, 104.1) | 37.5 (29.3, 43.0) | 59.1 (53.5, 65.1) | 87.1 (79.2, 94.8) | 128.7 (115.5, 147.5) | <0.001 |
BMI, kg/m2 | 24.8 ± 3.2 | 21.9 ± 2.8 | 24.2 ± 2.7 | 25.9 ± 2.4 | 27.2 ± 2.0 | <0.001 |
WC, cm | 88.2 ± 9.7 | 77.8 ± 6.6 | 85.8 ± 6.4 | 91.6 ± 6.4 | 97.6 ± 6.2 | <0.001 |
Smoking status, % | <0.001 | |||||
Never | 3754 (60.3) | 1024 (65.8) | 959 (61.6) | 955 (61.4) | 816 (52.4) | |
Current | 1028 (16.5) | 181 (11.6) | 221 (14.2) | 275 (17.7) | 351 (22.6) | |
Former | 1442 (23.2) | 351 (22.6) | 376 (24.2) | 326 (21.0) | 389 (25.0) | |
Drinking status, % | 0.696 | |||||
Never | 745 (12.0) | 176 (11.3) | 185 (11.9) | 196 (12.6) | 188 (12.1) | |
Current | 677 (10.9) | 155 (10.0) | 168 (10.8) | 177 (11.4) | 177 (11.4) | |
Former | 4802 (77.2) | 1225 (78.7) | 1203 (77.3) | 1183 (76.0) | 1191 (76.5) | |
Vigorous recreational activity, % | <0.001 | |||||
Yes | 2269 (36.5) | 748 (48.1) | 659 (42.4) | 520 (33.4) | 342 (22.0) | |
No | 3955 (63.5) | 808 (51.9) | 897 (57.6) | 1036 (66.6) | 1214 (78.0) | |
TG, mg/dL | 103.0 (68.8, 164.0) | 73.0 (53.0, 99.0) | 90.0 (63.0, 132.0) | 119.0 (79.0, 180.0) | 160.0 (107.0, 243.0) | <0.001 |
HbA1c, % | 5.5 ± 0.8 | 5.2 ± 0.5 | 5.4 ± 0.8 | 5.5 ± 0.8 | 5.8 ± 1.1 | <0.001 |
TC, mg/dL | 190.0 ± 40.2 | 174.3 ± 33.5 | 183.5 ± 36.5 | 196.0 ± 40.8 | 206.2 ± 41.8 | <0.001 |
SUA, mg/dL | 5.1 ± 1.3 | 4.6 ± 1.1 | 5.1 ± 1.2 | 5.3 ± 1.4 | 5.6 ± 1.4 | <0.001 |
HDL-C, mg/dL | 55.3 ± 16.2 | 62.5 ± 15.6 | 57.6 ± 16.3 | 52.9 ± 15.1 | 48.2 ± 14.3 | <0.001 |
Cr, mg/dL | 0.8 (0.7, 1.0) | 0.8 (0.7, 0.9) | 0.8 (0.7, 1.0) | 0.8 (0.7, 1.0) | 0.8 (0.7, 1.0) | <0.001 |
eGFR, ml/minute/1.73 m2 | 103.7 ± 18.2 | 109.6 ± 18.3 | 106.1 ± 17.9 | 102.3 ± 17.2 | 96.8 ± 17.1 | <0.001 |
ACR, mg/g | 6.1 (4.2, 10.0) | 6.3 (4.3, 10.3) | 5.7 (4.0, 9.1) | 5.8 (4.1, 9.4) | 6.5 (4.4, 11.1) | <0.001 |
Gout, % | <0.001 | |||||
No | 6124 (98.4) | 1550 (99.6) | 1542 (99.1) | 1525 (98.0) | 1507 (96.9) | |
Yes | 100 (1.6) | 6 (0.4) | 14 (0.9) | 31 (2.0) | 49 (3.1) | |
Diabetes, % | <0.001 | |||||
No | 5876 (94.4) | 1544 (99.2) | 1513 (97.2) | 1479 (95.1) | 1340 (86.1) | |
Yes | 348 (5.6) | 12 (0.8) | 43 (2.8) | 77 (4.9) | 216 (13.9) | |
Hypertension, % | <0.001 | |||||
No | 4258 (68.4) | 1310 (84.2) | 1194 (76.7) | 1008 (64.8) | 746 (47.9) | |
Yes | 1966 (31.6) | 246 (15.8) | 362 (23.3) | 548 (35.2) | 810 (52.1) | |
CKD, % | <0.001 | |||||
No | 5788 (93.0) | 1451 (93.3) | 1480 (95.1) | 1442 (92.7) | 1415 (90.9) | |
Yes | 436 (7.0) | 105 (6.7) | 76 (4.9) | 114 (7.3) | 141 (9.1) | |
HUA, % | <0.001 | |||||
No | 5489 (88.2) | 1480 (95.1) | 1426 (91.6) | 1334 (85.7) | 1249 (80.3) | |
Yes | 735 (11.8) | 76 (4.9) | 130 (8.4) | 222 (14.3) | 307 (19.7) | |
Fat intake, g/day | 75.4 (54.1, 101.8) | 75.2 (54.4, 101.7) | 77.4 (56.4, 105.5) | 72.8 (52.8, 98.0) | 75.5 (53.8, 101.5) | 0.003 |
Energy intake, kcal/day | 2047.0 (1572.0, 2640.0) | 2016.0 (1540.0, 2639.0) | 2094.0 (1620.0, 2742.0) | 2016.0 (1551.0, 2581.0) | 2060.0 (1578.0, 2603.0) | 0.006 |
Protein intake, g/day | 80.2 (59.4, 104.8) | 77.2 (57.5, 102.2) | 83.4 (60.9, 109.9) | 78.6 (58.9, 102.2) | 80.6 (60.2, 104.1) | <0.001 |
Carbohydrate intake, g/day | 244.4 (181.6, 319.9) | 242.4 (180.3, 320.9) | 251.7 (185.0, 329.3) | 243.2 (182.8, 313.0) | 242.3 (180.7, 316.3) | 0.102 |
Fiber intake, g/day | 15.9 (10.8, 22.6) | 15.4 (10.8, 21.4) | 16.1 (10.9, 23.4) | 15.8 (10.7, 22.1) | 16.3 (10.7, 23.6) | 0.023 |
Characteristic | Total (n = 6224) | Male (n = 3345) | Female (n = 2879) | p Value |
---|---|---|---|---|
HUA, % | <0.001 | |||
No | 5489 (88.2) | 2817 (84.2) | 2672 (92.8) | |
Yes | 735 (11.8) | 528 (15.8) | 207 (7.2) | |
VFA, cm2 | 71.6 (48.2, 104.1) | 79.8 (53.9, 112.6) | 64.0 (39.7, 94.0) | <0.001 |
SUA, mg/dL | 5.1 ± 1.3 | 5.8 ± 1.2 | 4.4 ± 1.0 | <0.001 |
VFA, cm2 | Unadjusted | Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|---|---|
OR (95%CI) | p Value | OR (95%CI) | p Value | OR (95%CI) | p Value | OR (95%CI) | p Value | |
Per 10 cm2 increase | 1.13 (1.11~1.15) | <0.001 | 1.19 (1.16~1.22) | <0.001 | 1.12 (1.09~1.16) | <0.001 | 1.10 (1.07~1.14) | <0.001 |
Q1 (≤48.24) | Ref | Ref | Ref | Ref | ||||
Q2 (48.24–71.64) | 1.78 (1.33~2.38) | <0.001 | 2.05 (1.52~2.75) | <0.001 | 1.61 (1.18~2.21) | 0.003 | 1.51(1.10~2.08) | 0.011 |
Q3 (71.64–104.06) | 3.24 (2.47~4.25) | <0.001 | 4.36 (3.28~5.81) | <0.001 | 2.87 (2.03~4.04) | <0.001 | 2.50 (1.75~3.56) | <0.001 |
Q4 (>104.06) | 4.79 (3.68~6.22) | <0.001 | 8.27 (6.09~11.23) | <0.001 | 4.57 (3.05~6.86) | <0.001 | 3.77 (2.47~5.75) | <0.001 |
p for trend | <0.001 | <0.001 | <0.001 | <0.001 | ||||
Male | ||||||||
Per 10 cm2 increase | 1.09 (1.07~1.11) | <0.001 | 1.15 (1.12~1.18) | <0.001 | 1.07 (1.02~1.11) | 0.002 | 1.06 (1.02~1.11) | 0.006 |
Q1 (≤53.93) | Ref | Ref | Ref | Ref | ||||
Q2 (53.93–79.82) | 1.36 (1~1.86) | 0.052 | 1.66 (1.2~2.29) | 0.002 | 1.18 (0.83~1.68) | 0.345 | 1.15 (0.80~1.65) | 0.444 |
Q3 (79.82–112.64) | 2.42 (1.82~3.23) | <0.001 | 3.59 (2.59~4.97) | <0.001 | 2.04 (1.37~3.04) | <0.001 | 1.88 (1.28~2.92) | 0.003 |
Q4 (>112.64) | 2.66 (2.00~3.54) | <0.001 | 4.94 (3.44~7.1) | <0.001 | 2.29 (1.42~3.71) | 0.001 | 2.04 (1.24~3.38) | 0.005 |
p for trend | <0.001 | <0.001 | <0.001 | <0.001 | ||||
Female | ||||||||
Per 10 cm2 increase | 1.18 (1.14~1.22) | <0.001 | 1.21 (1.16~1.26) | <0.001 | 1.19 (1.12~1.26) | <0.001 | 1.19 (1.12~1.27) | <0.001 |
Q1 (≤39.70) | Ref | Ref | Ref | Ref | ||||
Q2 (39.70–63.99) | 2.24 (1.25~4.02) | 0.007 | 2.33 (1.29~4.21) | 0.005 | 2.20(1.18~4.1) | 0.013 | 2.12 (1.13~3.97) | 0.019 |
Q3 (63.99–94.02) | 2.95 (1.68~5.19) | <0.001 | 3.18 (1.78~5.66) | <0.001 | 2.85 (1.46~5.57) | 0.002 | 2.50 (1.26~4.95) | 0.009 |
Q4 (>94.02) | 7.06 (4.18~11.92) | <0.001 | 8.30(4.67~14.75) | <0.001 | 7.01 (3.28~14.98) | <0.001 | 5.51(2.52~12.03) | <0.001 |
p for trend | <0.001 | <0.001 | <0.001 | <0.001 |
Threshold of VFA | OR (95%CI) | p Value | p for Log Likelihood Ratio Text |
---|---|---|---|
<104.79 cm2 | 1.015 (1.005~1.025) | <0.05 | <0.001 |
≥104.79 cm2 | 1.002 (0.995~1.010) | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Gao, L.; Zhong, X.; Feng, G.; Huang, F.; Xia, S. Association of Visceral Fat Area and Hyperuricemia in Non-Obese US Adults: A Cross-Sectional Study. Nutrients 2022, 14, 3992. https://doi.org/10.3390/nu14193992
Li Z, Gao L, Zhong X, Feng G, Huang F, Xia S. Association of Visceral Fat Area and Hyperuricemia in Non-Obese US Adults: A Cross-Sectional Study. Nutrients. 2022; 14(19):3992. https://doi.org/10.3390/nu14193992
Chicago/Turabian StyleLi, Zhiying, Lijie Gao, Xiaoqing Zhong, Guanrui Feng, Fengqiu Huang, and Sujian Xia. 2022. "Association of Visceral Fat Area and Hyperuricemia in Non-Obese US Adults: A Cross-Sectional Study" Nutrients 14, no. 19: 3992. https://doi.org/10.3390/nu14193992
APA StyleLi, Z., Gao, L., Zhong, X., Feng, G., Huang, F., & Xia, S. (2022). Association of Visceral Fat Area and Hyperuricemia in Non-Obese US Adults: A Cross-Sectional Study. Nutrients, 14(19), 3992. https://doi.org/10.3390/nu14193992