Lifestyle-Related Risk Factors for the Incidence and Progression of Chronic Kidney Disease in the Healthy Young and Middle-Aged Population
Abstract
:1. Introduction
2. Obesity/Overweight
3. Hypertension
4. Insulin Resistance/Diabetes Mellitus
5. Dyslipidemia
6. Hyperuricemia
7. Diet and Nutrients
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, A.J.; Foley, R.N.; Gilbertson, D.T.; Chen, S.C. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int. Suppl. 2015, 5, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.M.; Torres, V.E. Polycystic kidney disease. Nat. Rev. Dis. Primers 2018, 4, 50. [Google Scholar] [CrossRef]
- Perazella, M.A.; Dreicer, R.; Rosner, M.H. Renal cell carcinoma for the nephrologist. Kidney Int. 2018, 94, 471–483. [Google Scholar] [CrossRef]
- Caravaca-Fontan, F.; Fernandez-Juarez, G.; Praga, M. Acute kidney injury in interstitial nephritis. Curr. Opin. Crit. Care 2019, 25, 558–564. [Google Scholar] [CrossRef]
- Moledina, D.G.; Perazella, M.A. Drug-Induced Acute Interstitial Nephritis. Clin. J. Am. Soc. Nephrol. 2017, 12, 2046–2049. [Google Scholar] [CrossRef]
- Yun, H.R.; Kim, H.; Park, J.T.; Chang, T.I.; Yoo, T.H.; Kang, S.W.; Choi, K.H.; Sung, S.; Kim, S.W.; Lee, J.; et al. Obesity, Metabolic Abnormality, and Progression of CKD. Am. J. Kidney Dis. 2018, 72, 400–410. [Google Scholar] [CrossRef]
- Ku, E.; Lee, B.J.; Wei, J.; Weir, M.R. Hypertension in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 120–131. [Google Scholar] [CrossRef]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020, 43, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Sehgal, A.R.; Kashyap, S.R.; Srinivas, T.R.; Kirwan, J.P.; Navaneethan, S.D. Metabolic syndrome and kidney disease: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2011, 6, 2364–2373. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, T.; Kiyohara, Y.; Kubo, M.; Yonemoto, K.; Tanizaki, Y.; Doi, Y.; Hirakata, H.; Iida, M. Metabolic syndrome and CKD in a general Japanese population: The Hisayama Study. Am. J. Kidney Dis. 2006, 48, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef]
- Kuma, A.; Uchino, B.; Ochiai, Y.; Kawashima, M.; Enta, K.; Tamura, M.; Otsuji, Y.; Kato, A. Relationship between abdominal adiposity and incident chronic kidney disease in young- to middle-aged working men: A retrospective cohort study. Clin. Exp. Nephrol. 2019, 23, 76–84. [Google Scholar] [CrossRef]
- Dai, D.; Chang, Y.; Chen, Y.; Chen, S.; Yu, S.; Guo, X.; Sun, Y. Visceral Adiposity Index and Lipid Accumulation Product Index: Two Alternate Body Indices to Identify Chronic Kidney Disease among the Rural Population in Northeast China. Int. J. Environ. Res. Public Health. 2016, 13, 1231. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; McAdams-DeMarco, M.; Bennett, P.N.; Wilund, K.; Global Renal Exercise Network. Advances in exercise therapy in predialysis chronic kidney disease, hemodialysis, peritoneal dialysis, and kidney transplantation. Curr. Opin. Nephrol. Hypertens. 2020, 29, 471–479. [Google Scholar] [CrossRef]
- Greenwood, S.A.; Castle, E.; Lindup, H.; Mayes, J.; Waite, I.; Grant, D.; Mangahis, E.; Crabb, O.; Shevket, K.; Macdougall, I.C.; et al. Mortality and morbidity following exercise-based renal rehabilitation in patients with chronic kidney disease: The effect of programme completion and change in exercise capacity. Nephrol. Dial. Transplant. 2019, 34, 618–625. [Google Scholar] [CrossRef]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C.; American College of Sports Medicine; American Heart Association. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1094–1105. [Google Scholar] [CrossRef]
- O’Seaghdha, C.M.; Hwang, S.J.; Upadhyay, A.; Meigs, J.B.; Fox, C.S. Predictors of incident albuminuria in the Framingham Offspring cohort. Am. J. Kidney Dis. 2010, 56, 852–860. [Google Scholar] [CrossRef]
- Muntner, P.; Coresh, J.; Smith, J.C.; Eckfeldt, J.; Klag, M.J. Plasma lipids and risk of developing renal dysfunction: The atherosclerosis risk in communities study. Kidney Int. 2000, 58, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.S.; Larson, M.G.; Leip, E.P.; Culleton, B.; Wilson, P.W.; Levy, D. Predictors of new-onset kidney disease in a community-based population. JAMA 2004, 291, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Wang, C.; Zhang, X.; Zhao, X.; Wang, Y.; Li, C.; Li, M.; Wang, S.; Yang, W.; Ma, Z.; et al. Triglyceride levels are closely associated with mild declines in estimated glomerular filtration rates in middle-aged and elderly Chinese with normal serum lipid levels. PLoS ONE 2014, 9, e106778. [Google Scholar] [CrossRef] [PubMed]
- Kuma, A.; Uchino, B.; Ochiai, Y.; Kawashima, M.; Enta, K.; Tamura, M.; Otsuji, Y.; Kato, A. Impact of low-density lipoprotein cholesterol on decline in estimated glomerular filtration rate in apparently healthy young to middle-aged working men. Clin. Exp. Nephrol. 2018, 22, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Chan, M.R.; Dall, A.T.; Fletcher, K.E.; Lu, N.; Trivedi, H. Outcomes in patients with chronic kidney disease referred late to nephrologists: A meta-analysis. Am. J. Med. 2007, 120, 1063–1070. [Google Scholar] [CrossRef]
- Avorn, J.; Bohn, R.L.; Levy, E.; Levin, R.; Owen, W.F., Jr.; Winkelmayer, W.C.; Glynn, R.J. Nephrologist care and mortality in patients with chronic renal insufficiency. Arch. Intern. Med. 2002, 162, 2002–2006. [Google Scholar] [CrossRef]
- Elsayed, E.F.; Sarnak, M.J.; Tighiouart, H.; Griffith, J.L.; Kurth, T.; Salem, D.N.; Levey, A.S.; Weiner, D.E. Waist-to-hip ratio, body mass index, and subsequent kidney disease and death. Am. J. Kidney Dis. 2008, 52, 29–38. [Google Scholar] [CrossRef]
- Chang, Y.; Ryu, S.; Choi, Y.; Zhang, Y.; Cho, J.; Kwon, M.J.; Hyun, Y.Y.; Lee, K.B.; Kim, H.; Jung, H.S.; et al. Metabolically Healthy Obesity and Development of Chronic Kidney Disease: A Cohort Study. Ann. Intern. Med. 2016, 164, 305–312. [Google Scholar] [CrossRef]
- Song, Y.M.; Sung, J.; Lee, K. Longitudinal relationships of metabolic syndrome and obesity with kidney function: Healthy Twin Study. Clin. Exp. Nephrol. 2015, 19, 887–894. [Google Scholar] [CrossRef]
- Chang, A.R.; Grams, M.E.; Navaneethan, S.D. Bariatric Surgery and Kidney-Related Outcomes. Kidney Int. Rep. 2017, 2, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Vivante, A.; Golan, E.; Tzur, D.; Leiba, A.; Tirosh, A.; Skorecki, K.; Calderon-Margalit, R. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch. Intern. Med. 2012, 172, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.L.; Molnar, M.Z.; Naseer, A.; Mikkelsen, M.K.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of age and BMI with kidney function and mortality: A cohort study. Lancet Diabetes Endocrinol. 2015, 3, 704–714. [Google Scholar] [CrossRef]
- Chang, A.R.; Grams, M.E.; Ballew, S.H.; Bilo, H.; Correa, A.; Evans, M.; Gutierrez, O.M.; Hosseinpanah, F.; Iseki, K.; Kenealy, T.; et al. Adiposity and risk of decline in glomerular filtration rate: Meta-analysis of individual participant data in a global consortium. BMJ 2019, 364, k5301. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Tanaka, M.; Okada, H.; Senmaru, T.; Hamaguchi, M.; Asano, M.; Yamazaki, M.; Oda, Y.; Hasegawa, G.; Toda, H.; et al. Metabolically healthy obesity and risk of incident CKD. Clin. J. Am. Soc. Nephrol. 2015, 10, 578–583. [Google Scholar] [CrossRef]
- Sarathy, H.; Henriquez, G.; Abramowitz, M.K.; Kramer, H.; Rosas, S.E.; Johns, T.; Kumar, J.; Skversky, A.; Kaskel, F.; Melamed, M.L. Abdominal Obesity, Race and Chronic Kidney Disease in Young Adults: Results from NHANES 1999-2010. PLoS ONE 2016, 11, e0153588. [Google Scholar] [CrossRef]
- Orlov, N.V.; Makrogiannis, S.; Ferrucci, L.; Goldberg, I.G. Differential Aging Signals in Abdominal CT Scans. Acad. Radiol. 2017, 24, 1535–1543. [Google Scholar] [CrossRef]
- Noori, N.; Hosseinpanah, F.; Nasiri, A.A.; Azizi, F. Comparison of overall obesity and abdominal adiposity in predicting chronic kidney disease incidence among adults. J. Ren. Nutr. 2009, 19, 228–237. [Google Scholar] [CrossRef]
- Madero, M.; Katz, R.; Murphy, R.; Newman, A.; Patel, K.; Ix, J.; Peralta, C.; Satterfield, S.; Fried, L.; Shlipak, M.; et al. Comparison between Different Measures of Body Fat with Kidney Function Decline and Incident CKD. Clin. J. Am. Soc. Nephrol. 2017, 12, 893–903. [Google Scholar] [CrossRef]
- Wajchenberg, B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr. Rev. 2000, 21, 697–738. [Google Scholar] [CrossRef]
- Pou, K.M.; Massaro, J.M.; Hoffmann, U.; Vasan, R.S.; Maurovich-Horvat, P.; Larson, M.G.; Keaney, J.F., Jr.; Meigs, J.B.; Lipinska, I.; Kathiresan, S.; et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: The Framingham Heart Study. Circulation 2007, 116, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Krishnaswami, S.; Harris, T.B.; Katsiaras, A.; Kritchevsky, S.B.; Simonsick, E.M.; Nevitt, M.; Holvoet, P.; Newman, A.B. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch. Intern. Med. 2005, 165, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, M.; Kuwabara, R.; Niwa, K.; Hisatome, I.; Smits, G.; Roncal-Jimenez, C.A.; MacLean, P.S.; Yracheta, J.M.; Ohno, M.; Lanaspa, M.A.; et al. Different Risk for Hypertension, Diabetes, Dyslipidemia, and Hyperuricemia According to Level of Body Mass Index in Japanese and American Subjects. Nutrients 2018, 10, 1011. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Siega-Riz, A.M.; Haines, P.S.; Jahns, L. Where’s the fat? Trends in U.S. diets 1965–1996. Prev. Med. 2001, 32, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Tozawa, M.; Iseki, K.; Iseki, C.; Kinjo, K.; Ikemiya, Y.; Takishita, S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension 2003, 41, 1341–1345. [Google Scholar] [CrossRef]
- Fliser, D. Perspectives in renal disease progression: The endothelium as a treatment target in chronic kidney disease. J. Nephrol. 2010, 23, 369–376. [Google Scholar]
- Johnson, R.J.; Nangaku, M. Endothelial Dysfunction: The Secret Agent Driving Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 3–5. [Google Scholar] [CrossRef]
- Schefold, J.C.; Gerasimos, F.; Hasenfuss, G.; Anker, S.D.; von Haehling, S. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat. Rev. Nephrol. 2016, 12, 610–623. [Google Scholar] [CrossRef]
- Schechter, M.; Cohen, C.M.; Yanuv, I.; Rozenberg, A.; Chodick, G.; Bodegård, J.; Leiter, L.A.; Verma, S.; Heerspink, H.J.L.; Karasik, A.; et al. Epidemiology of the diabetes-cardio-renal spectrum: A cross-sectional report of 1.4 million adults. Cardiovasc. Diabetol. 2022, 21, 104. [Google Scholar] [CrossRef]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012; pp. 1–46.
- Bray, G.A.; Vollmer, W.M.; Sacks, F.M.; Obarzanek, E.; Svetkey, L.P.; Appel, L.J.; Group, D.C.R. A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: Results of the DASH-Sodium Trial. Am. J. Cardiol. 2004, 94, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Kawarazaki, W.; Fujita, T. Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat. Rev. Nephrol. 2021, 17, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Dyer, A.; Stamler, R. The INTERSALT study: Results for 24 hour sodium and potassium, by age and sex. INTERSALT Co-operative Research Group. J. Hum. Hypertens. 1989, 3, 323–330. [Google Scholar] [PubMed]
- Zipf, G.; Chiappa, M.; Porter, K.S.; Ostchega, Y.; Lewis, B.G.; Dostal, J. National health and nutrition examination survey: Plan and operations, 1999–2010. Vital Health Stat. 1. 2013, 56, 1–37. [Google Scholar]
- Zhang, Y.; Moran, A.E. Trends in the Prevalence, Awareness, Treatment, and Control of Hypertension Among Young Adults in the United States, 1999 to 2014. Hypertension 2017, 70, 736–742. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Ferrannini, E.; Zimmet, P.; Alberti, G. International Textbook of Diabetes Mellitus, Two Volume Set, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 29–54. [Google Scholar]
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef]
- Li, Y.; Teng, D.; Shi, X.; Qin, G.; Qin, Y.; Quan, H.; Shi, B.; Sun, H.; Ba, J.; Chen, B.; et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: National cross sectional study. BMJ 2020, 369, m997. [Google Scholar] [CrossRef]
- Dabelea, D.; Mayer-Davis, E.J.; Saydah, S.; Imperatore, G.; Linder, B.; Divers, J.; Bell, R.; Badaru, A.; Talton, J.W.; Crume, T.; et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 2014, 311, 1778–1786. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 6th ed.; International Diabetes Federation: Brussels, Belgium, 2013. [Google Scholar]
- Su, S.C.; Pei, D.; Hsieh, C.H.; Hsiao, F.C.; Wu, C.Z.; Hung, Y.J. Circulating pro-inflammatory cytokines and adiponectin in young men with type 2 diabetes. Acta Diabetol. 2011, 48, 113–119. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 2011, 121, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H.; Okudaira, M.; Otani, T.; Sato, A.; Miura, J.; Takaike, H.; Yamada, H.; Muto, K.; Uchigata, Y.; Ohashi, Y.; et al. Higher incidence of diabetic nephropathy in type 2 than in type 1 diabetes in early-onset diabetes in Japan. Kidney Int. 2000, 58, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Dart, A.B.; Sellers, E.A.; Martens, P.J.; Rigatto, C.; Brownell, M.D.; Dean, H.J. High burden of kidney disease in youth-onset type 2 diabetes. Diabetes Care 2012, 35, 1265–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, N.; Finucane, F.M.; Hatunic, M.; Gilman, M.; Murphy, M.; Gasparro, D.; Mari, A.; Gastaldelli, A.; Nolan, J.J. Early-onset type 2 diabetes in obese white subjects is characterised by a marked defect in beta cell insulin secretion, severe insulin resistance and a lack of response to aerobic exercise training. Diabetologia 2007, 50, 1500–1508. [Google Scholar] [CrossRef]
- Kautiainen, S.; Koivusilta, L.; Lintonen, T.; Virtanen, S.M.; Rimpela, A. Use of information and communication technology and prevalence of overweight and obesity among adolescents. Int. J. Obes. 2005, 29, 925–933. [Google Scholar] [CrossRef]
- Peng, S.; Shen, F.; Wen, A.; Wang, L.; Fan, Y.; Liu, X.; Liu, H. Detecting lifestyle risk factors for chronic kidney disease with comorbidities: Association rule mining analysis of web-based survey data. J. Med. Internet Res. 2019, 21, e14204. [Google Scholar] [CrossRef]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef]
- Premaratne, E.; Verma, S.; Ekinci, E.I.; Theverkalam, G.; Jerums, G.; MacIsaac, R.J. The impact of hyperfiltration on the diabetic kidney. Diabetes Metab. 2015, 41, 5–17. [Google Scholar] [CrossRef]
- Gembillo, G.; Ingrasciotta, Y.; Crisafulli, S.; Luxi, N.; Siligato, R.; Santoro, D.; Trifiro, G. Kidney Disease in Diabetic Patients: From Pathophysiology to Pharmacological Aspects with a Focus on Therapeutic Inertia. Int. J. Mol. Sci. 2021, 22, 4824. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.U.; Dorman, N.M.; Christiansen, S.L.; Hoorn, E.J.; Ingelfinger, J.R.; Inker, L.A.; Levin, A.; Mehrotra, R.; Palevsky, P.M.; et al. Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2020, 97, 1117–1129. [Google Scholar] [CrossRef]
- Delanaye, P.; Glassock, R.J.; De Broe, M.E. Epidemiology of chronic kidney disease: Think (at least) twice! Clin. Kidney J. 2017, 10, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Brunskill, N.J. Albumin signals the coming of age of proteinuric nephropathy. J. Am. Soc. Nephrol. 2004, 15, 504–505. [Google Scholar] [CrossRef]
- Magil, A.B. Interstitial foam cells and oxidized lipoprotein in human glomerular disease. Mod. Pathol. 1999, 12, 33–40. [Google Scholar]
- Moorhead, J.F.; Wheeler, D.C.; Varghese, Z. Glomerular structures and lipids in progressive renal disease. Am. J. Med. 1989, 87, 12N–20N. [Google Scholar] [PubMed]
- Wheeler, D.C.; Chana, R.S. Interactions between lipoproteins, glomerular cells and matrix. Miner. Electrolyte Metab. 1993, 19, 149–164. [Google Scholar] [PubMed]
- Bussolati, B.; Deregibus, M.C.; Fonsato, V.; Doublier, S.; Spatola, T.; Procida, S.; Di Carlo, F.; Camussi, G. Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT-signaling pathway. J. Am. Soc. Nephrol. 2005, 16, 1936–1947. [Google Scholar] [CrossRef]
- Nistala, R.; Whaley-Connell, A.; Sowers, J.R. Redox control of renal function and hypertension. Antioxid. Redox. Signal. 2008, 10, 2047–2089. [Google Scholar] [CrossRef]
- Tsuruya, K.; Yoshida, H.; Nagata, M.; Kitazono, T.; Iseki, K.; Iseki, C.; Fujimoto, S.; Konta, T.; Moriyama, T.; Yamagata, K.; et al. Impact of the Triglycerides to High-Density Lipoprotein Cholesterol Ratio on the Incidence and Progression of CKD: A Longitudinal Study in a Large Japanese Population. Am. J. Kidney Dis. 2015, 66, 972–983. [Google Scholar] [CrossRef]
- Yamagata, K.; Ishida, K.; Sairenchi, T.; Takahashi, H.; Ohba, S.; Shiigai, T.; Narita, M.; Koyama, A. Risk factors for chronic kidney disease in a community-based population: A 10-year follow-up study. Kidney Int. 2007, 71, 159–166. [Google Scholar] [CrossRef]
- Chapter 2: Pharmacological cholesterol-lowering treatment in adults. Kidney Int. Suppl. 2013, 3, 271–279. [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Perk, J.; De Backer, G.; Gohlke, H.; Graham, I.; Reiner, Z.; Verschuren, M.; Albus, C.; Benlian, P.; Boysen, G.; Cifkova, R.; et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur. Heart J. 2012, 33, 1635–1701. [Google Scholar] [PubMed]
- Woodward, M.; Brindle, P.; Tunstall-Pedoe, H. Adding social deprivation and family history to cardiovascular risk assessment: The ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2007, 93, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Assmann, G.; Cullen, P.; Schulte, H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002, 105, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Morita, Y.; Homma, Y.; Igarashi, M.; Miyano, R.; Yamaguchi, H.; Matsuda, M.; Tanigaki, T.; Shiina, Y.; Homma, K. Decrease in glomerular filtration rate by plasma low-density lipoprotein cholesterol in subjects with normal kidney function assessed by urinalysis and plasma creatinine. Atherosclerosis 2010, 210, 602–606. [Google Scholar] [CrossRef]
- Vidt, D.G.; Ridker, P.M.; Monyak, J.T.; Schreiber, M.J.; Cressman, M.D. Longitudinal assessment of estimated glomerular filtration rate in apparently healthy adults: A post hoc analysis from the JUPITER study (justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin). Clin. Ther. 2011, 33, 717–725. [Google Scholar] [CrossRef]
- Rahman, M.; Yang, W.; Akkina, S.; Alper, A.; Anderson, A.H.; Appel, L.J.; He, J.; Raj, D.S.; Schelling, J.; Strauss, L.; et al. Relation of serum lipids and lipoproteins with progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2014, 9, 1190–1198. [Google Scholar] [CrossRef]
- Xue, N.; Fang, Y.; Ding, X.; Wang, L.; Xu, L.; Jiang, X.; Zhang, X. Serum Triglycerides Are Related to Chronic Kidney Disease (CKD) Stage 2 in Young and Middle-Aged Chinese Individuals During Routine Health Examination. Med. Sci. Monit. 2019, 25, 2445–2451. [Google Scholar] [CrossRef]
- Genest, J., Jr.; Marcil, M.; Denis, M.; Yu, L. High density lipoproteins in health and in disease. J. Investig. Med. 1999, 47, 31–42. [Google Scholar]
- Schaeffner, E.S.; Kurth, T.; Curhan, G.C.; Glynn, R.J.; Rexrode, K.M.; Baigent, C.; Buring, J.E.; Gaziano, J.M. Cholesterol and the risk of renal dysfunction in apparently healthy men. J. Am. Soc. Nephrol. 2003, 14, 2084–2091. [Google Scholar] [CrossRef]
- Gasevic, D.; Frohlich, J.; Mancini, G.B.; Lear, S.A. The association between triglyceride to high-density-lipoprotein cholesterol ratio and insulin resistance in a multiethnic primary prevention cohort. Metabolism 2012, 61, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.R.; Carbajal, H.A.; Espeche, W.G.; Leiva Sisnieguez, C.E.; Balbin, E.; Dulbecco, C.A.; Aizpurua, M.; Marillet, A.G.; Reaven, G.M. Relation among the plasma triglyceride/high-density lipoprotein cholesterol concentration ratio, insulin resistance, and associated cardio-metabolic risk factors in men and women. Am. J. Cardiol. 2012, 109, 1749–1753. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.; Guo, X.; Chen, Y.; Chen, S.; Tian, Y.; Sun, Y. Contribution of non-traditional lipid profiles to reduced glomerular filtration rate in H-type hypertension population of rural China. Ann. Med. 2018, 50, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Packard, C.J.; Ford, I.; Robertson, M.; Shepherd, J.; Blauw, G.J.; Murphy, M.B.; Bollen, E.L.; Buckley, B.M.; Cobbe, S.M.; Gaw, A.; et al. Plasma lipoproteins and apolipoproteins as predictors of cardiovascular risk and treatment benefit in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). Circulation 2005, 112, 3058–3065. [Google Scholar] [CrossRef]
- Fujihara, K.; Suzuki, H.; Sato, A.; Kodama, S.; Heianza, Y.; Saito, K.; Iwasaki, H.; Kobayashi, K.; Yatoh, S.; Takahashi, A.; et al. Carotid artery plaque and LDL-to-HDL cholesterol ratio predict atherosclerotic status in coronary arteries in asymptomatic patients with type 2 diabetes mellitus. J. Atheroscler. Thromb. 2013, 20, 452–464. [Google Scholar] [CrossRef] [Green Version]
- Ferri, C. The problem of cardio-renal diseases in patients with gout. Curr. Med. Res. Opin. 2017, 33, 9–13. [Google Scholar] [CrossRef]
- Ramirez, M.E.G.; Bargman, J.M. Treatment of asymptomatic hyperuricemia in chronic kidney disease: A new target in an old enemy—A review. J. Adv. Res. 2017, 8, 551–554. [Google Scholar] [CrossRef]
- Bardin, T.; Richette, P. Definition of hyperuricemia and gouty conditions. Curr. Opin. Rheumatol. 2014, 26, 186–191. [Google Scholar] [CrossRef]
- Petreski, T.; Ekart, R.; Hojs, R.; Bevc, S. Hyperuricemia, the heart, and the kidneys—to treat or not to treat? Ren. Fail. 2020, 42, 978–986. [Google Scholar] [CrossRef]
- Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of Hyperuricemia and Urate-Lowering Treatments. Front. Med. 2018, 5, 160. [Google Scholar] [CrossRef]
- Obermayr, R.P.; Temml, C.; Gutjahr, G.; Knechtelsdorfer, M.; Oberbauer, R.; Klauser-Braun, R. Elevated uric acid increases the risk for kidney disease. J. Am. Soc. Nephrol. 2008, 19, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.E.; Tighiouart, H.; Elsayed, E.F.; Griffith, J.L.; Salem, D.N.; Levey, A.S. Uric acid and incident kidney disease in the community. J. Am. Soc. Nephrol. 2008, 19, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Kuma, A.; Mafune, K.; Uchino, B.; Ochiai, Y.; Enta, K.; Kato, A. Alteration of normal level of serum urate may contribute to decrease in estimated glomerular filtration rate decline in healthy Japanese men. Ren. Fail. 2021, 43, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Kuma, A.; Mafune, K.; Uchino, B.; Ochiai, Y.; Enta, K.; Kato, A. Development of chronic kidney disease influenced by serum urate and body mass index based on young-to-middle-aged Japanese men: A propensity score-matched cohort study. BMJ Open 2022, 12, e049540. [Google Scholar] [CrossRef]
- Kuwabara, M.; Niwa, K.; Hisatome, I.; Nakagawa, T.; Roncal-Jimenez, C.A.; Andres-Hernando, A.; Bjornstad, P.; Jensen, T.; Sato, Y.; Milagres, T.; et al. Asymptomatic Hyperuricemia Without Comorbidities Predicts Cardiometabolic Diseases: Five-Year Japanese Cohort Study. Hypertension 2017, 69, 1036–1044. [Google Scholar] [CrossRef]
- Goicoechea, M.; Garcia de Vinuesa, S.; Verdalles, U.; Verde, E.; Macias, N.; Santos, A.; Perez de Jose, A.; Cedeno, S.; Linares, T.; Luno, J. Allopurinol and progression of CKD and cardiovascular events: Long-term follow-up of a randomized clinical trial. Am. J. Kidney Dis. 2015, 65, 543–549. [Google Scholar] [CrossRef]
- Brucato, A.; Cianci, F.; Carnovale, C. Management of hyperuricemia in asymptomatic patients: A critical appraisal. Eur. J. Intern. Med. 2020, 74, 8–17. [Google Scholar] [CrossRef]
- Jeyaruban, A.; Soden, M.; Larkins, S. General practitioners’ perspectives on the management of gout: A qualitative study. Postgrad. Med. J. 2016, 92, 603–607. [Google Scholar] [CrossRef]
- Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castaneda-Sanabria, J.; Coyfish, M.; Guillo, S.; Jansen, T.L.; Janssens, H.; et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 2017, 76, 29–42. [Google Scholar] [CrossRef]
- Nielsen, S.M.; Bartels, E.M.; Henriksen, M.; Waehrens, E.E.; Gudbergsen, H.; Bliddal, H.; Astrup, A.; Knop, F.K.; Carmona, L.; Taylor, W.J.; et al. Weight loss for overweight and obese individuals with gout: A systematic review of longitudinal studies. Ann. Rheum. Dis. 2017, 76, 1870–1882. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am. J. Hypertens. 2012, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Essig, M.; Escoubet, B.; de Zuttere, D.; Blanchet, F.; Arnoult, F.; Dupuis, E.; Michel, C.; Mignon, F.; Mentre, F.; Clerici, C.; et al. Cardiovascular remodelling and extracellular fluid excess in early stages of chronic kidney disease. Nephrol. Dial. Transplant. 2008, 23, 239–248. [Google Scholar] [CrossRef]
- Suckling, R.J.; He, F.J.; Macgregor, G.A. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst. Rev. 2010, 12, CD006763. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- He, J.; Mills, K.T.; Appel, L.J.; Yang, W.; Chen, J.; Lee, B.T.; Rosas, S.E.; Porter, A.; Makos, G.; Weir, M.R.; et al. Urinary Sodium and Potassium Excretion and CKD Progression. J. Am. Soc. Nephrol. 2016, 27, 1202–1212. [Google Scholar] [CrossRef]
- Smyth, A.; Dunkler, D.; Gao, P.; Teo, K.K.; Yusuf, S.; O’Donnell, M.J.; Mann, J.F.; Clase, C.M.; Ontarget; ONTARGET and TRANSCEND Investigators. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int. 2014, 86, 1205–1212. [Google Scholar] [CrossRef]
- Palsson, R.; Waikar, S.S. Renal Functional Reserve Revisited. Adv. Chronic Kidney Dis. 2018, 25, e1–e8. [Google Scholar] [CrossRef]
- Rhee, C.M.; Ahmadi, S.F.; Kovesdy, C.P.; Kalantar-Zadeh, K. Low-protein diet for conservative management of chronic kidney disease: A systematic review and meta-analysis of controlled trials. J. Cachexia Sarcopenia Muscle 2018, 9, 235–245. [Google Scholar] [CrossRef]
- Yan, B.; Su, X.; Xu, B.; Qiao, X.; Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0206134. [Google Scholar] [CrossRef]
- Chewcharat, A.; Takkavatakarn, K.; Wongrattanagorn, S.; Panrong, K.; Kittiskulnam, P.; Eiam-Ong, S.; Susantitaphong, P. The Effects of Restricted Protein Diet Supplemented with Ketoanalogue on Renal Function, Blood Pressure, Nutritional Status, and Chronic Kidney Disease-Mineral and Bone Disorder in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. J. Ren. Nutr. 2020, 30, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Robinson-Cohen, C.; Ellis, C.; Headley, S.A.E.; Tuttle, K.; Wood, R.J.; Evans, E.E.; Milch, C.M.; Moody, K.A.; Germain, M.; et al. Metabolic Effects of Diet and Exercise in Patients with Moderate to Severe CKD: A Randomized Clinical Trial. J. Am. Soc. Nephrol. 2018, 29, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Chagnac, A.; Weinstein, T.; Herman, M.; Hirsh, J.; Gafter, U.; Ori, Y. The effects of weight loss on renal function in patients with severe obesity. J. Am. Soc. Nephrol. 2003, 14, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Valero, M.A.; Leon, M.; Hernandez, E.; Praga, M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am. J. Kidney Dis. 2003, 41, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.E.; Bhapkar, M.; Huffman, K.M.; Pieper, C.F.; Krupa Das, S.; Redman, L.M.; Villareal, D.T.; Rochon, J.; Roberts, S.B.; Ravussin, E.; et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): Exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 673–683. [Google Scholar] [CrossRef]
- Lok, C.E.; Moist, L.; Hemmelgarn, B.R.; Tonelli, M.; Vazquez, M.A.; Dorval, M.; Oliver, M.; Donnelly, S.; Allon, M.; Stanley, K.; et al. Effect of fish oil supplementation on graft patency and cardiovascular events among patients with new synthetic arteriovenous hemodialysis grafts: A randomized controlled trial. JAMA 2012, 307, 1809–1816. [Google Scholar] [CrossRef]
- Guebre-Egziabher, F.; Debard, C.; Drai, J.; Denis, L.; Pesenti, S.; Bienvenu, J.; Vidal, H.; Laville, M.; Fouque, D. Differential dose effect of fish oil on inflammation and adipose tissue gene expression in chronic kidney disease patietns. Nutrition 2013, 29, 730–736. [Google Scholar] [CrossRef]
- Carey, R.M.; Eright Jr, J.T.; Taler, S.J.; Whelton, P.K. Guideline-driven management of hypertension: An evidence-based update. Circ. Res. 2021, 128, 827–846. [Google Scholar] [CrossRef]
- Comellas, M.; Marrero, Y.; George, F.; Matthews, L. Age and glycemic control among adults with type 2 diabetes in the United States: An assessment from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Diabetes Metab. Syndr. 2019, 13, 3069–3073. [Google Scholar] [CrossRef]
Author, year | Risk Factor | Number | Age | Study Design | Study Outcomes | Reference |
---|---|---|---|---|---|---|
Elsayed E, et al., 2008 | BMI ≥ 27.2 kg/m2, WHtR ≥ 0.96 (men), ≥0.89 (women) | 13,324 | mean 57.4 years | cohort study, over 9.3-year follow-up | BMI; OR 0.99 (95%CI 0.96–1.03) for CKD incident *1 WHtR; OR 1.17 (95%CI 0.99–1.34) for CKD incident *1 | [28] |
Noori N, et al., 2009 | WC, WHR | 3107 | mean 40 years | cohort study, 7-year follow-up | WC (highest quartile); HR 1.88 (95%CI 1.17–3.01) for CKD incident *2 WHR; no association between WHR and CKD incident | [38] |
Vivante A, et al., 2012 | BMI | 1,194,704 | mean 17.4 years | cohort study, enrolled from 1967 to 1997 and incident cases between 1980 to 2010. | overweight (85th–94th in BMI); HR 3.00 (95%CI 2.50–3.60) and obese (≥95th in BMI); HR 6.89 (95%CI 5.52–8.59) for ESKD | [32] |
Song YM, et al., 2015 | BMI ≥ 25 kg/m2 | 1881 | mean 43.9 years | cohort study, 3.7-year follow-up | OR 2.03 (95%CI 1.05–3.92) for CKD incident *2 | [30] |
Lu JL, et al., 2015 | BMI | 3,376,187 | ≥20 years | cohort study, 7-year follow-up | No association in under 40 years old participants. BMI displayed a U-shaped association with eGFR decline (>5 mL/min/1.73 m2) and BMI 25–30 kg/m2 was lowest risk for eGFR decline in over 40 years old participants. | [33] |
Hashimoto Y, et al., 2015 | BMI | 3136 | mean 45.3–52.2 years | cohort study, 8-year follow-up | OR 0.83 (95%CI 0.36–1.72) in metabolic healthy participants. OR 2.80 (95%CI 1.45–5.35) in metabolically abnormal participants for incident CKD *2 | [35] |
Dai D, et al., 2016 | BMI ≥ 25 kg/m2, WC ≥ 84 cm (men), ≥81 cm (women), WHtR ≥ 0.5 | 11,192 | mean 53.83 years | cross section | BMI; OR 2.27 (95%CI 1.06–4.82) (men), OR 1.80 (95%CI 1.04–3.10) (women) for CKD incident *2 WC; OR 1.75 (95%CI 0.97–3.15) (men), OR 2.12 (95%CI 1.25–3.58) (women) for CKD incident *2 WHtR; OR 3.20 (95%CI 1.28–7.95) (men), OR 1.87 (95%CI 1.07–3.25) (women) for CKD incident *2 | [15] |
Chang Y, et al., 2016 | BMI ≥ 25 kg/m2 | 62,249 | mean 36.1 years | cohort study, 369,088 person-year follow-up | OR 6.7 (95%CI 3.0–10.4) for CKD incident *2 | [29] |
Sarathy H, et al., 2016 | WC ≥ 102 cm (men), ≥88 cm (women) | 6913 | 20–40 years | cohort study, 10-year follow-up | OR 3.0 (95%CI 1.7–5.4) for albuminuria *3 in Mexican-Americans | [36] |
Kuma A, et al., 2019 | WC ≥ 80 cm (men) | 8015 | 20–60 years | cohort study, 5-year follow-up | OR 1.57 (95%CI: 1.35–1.84) for CKD incident *4 | [14] |
Author, Year | Risk Factor | Number | Age | Study Design | Study Outcomes | Reference |
---|---|---|---|---|---|---|
Schaeffner ES, et al., 2003 | ratio of TC/HDL-C ≥ 6.8 | 4483 | mean 48 years | cohort study, 14-year follow-up | RR 2.22 (95%CI 1.27–3.89) of elevated serum creatinine level (≥1.5 mg/dL) | [93] |
Rahman M, et al., 2014 | TC, LDL-C | 3939 | mean 58.2 years | cohort study, 4.1-year follow-up | Not significant association between dyslipidemia and 50% decline in eGFR or ESKD. | [90] |
Hou X, et al., 2014 | TC, TG, HDL-C, LDL-C | 2647 | ≥40 years | cross section | OR 1.61 (95%CI 1.12–2.32) in highest quartile of TG for mildly reduced eGFR *1. Not significant risk of TC, LDL-C, and HDL-C. | [22] |
Tsuruya K, et al., 2015 | ratio of TG/HDL-C > 3.02 (men), >2.20 (women) | 102,900 | ≥40 years | cohort study, 2-year follow-up | OR 1.25 (95%CI 1.18–1.34) of incident CKD *2 | [81] |
Kuma A, et al., 2018 | LDL-C ≥ 140 mg/dL | 14,510 | 20–60 years | cohort study, 5-year follow-up | OR 1.46 (95%CI 1.12–1.90) without hypertension, and OR 1.49 (95%CI 1.23–1.82) without DM for incident CKD *3 | [23] |
Wang H, et al., 2018 | ratio of TC/HDL-C ≥ 3.07, TG/HDL-C ≥ 0.62, LDL-C/HDL-C > 2.64 | 3259 | mean 59 years | cross section | OR 2.85 (95%CI 1.23–6.25) of TC/HDL-C, OR 3.96 (95%CI 1.58–9.92) of TG/HDL-C, OR 2.22 (95%CI 1.15–4.29) of LDL-C/HDL-C for incident CKD *3 | [96] |
Xue N, et al., 2019 | TG, HDL-C, LDL-C | 9100 | 18–65 years | cross section | TG: OR 1.17 (95%CI 1.07–1.29), HDL-C: OR 0.54 (95%CI 0.38–0.76) for early eGFR decline *1. Not significant risk of LDL-C. | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuma, A.; Kato, A. Lifestyle-Related Risk Factors for the Incidence and Progression of Chronic Kidney Disease in the Healthy Young and Middle-Aged Population. Nutrients 2022, 14, 3787. https://doi.org/10.3390/nu14183787
Kuma A, Kato A. Lifestyle-Related Risk Factors for the Incidence and Progression of Chronic Kidney Disease in the Healthy Young and Middle-Aged Population. Nutrients. 2022; 14(18):3787. https://doi.org/10.3390/nu14183787
Chicago/Turabian StyleKuma, Akihiro, and Akihiko Kato. 2022. "Lifestyle-Related Risk Factors for the Incidence and Progression of Chronic Kidney Disease in the Healthy Young and Middle-Aged Population" Nutrients 14, no. 18: 3787. https://doi.org/10.3390/nu14183787
APA StyleKuma, A., & Kato, A. (2022). Lifestyle-Related Risk Factors for the Incidence and Progression of Chronic Kidney Disease in the Healthy Young and Middle-Aged Population. Nutrients, 14(18), 3787. https://doi.org/10.3390/nu14183787