The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection
2.5. Data Extraction and Synthesis
2.6. Risk of Bias Assessment
3. Results
3.1. Retrieval and Selection Process of Studies
3.2. The General Characteristics of the Studies Focused on Dietary Determinants of Telomere Length in Children and Adolescents
Author, Year | Country | Population | Dietary Intake Assessment | Adjustment for Confounders | Main Findings |
---|---|---|---|---|---|
Meshkani et al., 2021 [29] | Iran | 184 children aged 5–7 (girls = 106, boys = 78) | Consumption of foods measured by a FFQ: dairy products, red meat, fish, nuts and seeds, egg, legumes, white bread and refined grains, coloured fruits, other fruits, yellow and orange vegetables, cruciferous vegetables, green leafy vegetables, simple sugar, solid and liquid fats, processed meats, potato chips, carbonated drinks, tea, soft drinks and olives (never or once per month, once per week, and two or three times per week vs. once per day and two or three times per day). | Linear mixed-effect models were fitted with the food group as the fixed effect predictor and PCR plate ID and kindergartens as the random effects Models adjusted by age, sex, BMI, paternal and maternal education level, income, tobacco smoke exposure at home, illiterate per cent per census tract, and unemployed per cent per census tract. | Dairy products and simple sugar were associated with a shorter LTL (β = −0.180; 95% CI: −0.276, −0.085; p < 0.001 and β = −0.139; 95% CI: −0.193, −0.086; p < 0.001, respectively). Fish (β = 0.208; 95% CI: 0.144, 0.272), nuts and seeds (β = 0.105; 95% CI: 0.041, 0.168), coloured fruits (β = 0.115; 95% CI: 0.047, 0.183), other fruits (β = 0.076; 95% CI: 0.047, 0.183) green leafy vegetables (β = 0.098; 95% CI: 0.037, 0.159), cruciferous vegetables (β = 0.126; 95% CI: 0.067, 0.184), and olives (β = 0.165; 95% CI: 0.108, 0.224) were associated with a longer LTL in children. |
Baskind et al., 2021 [32] | USA | 97 girls aged 3–5 | The weekly consumption of SSB intake (colas/sodas, Kool-Aid, non-diet Hi-C, juices like Capri Sun, Sunny D, and Tampico); fruit juice (100% fruit juice-no added sugar), and flavoured milk (milk flavourings: chocolate, strawberry, etc.); sweets/dessert intake (“cakes, brownies, muffins, donuts, cookies”, “candy or chocolate”, and ice cream consumption. SSB and sweets intake were combined into one sugar intake category. Fast food consumption was also measured as “Fast food: Wendy’s, McDonald’s, Burger King”. Dietary data were categorised into high vs. low intake. | Multivariable models were adjusted by age, maternal education, annual house income, and maternal smoking. | The levels of sugar intake at 3 years were not associated with LTL, although all beta (β) values for the linear regressions were negative. The high SSB intake group, which combined the frequency of consuming soda and soda-like drinks, juice, and flavoured milk (β = −0.07; 95% CI: −0.20, 0.06), was similar to the associations seen in each individual consumption group. The combination category that included both liquid and solid sources of sugar intake, or a “high combined sugar intake”, showed a similar non-significant association (β = −0.08; 95% CI: −0.22, 0.05). A high fast-food consumption greater than once per week did not show any association (β = −0.06; 95% CI: −0.20, 0.08) |
Todendi et al., 2020 [30] | Brazil | 219 children aged 7–9 (girls = 111, boys = 108) 762 adolescents aged 10–17 (girls = 438, boys = 324) | The frequency of consumption of the following foods based on questions adapted from Nahas et al. [34]: red meat (never or once, 2 to 3 times, or 4 to 5 times a week); fish (never or once, 2 to 3 times, or 4 to 5 times a week); daily diet includes at least 5 servings of fruits and vegetables (never/occasionally or very frequently/always); fatty foods (fats, fried foods), and sweets (never/occasionally or very frequently/always). | Analyses were performed adjusting TL for age, sex, ethnicity, and family income (total sample); and for sex, family income, and ethnicity (separate models for children and adolescents). | Children and adolescents who reported that they always or very frequently ate fruits and vegetables had longer TLs than those who did not (1.17 vs. 1.06, p < 0.001). However, when analysed separately, this result was only seen among the adolescents (1.19 vs. 1.04, p < 0.001). Although not statistically significant, there was a trend of a longer TL in those individuals who consumed fish four to five times per week or more. |
Wojcicki, et al., 2018 [31] | USA | 61 children aged 2–3 (girls = 31, boys = 30) | The total number of times that a child consumes SSB (defined as soda, Kool-Aid, Hi-C, sweetened juices, and other beverages with added sugar) over a 1-month period measured continuously. | The model as adjusted by obesity at 6 months and 2–3 years of age, sex, and age of telomere collection at 2–3 years. | Consuming higher levels of SSB was significantly associated with a reduced LTL (β = −0.009; 95% CI: −0.02, −0.0008; p = 0.03). |
García-Calzón et al., 2015 [33] | Spain | 287 participants aged 6–18 (girls = 158, boys = 129) | Food consumption was measured by 132-item FFQ divided into these food groups: dairy products, meat and eggs, fish, fruits and vegetables, legumes, potatoes and cereals, nuts, oils and fat, sweets, and sugar-sweetened beverages. The macronutrients (carbohydrates, protein, and fats [MUFA, PUFA, SFA]) were estimated in %E. The TAC value was calculated in mmol/100 g of food. The glycaemic load for each item was calculated as the total carbohydrate content of each item weighted by its glycaemic index. | The model as adjusted by age, sex, BMI-SDS, and total energy intake (Kcal/d). The dietary TAC and white bread intakes were separately stratified into quintiles and means, and a 95% CI of LTL and were compared in fully adjusted models. | A higher TAC and a greater consumption of PUFA and legumes were associated with longer telomere length (β = 0.173, p= 0.007; β = 0.132, p = 0.032; β = 0.136, p = 0.019, respectively). A higher glycaemic load, cereals, and white bread consumption were associated with shorter telomeres (β = −0.395, p = 0.003; β = −0.201, p = 0.002; β = −0.204, p = 0.002, respectively). Those individuals who had a simultaneously higher dietary TAC (>8.6 mmol) and a lower white bread (<60 g/d) consumption, significantly presented the longest telomeres (β = 0.37, 95% CI: 0.09–0.64). The multivariable-adjusted odds ratio for very short telomeres was 0.30 for dietary TAC (p = 0.023) and 1.37 for white bread (p = 0.025). |
3.3. Quality Assessment of the Included Studies
3.4. Dietary Determinants of Telomere Length in Children and Adolescents
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and Telomere Length: A General Overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef]
- O’Sullivan, R.J.; Karlseder, J. Telomeres: Protecting Chromosomes against Genome Instability. Nat. Rev. Mol. Cell Biol. 2010, 11, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Saretzki, G. Telomeres, Telomerase and Ageing. Subcell. Biochem. 2018, 90, 221–308. [Google Scholar] [CrossRef]
- McHugh, D.; Gil, J. Senescence and Aging: Causes, Consequences, and Therapeutic Avenues. J. Cell Biol. 2018, 217, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Vaiserman, A.; Krasnienkov, D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front. Genet. 2020, 11, 630186. [Google Scholar] [CrossRef] [PubMed]
- Jylhävä, J.; Pedersen, N.L.; Hägg, S. Biological Age Predictors. EBioMedicine 2017, 21, 29–36. [Google Scholar] [CrossRef]
- Fasching, C.L. Telomere Length Measurement as a Clinical Biomarker of Aging and Disease. Crit. Rev. Clin. Lab. Sci. 2018, 55, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Haycock, P.C.; Heydon, E.E.; Kaptoge, S.; Butterworth, A.S.; Thompson, A.; Willeit, P. Leucocyte Telomere Length and Risk of Cardiovascular Disease: Systematic Review and Meta-Analysis. BMJ 2014, 349, g4227. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, M.J.J.; Ross, S.A.; Briel, M.; Anand, S.S.; Gerstein, H.; Paré, G. Association between Shortened Leukocyte Telomere Length and Cardiometabolic Outcomes: Systematic Review and Meta-Analysis. Circ. Cardiovasc. Genet. 2015, 8, 82–90. [Google Scholar] [CrossRef]
- Ameh, O.I.; Okpechi, I.G.; Dandara, C.; Kengne, A.-P. Association Between Telomere Length, Chronic Kidney Disease, and Renal Traits: A Systematic Review. OMICS 2017, 21, 143–155. [Google Scholar] [CrossRef]
- Vidacek, N.Š.; Nanic, L.; Ravlic, S.; Sopta, M.; Geric, M.; Gajski, G.; Garaj-Vrhovac, V.; Rubelj, I. Telomeres, Nutrition, and Longevity: Can We Really Navigate Our Aging? J. Gerontol. A Biol. Sci. Med. Sci. 2017, 73, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Galiè, S.; Canudas, S.; Muralidharan, J.; García-Gavilán, J.; Bulló, M.; Salas-Salvadó, J. Impact of Nutrition on Telomere Health: Systematic Review of Observational Cohort Studies and Randomized Clinical Trials. Adv. Nutr. 2020, 11, 576–601. [Google Scholar] [CrossRef] [PubMed]
- Canudas, S.; Becerra-Tomás, N.; Hernández-Alonso, P.; Galié, S.; Leung, C.; Crous-Bou, M.; De Vivo, I.; Gao, Y.; Gu, Y.; Meinilä, J.; et al. Mediterranean Diet and Telomere Length: A Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 1544–1554. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Epel, E.S.; Belury, M.A.; Andridge, R.; Lin, J.; Glaser, R.; Malarkey, W.B.; Hwang, B.S.; Blackburn, E. Omega-3 Fatty Acids, Oxidative Stress, and Leukocyte Telomere Length: A Randomized Controlled Trial. Brain Behav. Immun. 2013, 28, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Kalstad, A.A.; Tveit, S.; Myhre, P.L.; Laake, K.; Opstad, T.B.; Tveit, A.; Schmidt, E.B.; Solheim, S.; Arnesen, H.; Seljeflot, I. Leukocyte Telomere Length and Serum Polyunsaturated Fatty Acids, Dietary Habits, Cardiovascular Risk Factors and Features of Myocardial Infarction in Elderly Patients. BMC Geriatr. 2019, 19, 376. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A. Consumption of Nuts and Seeds and Telomere Length in 5,582 Men and Women of the National Health and Nutrition Examination Survey (NHANES). J. Nutr. Health Aging 2017, 21, 233–240. [Google Scholar] [CrossRef]
- Freitas-Simoes, T.-M.; Cofán, M.; Blasco, M.A.; Soberón, N.; Foronda, M.; Serra-Mir, M.; Roth, I.; Valls-Pedret, C.; Doménech, M.; Ponferrada-Ariza, E.; et al. Walnut Consumption for Two Years and Leukocyte Telomere Attrition in Mediterranean Elders: Results of a Randomized Controlled Trial. Nutrients 2018, 10, 1907. [Google Scholar] [CrossRef]
- Factor-Litvak, P.; Susser, E. The Importance of Early Life Studies of Telomere Attrition. Paediatr. Perinat. Epidemiol. 2015, 29, 144–145. [Google Scholar] [CrossRef]
- Blackburn, E.H.; Epel, E.S.; Lin, J. Human Telomere Biology: A Contributory and Interactive Factor in Aging, Disease Risks, and Protection. Science 2015, 350, 1193–1198. [Google Scholar] [CrossRef]
- Blackburn, E.H. Telomeres and Telomerase: Their Mechanisms of Action and the Effects of Altering Their Functions. FEBS Lett. 2005, 579, 859–862. [Google Scholar] [CrossRef] [Green Version]
- Aviv, A.; Shay, J.W. Reflections on Telomere Dynamics and Ageing-Related Diseases in Humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160436. [Google Scholar] [CrossRef]
- Valera-Gran, D.; Prieto-Botella, D.; Peral-Gómez, P.; Hurtado-Pomares, M.; Sánchez-Pérez, A.; Navarrete-Muñoz, E.-M. Bibliometric Analysis of Research on Telomere Length in Children: A Review of Scientific Literature. Int. J. Environ. Res. Public Health 2020, 17, 4593. [Google Scholar] [CrossRef] [PubMed]
- Benetos, A.; Kark, J.D.; Susser, E.; Kimura, M.; Sinnreich, R.; Chen, W.; Steenstrup, T.; Christensen, K.; Herbig, U.; von Bornemann Hjelmborg, J.; et al. Tracking and Fixed Ranking of Leukocyte Telomere Length across the Adult Life Course. Aging Cell 2013, 12, 615–621. [Google Scholar] [CrossRef]
- Hjelmborg, J.B.; Dalgård, C.; Möller, S.; Steenstrup, T.; Kimura, M.; Christensen, K.; Kyvik, K.O.; Aviv, A. The Heritability of Leucocyte Telomere Length Dynamics. J. Med. Genet. 2015, 52, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Bianco-Miotto, T.; Yin Phoi, Y.; Jankovic-Karasoulos, T.; Roberts, C.T.; Grieger, J.A. Maternal Diet and Offspring Telomere Length: A Systematic Review. Nutr. Rev. 2021, 79, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Grainger, M.J.; Gray, C.T. Citationchaser: A Tool for Transparent and Efficient Forward and Backward Citation Chasing in Systematic Searching. Res. Synth. Methods 2022, 13, 533–545. [Google Scholar] [CrossRef]
- Booth, A.M.; Wright, K.E.; Outhwaite, H. Centre for Reviews and Dissemination Databases: Value, Content, and Developments. Int. J. Technol. Assess. Health Care 2010, 26, 470–472. [Google Scholar] [CrossRef]
- Meshkani, S.E.; Kooshki, A.; Alahabadi, A.; Najafi, M.L.; Rad, A.; Riahimanesh, F.; Miri, M. Dietary Pattern and Telomere Length in Preschool Children in a Middle-Income Country. Matern. Child Nutr. 2021, 17, e13146. [Google Scholar] [CrossRef]
- Todendi, P.F.; Martínez, J.A.; Reuter, C.P.; Matos, W.L.; Franke, S.I.R.; Razquin, C.; Milagro, F.I.; Kahl, V.F.S.; Fiegenbaum, M.; de MouraValim, A.R. Biochemical Profile, Eating Habits, and Telomere Length among Brazilian Children and Adolescents. Nutrition 2020, 71, 110645. [Google Scholar] [CrossRef]
- Wojcicki, J.M.; Medrano, R.; Lin, J.; Epel, E. Increased Cellular Aging by 3 Years of Age in Latino, Preschool Children Who Consume More Sugar-Sweetened Beverages: A Pilot Study. Child. Obes. 2018, 14, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Baskind, M.; Hawkins, J.; Heyman, M.B.; Wojcicki, J.M. Obesity at Age Six Months Is Associated with Shorter Preschool Leukocyte Telomere Length Independent of Parental Telomere Length. J. Pediatr. 2021, 233, 141–149. [Google Scholar] [CrossRef] [PubMed]
- García-Calzón, S.; Moleres, A.; Martínez-González, M.A.; Martínez, J.A.; Zalba, G.; Marti, A. GENOI members Dietary Total Antioxidant Capacity Is Associated with Leukocyte Telomere Length in a Children and Adolescent Population. Clin. Nutr. 2015, 34, 694–699. [Google Scholar] [CrossRef]
- Nahas, M.V.; Barros, M.V.G.; Francalacci, V. O pentáculo do bem-estar: Base conceitual para avaliação do estilo de vida de indivíduos ou grupos. Rev. Bras. Ativ. Fís. Saúde 2000, 5, 48–59. [Google Scholar]
- Cawthon, R.M. Telomere Measurement by Quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere Length Measurement by a Novel Monochrome Multiplex Quantitative PCR Method. Nucleic Acids Res. 2009, 37, e21. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, L.; Cui, X.; Feng, L.; Zhao, X.; He, S.; Ping, F.; Li, W.; Li, Y. Influence of Diet on Leukocyte Telomere Length, Markers of Inflammation and Oxidative Stress in Individuals with Varied Glucose Tolerance: A Chinese Population Study. Nutr. J. 2016, 15, 39. [Google Scholar] [CrossRef]
- Karimi, B.; Nabizadeh, R.; Yunesian, M.; Mehdipour, P.; Rastkari, N.; Aghaie, A. Foods, Dietary Patterns and Occupational Class and Leukocyte Telomere Length in the Male Population. Am. J. Mens. Health 2018, 12, 479–492. [Google Scholar] [CrossRef]
- Corina, A.; Rangel-Zúñiga, O.A.; Jiménez-Lucena, R.; Alcalá-Díaz, J.F.; Quintana-Navarro, G.; Yubero-Serrano, E.M.; López-Moreno, J.; Delgado-Lista, J.; Tinahones, F.; Ordovás, J.M.; et al. Low Intake of Vitamin E Accelerates Cellular Aging in Patients With Established Cardiovascular Disease: The CORDIOPREV Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 770–777. [Google Scholar] [CrossRef]
- Lian, F.; Wang, J.; Huang, X.; Wu, Y.; Cao, Y.; Tan, X.; Xu, X.; Hong, Y.; Yang, L.; Gao, X. Effect of Vegetable Consumption on the Association between Peripheral Leucocyte Telomere Length and Hypertension: A Case–Control Study. BMJ Open 2015, 5, e009305. [Google Scholar] [CrossRef]
- Bethancourt, H.J.; Kratz, M.; Beresford, S.A.A.; Hayes, M.G.; Kuzawa, C.W.; Duazo, P.L.; Borja, J.B.; Eisenberg, D.T.A. No Association between Blood Telomere Length and Longitudinally Assessed Diet or Adiposity in a Young Adult Filipino Population. Eur. J. Nutr. 2017, 56, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Marcon, F.; Siniscalchi, E.; Crebelli, R.; Saieva, C.; Sera, F.; Fortini, P.; Simonelli, V.; Palli, D. Diet-Related Telomere Shortening and Chromosome Stability. Mutagenesis 2012, 27, 49–57. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Jun, N.-R.; Yoon, D.; Shin, C.; Baik, I. Association between Dietary Patterns in the Remote Past and Telomere Length. Eur. J. Clin. Nutr. 2015, 69, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Woo, J.; Suen, E.; Leung, J.; Tang, N. Chinese Tea Consumption Is Associated with Longer Telomere Length in Elderly Chinese Men. Br. J. Nutr. 2010, 103, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Crous-Bou, M.; Fung, T.T.; Prescott, J.; Julin, B.; Du, M.; Sun, Q.; Rexrode, K.M.; Hu, F.B.; Vivo, I.D. Mediterranean Diet and Telomere Length in Nurses’ Health Study: Population Based Cohort Study. BMJ 2014, 349, g6674. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Honig, L.S.; Schupf, N.; Lee, J.H.; Luchsinger, J.A.; Stern, Y.; Scarmeas, N. Mediterranean Diet and Leukocyte Telomere Length in a Multi-Ethnic Elderly Population. Age 2015, 37, 24. [Google Scholar] [CrossRef]
- Kasielski, M.; Eusebio, M.-O.; Pietruczuk, M.; Nowak, D. The Relationship between Peripheral Blood Mononuclear Cells Telomere Length and Diet—Unexpected Effect of Red Meat. Nutr. J. 2016, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- De Meyer, T.; Bekaert, S.; De Buyzere, M.L.; De Bacquer, D.D.; Langlois, M.R.; Shivappa, N.; Hébert, J.R.; Gillebert, T.C.; Rietzschel, E.R.; Huybrechts, I. Leukocyte Telomere Length and Diet in the Apparently Healthy, Middle-Aged Asklepios Population. Sci. Rep. 2018, 8, 6540. [Google Scholar] [CrossRef]
- Jurek, J.; Owczarek, M.; Godos, J.; La Vignera, S.; Condorelli, R.A.; Marventano, S.; Tieri, M.; Ghelfi, F.; Titta, L.; Lafranconi, A.; et al. Fish and Human Health: An Umbrella Review of Observational Studies. Int. J. Food Sci. Nutr. 2022, 1–10. [Google Scholar] [CrossRef]
- Jayedi, A.; Shab-Bidar, S. Fish Consumption and the Risk of Chronic Disease: An Umbrella Review of Meta-Analyses of Prospective Cohort Studies. Adv. Nutr. 2020, 11, 1123–1133. [Google Scholar] [CrossRef]
- Da Silva, A.; Silveira, B.K.S.; Hermsdorff, H.H.M.; da Silva, W.; Bressan, J. Effect of Omega-3 Fatty Acid Supplementation on Telomere Length and Telomerase Activity: A Systematic Review of Clinical Trials. Prostaglandins Leukot. Essent. Fat. Acids 2022, 181, 102451. [Google Scholar] [CrossRef] [PubMed]
- Fujii, R.; Yamada, H.; Munetsuna, E.; Yamazaki, M.; Mizuno, G.; Ando, Y.; Maeda, K.; Tsuboi, Y.; Ohashi, K.; Ishikawa, H.; et al. Dietary Fish and ω-3 Polyunsaturated Fatty Acids Are Associated with Leukocyte ABCA1 DNA Methylation Levels. Nutrition 2021, 81, 110951. [Google Scholar] [CrossRef] [PubMed]
- Pawełczyk, T.; Grancow-Grabka, M.; Trafalska, E.; Szemraj, J.; Żurner, N.; Pawełczyk, A. Telomerase Level Increase Is Related to N-3 Polyunsaturated Fatty Acid Efficacy in First Episode Schizophrenia: Secondary Outcome Analysis of the OFFER Randomized Clinical Trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 83, 142–148. [Google Scholar] [CrossRef]
- Barden, A.; O’Callaghan, N.; Burke, V.; Mas, E.; Beilin, L.J.; Fenech, M.; Irish, A.B.; Watts, G.F.; Puddey, I.B.; Huang, R.-C.; et al. N-3 Fatty Acid Supplementation and Leukocyte Telomere Length in Patients with Chronic Kidney Disease. Nutrients 2016, 8, 175. [Google Scholar] [CrossRef]
- Farzaneh-Far, R.; Lin, J.; Epel, E.S.; Harris, W.S.; Blackburn, E.H.; Whooley, M.A. Association of Marine Omega-3 Fatty Acid Levels With Telomeric Aging in Patients With Coronary Heart Disease. JAMA 2010, 303, 250. [Google Scholar] [CrossRef]
- Tiainen, A.-M.; Männistö, S.; Blomstedt, P.A.; Moltchanova, E.; Perälä, M.-M.; Kaartinen, N.E.; Kajantie, E.; Kananen, L.; Hovatta, I.; Eriksson, J.G. Leukocyte Telomere Length and Its Relation to Food and Nutrient Intake in an Elderly Population. Eur. J. Clin. Nutr. 2012, 66, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A. Fruit and Vegetable Intake and Telomere Length in a Random Sample of 5448 U.S. Adults. Nutrients 2021, 13, 1415. [Google Scholar] [CrossRef]
- Cassidy, A.; De Vivo, I.; Liu, Y.; Han, J.; Prescott, J.; Hunter, D.J.; Rimm, E.B. Associations between Diet, Lifestyle Factors, and Telomere Length in Women. Am. J. Clin. Nutr. 2010, 91, 1273–1280. [Google Scholar] [CrossRef]
- Mirabello, L.; Huang, W.-Y.; Wong, J.Y.Y.; Chatterjee, N.; Reding, D.; Crawford, E.D.; De Vivo, I.; Hayes, R.B.; Savage, S.A. The Association between Leukocyte Telomere Length and Cigarette Smoking, Dietary and Physical Variables, and Risk of Prostate Cancer. Aging Cell 2009, 8, 405–413. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Diez-Roux, A.; Jenny, N.S.; Fitzpatrick, A.L.; Jacobs, D.R. Dietary Patterns, Food Groups, and Telomere Length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2008, 88, 1405–1412. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, Y.; Tai, J.H.-M. Grudges and Gratitude: The Social-Affective Impacts of Peer Assessment. Assess. Eval. High. Educ. 2020, 45, 345–358. [Google Scholar] [CrossRef]
- Canudas, S.; Hernández-Alonso, P.; Galié, S.; Muralidharan, J.; Morell-Azanza, L.; Zalba, G.; García-Gavilán, J.; Martí, A.; Salas-Salvadó, J.; Bulló, M. Pistachio Consumption Modulates DNA Oxidation and Genes Related to Telomere Maintenance: A Crossover Randomized Clinical Trial. Am. J. Clin. Nutr. 2019, 109, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- García-Calzón, S.; Martínez-González, M.A.; Razquin, C.; Arós, F.; Lapetra, J.; Martínez, J.A.; Zalba, G.; Marti, A. Mediterranean Diet and Telomere Length in High Cardiovascular Risk Subjects from the PREDIMED-NAVARRA Study. Clin. Nutr. 2016, 35, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- García-Calzón, S.; Martínez-González, M.A.; Razquin, C.; Corella, D.; Salas-Salvadó, J.; Martínez, J.A.; Zalba, G.; Marti, A. Pro12Ala Polymorphism of the PPARγ2 Gene Interacts with a Mediterranean Diet to Prevent Telomere Shortening in the PREDIMED-NAVARRA Randomized Trial. Circ. Cardiovasc. Genet. 2015, 8, 91–99. [Google Scholar] [CrossRef]
- Boccardi, V.; Esposito, A.; Rizzo, M.R.; Marfella, R.; Barbieri, M.; Paolisso, G. Mediterranean Diet, Telomere Maintenance and Health Status among Elderly. PLoS ONE 2013, 8, e62781. [Google Scholar] [CrossRef]
- Fernández del Río, L.; Gutiérrez-Casado, E.; Varela-López, A.; Villalba, J.M. Olive Oil and the Hallmarks of Aging. Molecules 2016, 21, 163. [Google Scholar] [CrossRef]
- García-Calzón, S.; Zalba, G.; Ruiz-Canela, M.; Shivappa, N.; Hébert, J.R.; Martínez, J.A.; Fitó, M.; Gómez-Gracia, E.; Martínez-González, M.A.; Marti, A. Dietary Inflammatory Index and Telomere Length in Subjects with a High Cardiovascular Disease Risk from the PREDIMED-NAVARRA Study: Cross-Sectional and Longitudinal Analyses over 5 y. Am. J. Clin. Nutr. 2015, 102, 897–904. [Google Scholar] [CrossRef]
- González-Becerra, K.; Ramos-Lopez, O.; Barrón-Cabrera, E.; Riezu-Boj, J.I.; Milagro, F.I.; Martínez-López, E.; Martínez, J.A. Fatty Acids, Epigenetic Mechanisms and Chronic Diseases: A Systematic Review. Lipids Health Dis. 2019, 18, 178. [Google Scholar] [CrossRef]
- Song, Y.; You, N.-C.Y.; Song, Y.; Kang, M.K.; Hou, L.; Wallace, R.; Eaton, C.B.; Tinker, L.F.; Liu, S. Intake of Small-to-Medium-Chain Saturated Fatty Acids Is Associated with Peripheral Leukocyte Telomere Length in Postmenopausal Women. J. Nutr. 2013, 143, 907–914. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International Tables of Glycemic Index and Glycemic Load Values 2021: A Systematic Review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef]
- Botero, D.; Ebbeling, C.B.; Blumberg, J.B.; Ribaya-Mercado, J.D.; Creager, M.A.; Swain, J.F.; Feldman, H.A.; Ludwig, D.S. Acute Effects of Dietary Glycemic Index on Antioxidant Capacity in a Nutrient-Controlled Feeding Study. Obesity 2009, 17, 1664–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuhouser, M.L.; Schwarz, Y.; Wang, C.; Breymeyer, K.; Coronado, G.; Wang, C.-Y.; Noar, K.; Song, X.; Lampe, J.W. A Low-Glycemic Load Diet Reduces Serum C-Reactive Protein and Modestly Increases Adiponectin in Overweight and Obese Adults. J. Nutr. 2012, 142, 369–374. [Google Scholar] [CrossRef] [PubMed]
Aspects of Risk of Bias in Cross-Sectional Studies | |||||||||
---|---|---|---|---|---|---|---|---|---|
Study | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | Overall Risk of Bias |
Meshkani et al., 2021 [29] | yes | yes | unclear | NA | yes | yes | yes | yes | 6/8 |
Basking et al., 2021 [32] | yes | yes | unclear | NA | yes | yes | yes | yes | 6/8 |
Todendi et al., 2020 [30] | yes | yes | unclear | NA | yes | yes | yes | unclear | 5/8 |
Wojcicki, et al., 2018 [31] | yes | yes | unclear | NA | yes | yes | yes | yes | 6/8 |
García-Calzón et al., 2015 [33] | yes | yes | unclear | NA | yes | yes | yes | yes | 6/8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valera-Gran, D.; Prieto-Botella, D.; Hurtado-Pomares, M.; Baladia, E.; Petermann-Rocha, F.; Sánchez-Pérez, A.; Navarrete-Muñoz, E.-M. The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review. Nutrients 2022, 14, 3885. https://doi.org/10.3390/nu14193885
Valera-Gran D, Prieto-Botella D, Hurtado-Pomares M, Baladia E, Petermann-Rocha F, Sánchez-Pérez A, Navarrete-Muñoz E-M. The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review. Nutrients. 2022; 14(19):3885. https://doi.org/10.3390/nu14193885
Chicago/Turabian StyleValera-Gran, Desirée, Daniel Prieto-Botella, Miriam Hurtado-Pomares, Eduard Baladia, Fanny Petermann-Rocha, Alicia Sánchez-Pérez, and Eva-María Navarrete-Muñoz. 2022. "The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review" Nutrients 14, no. 19: 3885. https://doi.org/10.3390/nu14193885
APA StyleValera-Gran, D., Prieto-Botella, D., Hurtado-Pomares, M., Baladia, E., Petermann-Rocha, F., Sánchez-Pérez, A., & Navarrete-Muñoz, E. -M. (2022). The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review. Nutrients, 14(19), 3885. https://doi.org/10.3390/nu14193885