Joint Associations of Food Groups with All-Cause and Cause-Specific Mortality in the Mr. OS and Ms. OS Study: A Prospective Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dietary Assessment
2.3. Ascertainment of Mortality Outcomes
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Food Group Selection Using Elastic Net Regression Model
3.3. Food Groups and All-Cause Mortality
3.4. Food Groups and Cause-Specific Mortality
3.5. Sex-Stratified Subgroup Analysis
4. Discussion
4.1. Comparison with Previous Literature
4.2. Sex- and Population-Specific Associations of Food Groups with Mortality Risk
4.3. Advantages of the Present Statistical Approach
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neuhouser, M.L. The importance of healthy dietary patterns in chronic disease prevention. Nutr. Res. 2019, 70, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Landberg, R.; Hanhineva, K. Biomarkers of a healthy nordic diet-from dietary exposure biomarkers to microbiota signatures in the metabolome. Nutrients 2019, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Waxman, A.; World Health, A. WHO global strategy on diet, physical activity and health. Food Nutr. Bull. 2004, 25, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Boucher, B.A.; Ashbury, F.D.; Sloan, M.; Brown, P.; El-Sohemy, A.; Hanley, A.J.; Willett, W.; Paquette, M.; de Souza, R.J.; et al. Effect of current dietary recommendations on weight loss and cardiovascular risk factors. J. Am. Coll. Cardiol. 2017, 69, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Malik, V.; Rimm, E.B.; Sacks, F.; Willett, W.; Hu, F.B. Changes in intake of plant-based diets and weight change: Results from 3 prospective cohort studies. Am. J. Clin. Nutr. 2019, 110, 574–582. [Google Scholar] [CrossRef]
- Chen, Z.; Schoufour, J.D.; Rivadeneira, F.; Lamballais, S.; Ikram, M.A.; Franco, O.H.; Voortman, T. Plant-based diet and adiposity over time in a middle-aged and elderly population: The Rotterdam Study. Epidemiology 2019, 30, 303–310. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Wong, M.M.H.; Louie, J.C.Y. A priori dietary patterns and cardiovascular disease incidence in adult population-based studies: A review of recent evidence. Crit. Rev. Food Sci. Nutr. 2021, 62, 6153–6168. [Google Scholar] [CrossRef]
- Krishnan, S.; Ramyaa, R. When two heads are better than one: Nutritional epidemiology meets machine learning. Am. J. Clin. Nutr. 2020, 111, 1124–1126. [Google Scholar] [CrossRef]
- Zhao, Y.; Naumova, E.N.; Bobb, J.F.; Claus Henn, B.; Singh, G.M. Joint Associations of Multiple Dietary Components With Cardiovascular Disease Risk: A Machine-Learning Approach. Am. J. Epidemiol. 2021, 190, 1353–1365. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Cartus, A.R.; Kirkpatrick, S.I.; Himes, K.P.; Kennedy, E.H.; Simhan, H.N.; Grobman, W.A.; Duffy, J.Y.; Silver, R.M.; Parry, S.; et al. Machine learning as a strategy to account for dietary synergy: An illustration based on dietary intake and adverse pregnancy outcomes. Am. J. Clin. Nutr. 2020, 111, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.; Glenn, A.J.; Yeung, S.; Kendall, C.W.C.; Sievenpiper, J.L.; Jenkins, D.J.A.; Woo, J. Prospective association of the portfolio diet with all-cause and cause-specific mortality risk in the Mr. OS and Ms. OS Study. Nutrients 2021, 13, 4360. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Leung, J.; Tang, N.; Woo, J. Dietary patterns and telomere length in community-dwelling Chinese older men and women: A cross-sectional analysis. Eur. J. Nutr. 2020, 59, 3303–3311. [Google Scholar] [CrossRef]
- Liu, Z.M.; Tse, L.A.; Chan, D.; Wong, C.; Wong, S.Y.S. Dietary sugar intake was associated with increased body fatness but decreased cardiovascular mortality in Chinese elderly: An 11-year prospective study of Mr. and Ms. OS of Hong Kong. Int. J. Obes. 2018, 42, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Leung, S.; Ho, S.; Lam, T.; Janus, E. A food frequency questionnaire for use in the Chinese population in Hong Kong: Description and examination of validity. Nutr. Res. 1997, 17, 1633–1641. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The Physical Activity Scale for the Elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Stafoggia, M.; Breitner, S.; Hampel, R.; Basagana, X. Statistical approaches to address multi-pollutant mixtures and multiple exposures: The state of the science. Curr. Environ. Health Rep. 2017, 4, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chan, K.; Choi, C.; Yang, A.; Lo, K. Identifying effects of urinary metals on type 2 diabetes in U.S. adults: Cross-sectional analysis of National Health and Nutrition Examination Survey 2011–2016. Nutrients 2022, 14, 1552. [Google Scholar] [CrossRef]
- Zhao, H.; Tang, J.; Zhu, Q.; He, H.; Li, S.; Jin, L.; Zhang, X.; Zhu, L.; Guo, J.; Zhang, D.; et al. Associations of prenatal heavy metals exposure with placental characteristics and birth weight in Hangzhou Birth Cohort: Multi-pollutant models based on elastic net regression. Sci. Total Environ. 2020, 742, 140613. [Google Scholar] [CrossRef]
- Yang, J.; Yang, A.; Cheng, N.; Huang, W.; Huang, P.; Liu, N.; Bai, Y. Sex-specific associations of blood and urinary manganese levels with glucose levels, insulin resistance and kidney function in US adults: National health and nutrition examination survey 2011–2016. Chemosphere 2020, 258, 126940. [Google Scholar] [CrossRef]
- Duc, H.N.; Oh, H.; Kim, M.S. The effect of mixture of heavy metals on obesity in individuals ≥50 years of age. Biol. Trace Elem. Res. 2021, 200, 3554–3571. [Google Scholar] [CrossRef] [PubMed]
- Keil, A.P.; Buckley, J.P.; O’Brien, K.M.; Ferguson, K.K.; Zhao, S.; White, A.J. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ. Health Perspect 2020, 128, 47004. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y.; Giovannucci, E.L. Association between dietary fat intake and mortality from all-causes, cardiovascular disease, and cancer: A systematic review and meta-analysis of prospective cohort studies. Clin. Nutr. 2021, 40, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Soltani, S.; Jenkins, D.; Sievenpiper, J.; Shab-Bidar, S. Dietary glycemic index, glycemic load, and chronic disease: An umbrella review of meta-analyses of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Hu, F.B. Plant-based diets and cardiovascular health. Trends Cardiovasc. Med. 2018, 28, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, S.M.; Meydani, M.; Barnett, J.B.; Goldin, B.; Kane, A.; Rasmussen, H.; Brown, C.; Vangay, P.; Knights, D.; Jonnalagadda, S.; et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am. J. Clin. Nutr. 2017, 105, 635–650. [Google Scholar] [CrossRef]
- Wong, J.M.; de Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
- Yamamura, R.; Nakamura, K.; Kitada, N.; Aizawa, T.; Shimizu, Y.; Nakamura, K.; Ayabe, T.; Kimura, T.; Tamakoshi, A. Associations of gut microbiota, dietary intake, and serum short-chain fatty acids with fecal short-chain fatty acids. Biosci. Microbiota. Food Health 2020, 39, 11–17. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Ramne, S.; Alves Dias, J.; Gonzalez-Padilla, E.; Olsson, K.; Lindahl, B.; Engstrom, G.; Ericson, U.; Johansson, I.; Sonestedt, E. Association between added sugar intake and mortality is nonlinear and dependent on sugar source in 2 Swedish population-based prospective cohorts. Am. J. Clin. Nutr. 2019, 109, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Ax, E.; Warensjo Lemming, E.; Becker, W.; Andersson, A.; Lindroos, A.K.; Cederholm, T.; Sjogren, P.; Fung, T.T. Dietary patterns in Swedish adults; results from a national dietary survey. Br. J. Nutr. 2016, 115, 95–104. [Google Scholar] [CrossRef]
- Holt-Lunstad, J.; Smith, T.B.; Layton, J.B. Social relationships and mortality risk: A meta-analytic review. PLoS Med. 2010, 7, e1000316. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Tse, S.L.A.; Chen, B.; Chan, D.; Wong, C.; Woo, J.; Wong, S.Y. Dietary sugar intake does not pose any risk of bone loss and non-traumatic fracture and is associated with a decrease in all-cause mortality among Chinese elderly: Finding from an 11-year longitudinal study of Mr. and Ms. OS Hong Kong. Bone 2018, 116, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Izquierdo Pulido, M.; Sanchez-Gonzalez, C.; Godos, J.; Speciani, A.; Galvano, F.; Grosso, G. Legume consumption and CVD risk: A systematic review and meta-analysis. Public Health Nutr. 2017, 20, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.; Siervo, M.; Lara, J. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.W.; Siervo, M.; Lara, J. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Crit. Rev. Food Sci. Nutr. 2019, 59, 141–158. [Google Scholar] [CrossRef]
- Li, Z.; Wang, D.; Ruiz-Narvaez, E.A.; Peterson, K.E.; Campos, H.; Baylin, A. Starchy vegetables and metabolic syndrome in Costa Rica. Nutrients 2021, 13, 1639. [Google Scholar] [CrossRef]
- Shirakami, Y.; Shimizu, M.; Moriwaki, H. Cancer chemoprevention with green tea catechins: From bench to bed. Curr. Drug Targets 2012, 13, 1842–1857. [Google Scholar] [CrossRef]
- Zhao, L.G.; Li, Z.Y.; Feng, G.S.; Ji, X.W.; Tan, Y.T.; Li, H.L.; Gunter, M.J.; Xiang, Y.B. Tea drinking and risk of cancer incidence: A meta-analysis of prospective cohort studies and evidence evaluation. Adv. Nutr. 2021, 12, 402–412. [Google Scholar] [CrossRef]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of weighted quantile wum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Ba, D.M.; Gao, X.; Al-Shaar, L.; Muscat, J.; Chinchilli, V.M.; Ssentongo, P.; Zhang, X.; Liu, G.; Beelman, R.B.; Richie, J.P., Jr. Prospective study of dietary mushroom intake and risk of mortality: Results from continuous National Health and Nutrition Examination Survey (NHANES) 2003–2014 and a meta-analysis. Nutr. J. 2021, 20, 80. [Google Scholar] [CrossRef] [PubMed]
Men (n = 1998) | Women (n = 1997) | p Value | |
---|---|---|---|
Mean (SD)/N (%) | |||
Age (Years) | 72.4 ± 5.01 | 72.6 ± 5.36 | 0.618 |
Post-secondary Education | 286 (14.3) | 130 (6.5) | <0.001 |
Physical activity (PASE score) | 97.3 ± 50.3 | 85.3 ± 33.1 | <0.001 |
Smoking habit | <0.001 | ||
Former smoker | 1037 (51.9) | 153 (7.7) | |
Current smoker | 237 (11.9) | 37 (1.9) | |
Drink > 12 alcoholic drinks in the past year | 471 (23.6) | 51 (2.6) | <0.001 |
Dietary energy (kcal) | 2100 ± 587 | 1580 ± 462 | <0.001 |
Body mass index (kg/m2) | 23.5 ± 3.13 | 23.9 ± 3.45 | <0.001 |
History of diabetes | 293 (14.7) | 286 (14.3) | 0.792 |
History of hypertension | 836 (41.8) | 869 (43.5) | 0.300 |
History of stroke | 108 (5.4) | 65 (3.3) | 0.001 |
History of heart attack | 201 (10.1) | 192 (9.6) | 0.675 |
History of angina | 205 (10.3) | 147 (7.4) | 0.001 |
History of congestive heart failure | 73 (3.7) | 78 (3.9) | 0.738 |
History of cancer | 87 (4.4) | 90 (4.5) | 0.875 |
Foods (g/Day) | HR (95% CI) | p-Value for Trend | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Dark green and leafy vegetables | |||||
Overall | 1.00 | 0.87 (0.75, 1.01) | 0.84 (0.72, 0.97) | 0.82 (0.70, 0.96) | 0.049 |
Men | 1.00 | 0.84 (0.70, 1.01) | 0.83 (0.69, 1.01) | 0.82 (0.67, 0.99) | 0.256 |
Women | 1.00 | 0.93 (0.73, 1.18) | 0.82 (0.64, 1.05) | 0.83 (0.65, 1.08) | 0.144 |
Dim sum # | |||||
Overall | 1.00 | 0.81 (0.69, 0.94) | 0.88 (0.76, 1.03) | 0.88 (0.75, 1.03) | 0.414 |
Men | 1.00 | 0.76 (0.62, 0.94) | 0.78 (0.63, 0.96) | 0.88 (0.73, 1.07) | 0.161 |
Women | 1.00 | 0.87 (0.69, 1.08) | 1.05 (0.84, 1.32) | 0.76 (0.56, 1.03) | 0.081 |
Fruit | |||||
Overall | 1.00 | 0.93 (0.80, 1.08) | 0.90 (0.77, 1.04) | 0.79 (0.68, 0.93) | 0.006 |
Men | 1.00 | 0.95 (0.78, 1.15) | 0.91 (0.75, 1.11) | 0.79 (0.65, 0.96) | 0.388 |
Women | 1.00 | 0.89 (0.71, 1.13) | 0.86 (0.68, 1.09) | 0.84 (0.63, 1.10) | 0.008 |
Legumes | |||||
Overall | 1.00 | 1.01 (0.87, 1.16) | 0.79 (0.68, 0.92) | 0.75 (0.63, 0.87) | 0.052 |
Men | 1.00 | 0.97 (0.80, 1.16) | 0.77 (0.64, 0.94) | 0.80 (0.65, 0.98) | 0.023 |
Women | 1.00 | 1.10 (0.88, 1.38) | 0.84 (0.66, 1.07) | 0.65 (0.50, 0.86) | 0.626 |
Milk and milk products—high fat | |||||
Overall | 1.00 | 0.99 (0.84, 1.17) | 0.93 (0.79, 1.09) | 1.01 (0.86, 1.19) | 0.107 |
Men | 1.00 | 0.96 (0.76, 1.19) | 0.89 (0.71, 1.11) | 0.94 (0.75, 1.18) | 0.852 |
Women | 1.00 | 0.98 (0.76, 1.27) | 0.98 (0.77, 1.24) | 1.08 (0.85, 1.38) | 0.129 |
Mushroom and fungi | |||||
Overall | 1.00 | 0.84 (0.72, 0.97) | 0.75 (0.65, 0.87) | 0.76 (0.65, 0.88) | 0.023 |
Men | 1.00 | 0.83 (0.69, 1.00) | 0.72 (0.60, 0.87) | 0.69 (0.57, 0.84) | 0.553 |
Women | 1.00 | 0.82 (0.65, 1.03) | 0.78 (0.61, 0.99) | 0.87 (0.67, 1.13) | 0.023 |
Refined grains | |||||
Overall | 1.00 | 1.06 (0.90, 1.24) | 1.05 (0.89, 1.24) | 1.13 (0.95, 1.34) | 0.088 |
Men | 1.00 | 1.00 (0.80, 1.25) | 1.02 (0.82, 1.28) | 1.15 (0.92, 1.44) | 0.393 |
Women | 1.00 | 1.10 (0.88, 1.37) | 1.07 (0.84, 1.36) | 0.95 (0.70, 1.31) | 0.012 |
Soy and soy products | |||||
Overall | 1.00 | 0.89 (0.77, 1.02) | 0.79 (0.68, 0.92) | 0.77 (0.66, 0.90) | 0.143 |
Men | 1.00 | 0.90 (0.74, 1.08) | 0.76 (0.63, 0.93) | 0.79 (0.65, 0.96) | 0.073 |
Women | 1.00 | 0.86 (0.69, 1.09) | 0.87 (0.68, 1.10) | 0.75 (0.57, 0.99) | 0.590 |
Tea | |||||
Overall | 1.00 | 0.99 (0.85, 1.16) | 1.03 (0.89, 1.21) | 1.01 (0.87, 1.19) | 0.760 |
Men | 1.00 | 1.02 (0.82, 1.27) | 1.16 (0.94, 1.44) | 1.00 (0.81, 1.23) | 0.554 |
Women | 1.00 | 0.94 (0.75, 1.18) | 0.88 (0.69, 1.11) | 1.20 (0.92, 1.58) | 0.965 |
Whole grains | |||||
Overall | 1.00 | 0.91 (0.79, 1.06) | 0.85 (0.73, 0.98) | 0.76 (0.65, 0.89) | 0.008 |
Men | 1.00 | 0.92 (0.77, 1.10) | 0.82 (0.68, 1.00) | 0.79 (0.64, 0.98) | 0.059 |
Women | 1.00 | 0.89 (0.68, 1.16) | 0.87 (0.68, 1.11) | 0.72 (0.56, 0.92) | 0.058 |
Foods (g/Day) | HR (95% CI) | p-Value for Trend | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Legumes | |||||
Overall | 1.00 | 0.98 (0.73, 1.32) | 0.81 (0.59, 1.10) | 0.64 (0.45, 0.91) | 0.065 |
Men | 1.00 | 0.76 (0.52, 1.13) | 0.59 (0.39, 0.88) | 0.62 (0.41, 0.94) | 0.094 |
Women | 1.00 | 1.44 (0.91, 2.30) | 1.28 (0.78, 2.09) | 0.62 (0.33, 1.15) | 0.334 |
Starchy vegetables | |||||
Overall | 1.00 | 1.00 (0.74, 1.34) | 0.71 (0.52, 0.99) | 0.81 (0.59, 1.12) | 0.085 |
Men | 1.00 | 0.79 (0.54, 1.17) | 0.69 (0.45, 1.05) | 0.68 (0.45, 1.03) | 0.227 |
Women | 1.00 | 1.34 (0.84, 2.12) | 0.72 (0.42, 1.24) | 1.00 (0.60, 1.65) | 0.170 |
Tomatoes | |||||
Overall | 1.00 | 1.08 (0.80, 1.45) | 0.98 (0.72, 1.34) | 0.74 (0.52, 1.04) | 0.039 |
Men | 1.00 | 1.10 (0.74, 1.65) | 1.00 (0.67, 1.51) | 0.80 (0.52, 1.23) | 0.086 |
Women | 1.00 | 1.02 (0.66, 1.60) | 0.92 (0.56, 1.51) | 0.59 (0.33, 1.07) | 0.211 |
Foods (g/Day) | HR (95% CI) | p-Value for Trend | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Dim sum # | |||||
Overall | 1.00 | 0.95 (0.73, 1.24) | 0.93 (0.71, 1.22) | 1.02 (0.78, 1.34) | 0.710 |
Men | 1.00 | 0.86 (0.59, 1.24) | 0.76 (0.53, 1.10) | 1.00 (0.72, 1.38) | 0.463 |
Women | 1.00 | 1.06 (0.71, 1.57) | 1.20 (0.81, 1.78) | 0.85 (0.51, 1.43) | 0.440 |
Fats and oils | |||||
Overall | 1.00 | 1.02 (0.77, 1.36) | 1.15 (0.87, 1.53) | 1.10 (0.81, 1.48) | 0.974 |
Men | 1.00 | 0.94 (0.62, 1.44) | 1.02 (0.68, 1.52) | 1.00 (0.66, 1.49) | 0.774 |
Women | 1.00 | 1.02 (0.69, 1.51) | 1.31 (0.86, 1.98) | 1.14 (0.68, 1.88) | 0.596 |
Fruit | |||||
Overall | 1.00 | 0.94 (0.73, 1.20) | 0.79 (0.61, 1.02) | 0.68 (0.51, 0.89) | 0.002 |
Men | 1.00 | 0.92 (0.67, 1.26) | 0.84 (0.61, 1.16) | 0.62 (0.44, 0.88) | 0.001 |
Women | 1.00 | 0.98 (0.66, 1.46) | 0.73 (0.47, 1.13) | 0.84 (0.52, 1.35) | 0.620 |
Nuts | |||||
Overall | 1.00 | 0.84 (0.65, 1.08) | 0.87 (0.68, 1.12) | 0.72 (0.55, 0.94) | 0.550 |
Men | 1.00 | 0.87 (0.62, 1.21) | 0.93 (0.67, 1.28) | 0.67 (0.48, 0.94) | 0.776 |
Women | 1.00 | 0.81 (0.54, 1.20) | 0.79 (0.52, 1.19) | 0.84 (0.54, 1.33) | 0.193 |
Other vegetables | |||||
Overall | 1.00 | 0.89 (0.69, 1.15) | 0.96 (0.75, 1.24) | 0.84 (0.64, 1.10) | 0.100 |
Men | 1.00 | 0.81 (0.59, 1.11) | 0.76 (0.55, 1.05) | 0.78 (0.56, 1.09) | 0.051 |
Women | 1.00 | 1.12 (0.72, 1.75) | 1.48 (0.96, 2.26) | 1.03 (0.64, 1.67) | 0.958 |
Refined grains | |||||
Overall | 1.00 | 1.11 (0.85, 1.45) | 0.86 (0.64, 1.15) | 1.19 (0.89, 1.60) | 0.148 |
Men | 1.00 | 1.00 (0.69, 1.46) | 0.74 (0.50, 1.11) | 1.23 (0.85, 1.78) | 0.016 |
Women | 1.00 | 1.22 (0.83, 1.79) | 1.03 (0.67, 1.59) | 0.89 (0.51, 1.56) | 0.378 |
Soup | |||||
Overall | 1.00 | 0.77 (0.59, 1.00) | 0.75 (0.58, 0.98) | 0.89 (0.69, 1.15) | 0.258 |
Men | 1.00 | 0.71 (0.50, 1.01) | 0.73 (0.52, 1.03) | 0.88 (0.64, 1.21) | 0.062 |
Women | 1.00 | 0.87 (0.58, 1.28) | 0.80 (0.52, 1.23) | 0.91 (0.58, 1.43) | 0.724 |
Soy and soy products | |||||
Overall | 1.00 | 0.98 (0.76, 1.25) | 0.89 (0.69, 1.15) | 0.72 (0.54, 0.95) | 0.051 |
Men | 1.00 | 0.95 (0.69, 1.31) | 0.87 (0.62, 1.20) | 0.69 (0.49, 0.98) | 0.196 |
Women | 1.00 | 1.04 (0.70, 1.55) | 0.96 (0.63, 1.46) | 0.79 (0.49, 1.28) | 0.130 |
Sweets and desserts | |||||
Overall | 1.00 | 0.99 (0.75, 1.30) | 0.77 (0.58, 1.03) | 0.99 (0.75, 1.32) | 0.478 |
Men | 1.00 | 1.23 (0.83, 1.84) | 1.03 (0.68, 1.56) | 1.37 (0.91, 2.05) | 0.325 |
Women | 1.00 | 0.89 (0.60, 1.33) | 0.62 (0.40, 0.96) | 0.68 (0.42, 1.09) | 0.629 |
Tea | |||||
Overall | 1.00 | 1.26 (0.95, 1.68) | 1.23 (0.92, 1.63) | 1.44 (1.09, 1.90) | 0.077 |
Men | 1.00 | 1.02 (0.69, 1.51) | 1.15 (0.79, 1.67) | 1.11 (0.78, 1.59) | 0.679 |
Women | 1.00 | 1.44 (0.95, 2.18) | 1.18 (0.76, 1.85) | 2.16 (1.38, 3.37) | 0.013 |
Water | |||||
Overall | 1.00 | 0.94 (0.73, 1.21) | 0.77 (0.59, 1.00) | 0.89 (0.69, 1.14) | 0.176 |
Men | 1.00 | 0.92 (0.66, 1.27) | 0.89 (0.65, 1.23) | 0.98 (0.72, 1.34) | 0.725 |
Women | 1.00 | 0.95 (0.62, 1.44) | 0.62 (0.39, 0.98) | 0.75 (0.48, 1.17) | 0.102 |
Whole grains | |||||
Overall | 1.00 | 0.99 (0.77, 1.27) | 0.83 (0.64, 1.08) | 0.79 (0.60, 1.05) | 0.078 |
Men | 1.00 | 0.99 (0.73, 1.34) | 0.86 (0.61, 1.20) | 0.78 (0.53, 1.12) | 0.026 |
Women | 1.00 | 0.98 (0.63, 1.52) | 0.77 (0.50, 1.19) | 0.79 (0.52, 1.22) | 0.980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Yang, A.; Yeung, S.; Woo, J.; Lo, K. Joint Associations of Food Groups with All-Cause and Cause-Specific Mortality in the Mr. OS and Ms. OS Study: A Prospective Cohort. Nutrients 2022, 14, 3915. https://doi.org/10.3390/nu14193915
Yang J, Yang A, Yeung S, Woo J, Lo K. Joint Associations of Food Groups with All-Cause and Cause-Specific Mortality in the Mr. OS and Ms. OS Study: A Prospective Cohort. Nutrients. 2022; 14(19):3915. https://doi.org/10.3390/nu14193915
Chicago/Turabian StyleYang, Jingli, Aimin Yang, Suey Yeung, Jean Woo, and Kenneth Lo. 2022. "Joint Associations of Food Groups with All-Cause and Cause-Specific Mortality in the Mr. OS and Ms. OS Study: A Prospective Cohort" Nutrients 14, no. 19: 3915. https://doi.org/10.3390/nu14193915
APA StyleYang, J., Yang, A., Yeung, S., Woo, J., & Lo, K. (2022). Joint Associations of Food Groups with All-Cause and Cause-Specific Mortality in the Mr. OS and Ms. OS Study: A Prospective Cohort. Nutrients, 14(19), 3915. https://doi.org/10.3390/nu14193915