Design of Cereal Products Naturally Enriched in Folate from Barley Pearling By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barley Samples
2.2. Commercial Samples of Conventional and Fortified Cereal Products
2.3. Pearling
2.4. Gluten Extraction
2.5. Pasta Making
2.6. Pasta Cooking
2.7. Biscuit Making
2.8. Moisture Analysis
2.9. Enzymes Preparation for Folate Determination
2.9.1. Conjugase
2.9.2. α-Amylase
2.9.3. Protease
2.10. Folate Determination
2.11. Statistical Analysis
3. Results and Discussion
3.1. Folate Contents in Barley Cultivars
3.2. Pearling Process to Obtain Barley Fractions with a High Folate Content
3.3. Folate Content in Unfortified Commercial Semolina and Wheat Flours
3.4. Folate Content of New Cereals Products Naturally Enriched in Folate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Safi, J.; Joyeux, L.; Chalouhi, G.E. Periconceptional Folate Deficiency and Implications in Neural Tube Defects. J. Pregnancy 2012, 2012, 295083. [Google Scholar] [CrossRef]
- Li, K.; Wahlqvist, M.L.; Li, D. Nutrition, One-Carbon Metabolism and Neural Tube defects: A review. Nutrients 2016, 8, 741. [Google Scholar] [CrossRef]
- Maruvada, P.; Stover, J.P.; Mason, J.B.; Bailey, R.L.; Davis, C.D.; Field, M.; Finnel, R.H.; Garza, C.; Green, R.; Gueant, J.-L.; et al. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: A summary, and perspectives, from an NIH workshop. Am. J. Clin. Nutr. 2020, 112, 1390–1403. [Google Scholar] [CrossRef]
- Obeid, R.; Oexle, K.; Pietrzik, K.; Koletzko, B. Folate status and health: Challenges and opportunities. J. Perinar. Med. 2016, 44, 261–268. [Google Scholar] [CrossRef]
- The Homocysteine Studies Collaboration. Homocysteine and risk of coronary heart disease and stroke. JAMA 2002, 288, 2015–2022. [Google Scholar] [CrossRef]
- Ricardo, J.; Martel, F.; Borges, N.; Manuel, J.; Keating, E. Folates and aging: Role in mild cognitive impairment, dementia and depression. Ageing Res. Rev. 2015, 22, 9–19. [Google Scholar]
- van Wijngaarden, J.P.; Doets, E.L.; Szczecinska, A.; Souverein, O.W.; Duffy, M.E.; Dullemeijer, C.; Cavelaars, A.E.J.M.; Pietruszka, B.; Veer, P.V.; Brzozowska, A.; et al. Vitamin B 12, Folate, Homocysteine, and Bone Health in Adults and Elderly People: A Systematic Review with Meta-Analyses. J. Nutr. Met. 2013, 2013, 486186. [Google Scholar]
- Passarelli, M.N.; Barry, E.L.; Rees, J.R.; Mott, L.A.; Zhang, D.; Ahnen, D.J.; Bresalier, R.S.; Haile, R.W.; McKeown-Eyssen, G.; Snover, D.C.; et al. Folic acid supplementation and risk of colorectal neoplasia during long-term follow-up of a randomized clinical trial. Am. J. Clin. Nutr. 2019, 110, 903–911. [Google Scholar] [CrossRef]
- Pieroth, R.; Paver, S.; Day, S.; Lammersfeld, C. Folate and its impact on cancer risk. Curr. Nutr. Rep. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Dhonukshe-Rutten, R.A.M.; De Vries, J.H.M.; De Bree, A.; Van Der Put, N.; Van Staveren, W.A. Dietary intake and status of folate and vitamin B12 and their association with homocysteine and cardiovascular disease in European populations. Eur. J. Clin. Nutr. 2009, 62, 18–30. [Google Scholar] [CrossRef]
- Pounis, G.; Di Castelnuovo, A.F.; de Lorgeril, M.; Krogh, V.; Siani, A.; Arnout, J.; Cappuccio, F.P.; van Dongen, M.; Zappacosta, B.; Donati, M.B.; et al. Folate intake and folate serum levels in men and women from two European populations: The IMMIDIET project. Nutrition 2014, 30, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Laird, E.J.; Halloran, A.M.O.; Carey, D.; Connor, D.O.; Kenny, R.A.; Molloy, A.M. Voluntary fortification is ineffective to maintain the vitamin B 12 and folate status of older Irish adults: Evidence from the Irish Longitudinal Study on Ageing (TILDA). Br. J. Nutr. 2018, 120, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, L.M.; Cordero, A.M.; Pfeiffer, C.M.; Hausman, D.B.; Tsang, B.L.; De-Regil, L.M.; Rosenthal, J.; Razzaghi, H.; Wong, E.; Weakland, A.P.; et al. Global folate status in women of reproductive age: A systematic review with emphasis on methodological issues. Ann. N. Y. Acad. Sci. 2018, 1431, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Cafolla, A.; Dragoni, F.; Girelli, G.; Tosti, M.E.; Costante, A.; Pastorelli, D.; Bedogni, G.; Scott, S. Folates status in Italian blood donors: Relation to gender and smoking. Hematologica 2000, 85, 694–698. [Google Scholar]
- Girelli, D.; Martinelli, N.; Pizzolo, F.; Friso, S.; Olivieri, O.; Stranieri, C.; Trabetti, E.; Faccini, G.; Tinazzi, E.; Pignatti, P.F.; et al. The Interaction between MTHFR 677 C ->T Genotype and Folate Status Is a Determinant of Coronary Atherosclerosis Risk. J. Nutr. 2003, 133, 1281–1285. [Google Scholar] [CrossRef]
- Zappacosta, B.; Persichilli, S.; Iacoviello, L.; Di Castelnuovo, A.; Graziano, M.; Gervasoni, J.; Leoncini, E.; Cimino, G.; Mastroiacovo, P. Folate, vitamin B12 and homocysteine status in an Italian blood donor population. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 473–480. [Google Scholar] [CrossRef]
- Gori, A.M.; Sofi, F.; Corsi, A.M.; Gazzini, A.; Sestini, I.; Lauretani, F.; Bandinelli, S.; Gensini, G.F.; Ferrucci, L.; Abbate, R. Predictors of vitamin B6 and folate concentrations in older persons: The InCHIANTI study. Clin. Chem. 2006, 52, 1318–1324. [Google Scholar] [CrossRef]
- Rodrigues, V.B.; Silva, E.N.D.; Santos, M.L.P. Cost-effectiveness of mandatory folic acid fortification of flours in prevention of neural tube defects: A systematic review. PLoS ONE 2021, 16, e0258488. [Google Scholar] [CrossRef]
- Atta, C.A.; Fiest, K.M.; Frolkis, A.D.; Jette, N.; Pringsheim, T.; St Germaine-Smith, C.; Rajapakse, T.; Kaplan, G.G.; Metcalfe, A. Global Birth Prevalence of Spina Bifida by Folic Acid Fortification Status: A Systematic Review and Meta-Analysis. Am. J. Public Health 2016, 106, 24–34. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for folate. EFSA J. 2014, 12, 3893. [Google Scholar]
- Mills, J.L.; Molloy, A.M.; Reynolds, E.H. Do the benefits of folic acid fortification outweigh the risk of masking vitamin B12 deficiency? BMJ 2018, 360, k724. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.R.; Sobczyńska-Malefora, A. The adverse effects of an excessive folic acid intake. Eur. J. Clin. Nutr. 2017, 71, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Jägerstad, M. Folic acid fortification prevents neural tube defects and may also reduce cancer risks. Acta Paediatr. 2012, 101, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Circulating unmetabolized folic acid and 5-methyltetrahydrofolate in relation to anemia, macrocytosis, and cognitive test performance in American seniors. Am. J. Clin. Nutr. 2010, 91, 1733–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.epicentro.iss.it/acido-folico/Fortificazione (accessed on 20 July 2022).
- Boz, H. Effect of processing on cereal folates. J. Cereal Sci. 2021, 99, 103202. [Google Scholar] [CrossRef]
- Edelmann, M.; Kariluoto, S.; Nyström, L.; Piironen, V. Folate in barley grain and fractions. J. Cereal Sci. 2013, 58, 37–44. [Google Scholar] [CrossRef]
- Messia, M.C.; Candigliota, T.; De Arcangelis, E.; Marconi, E. Arabinoxylan and beta-glucan assessment in cereals. Ital. J. Food Sci. 2017, 29, 112–122. [Google Scholar]
- Henrion, M.; Francey, C.; Lê, K.A.; Lamothe, L. Cereal β-glucans: The impact of processing and how it affects physiological responses. Nutrients 2019, 11, 1729. [Google Scholar] [CrossRef]
- Schmidt, M. Cereal beta-glucans: An underutilized health endorsing food ingredient. Crit. Rev. Food Sci. Nutr. 2022, 62, 3281–3300. [Google Scholar] [CrossRef]
- FAOSTAT. 2020. Available online: https://www.fao.org/faostat/ (accessed on 20 July 2022).
- Newton, A.C.; Flavell, A.J.; George, T.S.; Leat, P.; Mullholand, B.; Ramsay, L.; Revoredo-Giha, C.; Russel, J.; Steffenson, B.J.; Swanston, J.S.; et al. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011, 3, 141–178. [Google Scholar] [CrossRef]
- Panfili, G.; Fratianni, A.; Di Criscio, T.; Marconi, E. Tocol and β-glucan levels in barley varieties and in pearling by-products. Food Chem. 2008, 107, 84–91. [Google Scholar] [CrossRef]
- Giordano, D.; Reyneri, A.; Blandino, M. Folate distribution in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum durum Desf.) pearled fractions. J. Sci. Food Agric. 2016, 96, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Subirà, M.; Romero, M.P.; Macià, A.; Puig, E.; Romagosa, I.; Moralejo, M. Bioactive compounds and antioxidant capacity in pearling fractions of hulled, partially hull-less and hull-less food barley genotypes. Foods 2021, 10, 565. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, L.; Shang, J.; Liu, L.; Tong, L.; Zhou, X.; Wang, S.; Zhang, Y.; Zhou, S. Application of pearling in modified roller milling of hull-less barley and effect on noodles quality. J. Food Process. Preserv. 2020, 44, e14838. [Google Scholar] [CrossRef]
- Baik, B.K.; Ullrich, S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 48, 233–242. [Google Scholar] [CrossRef]
- Available online: https://www.statista.com/statistics/730642/most-widespread-pasta-brands-in-italy/ (accessed on 20 July 2022).
- Verardo, V.; Gomez-Caravaca, A.M.; Messia, M.C.; Marconi, E.; Caboni, M.F. Development of Functional Spaghetti Enriched in Bioactive Compounds Using Barley Coarse Fraction Obtained by Air Classification. J. Agric. Food Chem. 2011, 59, 9127–9134. [Google Scholar] [CrossRef]
- Marconi, E.; Carcea, M.; Graziano, M.; Cubadda, R. Kernel properties and pasta-making quality of five European spelt wheat (Triticum spelta L.) cultivars. Cereal Chem. 1999, 76, 25–29. [Google Scholar] [CrossRef]
- Gregory, J.F.; Sartain, D.B.; Day, B.P.F. Fluorimetric determination of folacin in biological materials using high performance liquid chromatography. J. Nutr. 1984, 114, 341–353. [Google Scholar] [CrossRef]
- Pfeiffer, C.M.; Rogers, L.M.; Bailey, L.B.; Gregory, J.F., III. Absorption of folate from fortified cereal-grain products and of supplemental folate consumed with or without food determined by using a dual-label stable-isotope protocol. Am. J. Clin. Nutr. 1997, 66, 1388–1397. [Google Scholar] [CrossRef]
- Ruggeri, S.; Aguzzi, A. Adequacy of trienzyme treatment in determination of folate in food. In Proceedings of the First International Conference of Folates: Analysis, Bioavailability and Health, Warsaw, Poland, 11–14 February 2004; pp. 27–32. [Google Scholar]
- Wright, A.J.A.; Finglas, P.M.; Southon, S. Erythrocyte folate analysis: Saponin added during lysis of whole blood can increase apparent folate concentrations, depending on hemolysate pH. Clin. Chem. 2000, 46, 1978–1986. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Lampi, A.M.; Nyström, L.; Piironen, V.; Ward, J.; Li, L.; Gebruers, K.; Courtin, C.; Delcour, J.A.; Boros, D.; et al. Phytochemical and fiber components in barley varieties in the healthgrain diversity screen. J. Agric. Food Chem. 2008, 56, 9777–9784. [Google Scholar] [CrossRef] [PubMed]
- Riaz, B.; Liang, Q.; Wan, X.; Wang, K.; Zhang, C.; Ye, X. Folate content analysis of wheat cultivars developed in the North China Plain. Food Chem. 2018, 289, 377–383. [Google Scholar] [CrossRef]
- Piironen, V.; Edelmann, M.; Kariluoto, S.; Bedo, Z. Folate in wheat genotypes in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008, 56, 9726–9732. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Wang, K.; Shariful, I.; Ye, X.; Zhang, C. Folate content and retention in wheat grains and wheat-based foods: Effects of storage, processing, and cooking methods. Food Chem. 2020, 333, 127459. [Google Scholar] [CrossRef]
- Dong, W.; Cheng, Z.; Wang, X.; Wang, B.; Zhang, H.; Su, N.; Yamamaro, C.; Lei, C.; Wang, J.; Wang, J.; et al. Determination of folate content in rice germplasm (Oryza sativa L.) using tri-enzyme extraction and microbiological assays. Int. J. Food Sci. Nutr. 2011, 62, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Blandino, M.; Alfieri, M.; Giordano, D.; Vanara, F.; Redaelli, R. Distribution of bioactive compounds in maize fractions obtained in two different types of large scale milling processes. J. Cereal Sci. 2017, 77, 251–258. [Google Scholar] [CrossRef]
- Fenech, M.; Noakes, M.; Clifton, P.; Topping, D. Aleurone flour is a rich source of bioavailable folate in humans. J. Nutr. 1999, 129, 1114–1119. [Google Scholar] [CrossRef]
- Arcot, J.; Wotton, M.; Alury, S.; Shrestha, A. Folate levels in twelve Australian wheats and changes during processing into bread. Food Aust. 2002, 4, 18–20. [Google Scholar]
- Rader, J.I.; Weaver, C.M.; Angyal, G. Total folate in enriched cereal-grain products in the United States following fortification. Food Chem. 2000, 70, 275–289. [Google Scholar] [CrossRef]
- Bui, L.T.T.; Small, D.M. Folates in Asian noodles: II. A comparison of commercial samples and the impact of cooking. J. Food Sci. 2007, 72, 283–287. [Google Scholar] [CrossRef]
- McKillop, D.J.; Pentieva, K.; Daly, D.; McPartlin, J.M.; Hughes, J.; Strain, J.J.; Scott, J.M.; McNultym, H. The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet. Br. J. Nutr. 2002, 88, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Shakur, Y.A.; Rogenstein, C.; Hartman-Craven, B.; Tarasuk, V.; O’Connor, D.L. How much folate is in Canadian fortified products 10 years after mandated fortification? Can. J. Public Health 2009, 100, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Prado de Paiva Azevedo, E.; dos Santos Alves, E.M.; de Santana Khan, S.; dos Santos Silva, L.; Botelho de Souza, J.R.; Saegesser Santos, B.; Boˆa-Viagem Rabelo, C.; dos Santos Costa, A.C.; Anderson de Azevedo Filho, C.; da Silva Vasconcelos, M.A. Folic acid retention evaluation in preparations with wheat flour and corn submitted to different cooking methods by HPLC/DAD. PLoS ONE 2020, 15, e0230583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Formulations | Ingredients |
---|---|
Folate enriched pasta | Commercial Semolina (Brand n 4): 61% Barley Fraction enriched in folate (BP2): 35% Gluten: 4% |
Folate enriched biscuits | Commercial “0” flour (Brand n 4) (45%) and BP2 (55%) Sugar: 300 g Butter: 300 g Milk: 300 g Eggs: 150 g |
Barley Cultivars | Total Folate Content (μg/100 g, d.m.) |
---|---|
Acquerelle | 69.7 ± 7.4 b |
Bombay | 64.9 ± 1.0 b |
Boreale | 70.9 ± 17.3 abcd |
Braemar | 75.5 ± 6.0 ab |
Calgary | 61.2 ± 18.2 bcd |
Ceylon | 65.8 ± 3.6 b |
Gothic | 39.8 ± 2.7 e |
Kelibia | 52.3 ± 2.2 d |
Ketos | 53.2 ± 2.6 d |
Margaret | 66.1 ± 13.4 bcd |
Messina | 68.9 ± 2.8 b |
Metis | 52.2 ± 3.5 d |
Natura | 78.9 ± 7.3 a |
Otis | 58.2 ± 2.5 cd |
Prestige | 63.0 ± 10.2 bcd |
Rangoon | 63.2 ± 17.2 abcd |
Sebastian | 64.9 ± 7.9 bc |
Svenja | 69.7 ± 7.4 b |
Ursa | 58.7 ± 1.0 c |
Mean value Range CV% | 63.0 39.8–78.9 14.6% |
Samples | Yield (%) | Total Folate (µg/100 g f.w.) |
---|---|---|
De-Hulled barley | 100 | 69.1 ± 6.4 |
1st pearling | ||
Pearled Kernel (PK1) | 85.7 | 54.1 ± 0.4 |
Pearling by-Products (BP1) | 14.7 | 173.5 ± 2.2 |
2nd pearling | ||
Pearled Kernel (PK2) | 80.7 | 30.3 ± 0.5 |
Pearling by-Products (BP2) | 19.3 | 221.7 ± 7.0 |
3rd pearling | ||
Pearled Kernel (PK3) | 68.4 | 20.0 ± 4.0 |
Pearling by-products (BP3) | 31.6 | 177.3 ± 16.9 |
Samples | Total Folate μg/100 g f.w. |
---|---|
Commercial semolina (Brand 1) | 35.0 ± 1.0 a |
Commercial semolina (Brand 2) | 35.3 ± 0.9 a |
Commercial semolina (Brand 3) | 37.2 ± 1.2 a |
Commercial semolina (Brand 4) | 40.2 ± 2.0 b |
Commercial 00 flour (Brand 1) | 37.6 ± 1.2 a |
Commercial 00 flour (Brand 2) | 43.3 ± 1.7 b |
Commercial 00 flour (Brand 3) | 40.4 ± 0.9 b |
Commercial 00 flour (Brand 4) | 58.2 ± 1.3 c |
Commercial 0 flour (Brand 1) | 68.2 ± 2.0 e |
Commercial 0 flour (Brand 2) | 50.2 ± 1.9 d |
Commercial 0 flour (Brand 3) | 67.3 ± 1.7 e |
Commercial 0 flour (Brand 4) | 69.3 ± 1.2 e |
Cereal Products | Folate Content μg/100 g f.w. (Min–Max) | FR (%) |
---|---|---|
Enriched pasta uncooked | 87.1 ± 3.8 | 68.5 |
Enriched pasta cooked | 26.1 ± 1.1 | |
Commercial unfortified durum wheat pasta, uncooked (5 brands) | 39.2 (36.7–44.3) | 56.2 |
Commercial unfortified durum wheat pasta, cooked (5 brands) | 12.3 (7.6–15.7) | |
Commercial unfortified durum whole wheat pasta, uncooked (5 brands) | 60.4 (50.5–61.1) | 49.0 |
Commercial unfortified durum whole wheat pasta, cooked (5 brands) | 16.5 (10.5–18.4) | |
Commercial durum wheat pasta, fortified with folic acid, uncooked (1 brand) | 200.9 ± 8.1 | 27.8 |
Commercial durum wheat pasta, fortified with folic acid, cooked (1 brand) | 30.7 ± 0.9 | |
Enriched biscuits | 70.1 ± 3.7 | |
Commercial unfortified biscuits (4 brands) | 10.4 (6.2–14.4) | |
Commercial fortified with folic acid biscuits (2 brands) | 62.1 (55.1–69.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggeri, S.; De Arcangelis, E.; Aguzzi, A.; Messia, M.C.; Marconi, E. Design of Cereal Products Naturally Enriched in Folate from Barley Pearling By-Products. Nutrients 2022, 14, 3729. https://doi.org/10.3390/nu14183729
Ruggeri S, De Arcangelis E, Aguzzi A, Messia MC, Marconi E. Design of Cereal Products Naturally Enriched in Folate from Barley Pearling By-Products. Nutrients. 2022; 14(18):3729. https://doi.org/10.3390/nu14183729
Chicago/Turabian StyleRuggeri, Stefania, Elisa De Arcangelis, Altero Aguzzi, Maria Cristina Messia, and Emanuele Marconi. 2022. "Design of Cereal Products Naturally Enriched in Folate from Barley Pearling By-Products" Nutrients 14, no. 18: 3729. https://doi.org/10.3390/nu14183729