Chemosensory Functions in Patients with Inflammatory Bowel Disease and Their Association with Clinical Disease Activity
Abstract
:1. Introduction
2. Methods
2.1. Olfactory Function Assessment
2.2. Gustatory Function Screening
2.3. Statistical Analysis
3. Result
3.1. Demographics and Clinical Characteristics of Patients with Inflammatory Bowel Disease
3.2. Olfactory Function and Gustatory Function of IBD Patients
3.3. Associations between Chemosensory Function and Clinical and Laboratory Indexes in IBD Patients
3.4. Influence of TNF-α Inhibitor Treatment on the Chemosensory Function in IBD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Li, Y.Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol. 2014, 20, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Marotto, D.; Atzeni, F.; Ardizzone, S.; Monteleone, G.; Giorgi, V.; Sarzi-Puttini, P. Extra-intestinal manifestations of inflammatory bowel diseases. Pharmacol. Res. 2020, 161, 105206. [Google Scholar] [CrossRef]
- Gluch, P.; Swiatek, A.; Dudek, P.; Fabisiak, A.; Talar-Wojnarowska, R. Neurological Manifestations and Psychiatric Disorders in the Course of Inflammatory Bowel Diseases. J. Gastrointest. Liver Dis. 2022, 31, 107–118. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Raftery, A.L.; Tsantikos, E.; Harris, N.L.; Hibbs, M.L. Links Between Inflammatory Bowel Disease and Chronic Obstructive Pulmonary Disease. Front. Immunol. 2020, 11, 2144. [Google Scholar] [CrossRef]
- Faissner, S.; Plemel, J.R.; Gold, R.; Yong, V.W. Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nat. Rev. Drug Discov. 2019, 18, 905–922. [Google Scholar] [CrossRef]
- Walliczek-Dworschak, U.; Wendler, J.; Khan, T.; Aringer, M.; Hahner, A.; Hummel, T. Chemosensory function is decreased in rheumatoid arthritis. Eur. Arch. Otorhinolaryngol. 2020, 277, 1675–1680. [Google Scholar] [CrossRef]
- Xu, X.; Geng, L.; Chen, C.; Kong, W.; Wen, B.; Kong, W.; Chen, S.; Zhang, H.; Liang, J.; Sun, L. Olfactory impairment in patients with primary Sjogren’s syndrome and its correlation with organ involvement and immunological abnormalities. Arthritis Res. Ther. 2021, 23, 250. [Google Scholar] [CrossRef]
- Yalcinkaya, E.; Basaran, M.M.; Erdem, H.; Kocyigit, M.; Altundag, A.; Hummel, T. Olfactory dysfunction in spondyloarthritis. Eur. Arch. Otorhinolaryngol. 2019, 276, 1241–1245. [Google Scholar] [CrossRef]
- Duda-Sobczak, A.; Araszkiewicz, A.; Urbas, M.; Borucki, L.; Kulas, K.; Chudzinski, M.; Suwalska, A.; Zozulinska-Ziolkiewicz, D. Impaired olfactory function is related to the presence of neuropathy in adults with type 1 diabetes. Diabetes Vasc. Dis. Res. 2017, 14, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Catamo, E.; Robino, A.; Tinti, D.; Dovc, K.; Franceschi, R.; Giangreco, M.; Gasparini, P.; Barbi, E.; Cauvin, V.; Rabbone, I.; et al. Altered Taste Function in Young Individuals With Type 1 Diabetes. Front. Nutr. 2021, 8, 797920. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Feng, P.; Ohkuri, T.; Sauers, D.; Cohn, Z.J.; Chai, J.; Nelson, T.; Bachmanov, A.A.; Huang, L.; Wang, H. Defects in the peripheral taste structure and function in the MRL/lpr mouse model of autoimmune disease. PLoS ONE 2012, 7, e35588. [Google Scholar] [CrossRef] [PubMed]
- Shamriz, O.; Shoenfeld, Y. Olfactory dysfunction and autoimmunity: Pathogenesis and new insights. Clin. Exp. Rheumatol. 2017, 35, 1037–1042. [Google Scholar]
- Croy, I.; Nordin, S.; Hummel, T. Olfactory disorders and quality of life--an updated review. Chem. Senses 2014, 39, 185–194. [Google Scholar] [CrossRef]
- Aschenbrenner, K.; Hummel, C.; Teszmer, K.; Krone, F.; Ishimaru, T.; Seo, H.S.; Hummel, T. The influence of olfactory loss on dietary behaviors. Laryngoscope 2008, 118, 135–144. [Google Scholar] [CrossRef]
- Choi, J.S.; Jang, S.S.; Kim, J.; Hur, K.; Ference, E.; Wrobel, B. Association Between Olfactory Dysfunction and Mortality in US Adults. JAMA Otolaryngol. Neck Surg. 2021, 147, 49–55. [Google Scholar] [CrossRef]
- Risso, D.; Drayna, D.; Morini, G. Alteration, Reduction and Taste Loss: Main Causes and Potential Implications on Dietary Habits. Nutrients 2020, 12, 3284. [Google Scholar] [CrossRef]
- Rawal, S.; Duffy, V.B.; Berube, L.; Hayes, J.E.; Kant, A.K.; Li, C.M.; Graubard, B.I.; Hoffman, H.J. Self-Reported Olfactory Dysfunction and Diet Quality: Findings from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). Nutrients 2021, 13, 4561. [Google Scholar] [CrossRef]
- Harnischfeger, F.; Dando, R. Obesity-induced taste dysfunction, and its implications for dietary intake. Int. J. Obes. 2021, 45, 1644–1655. [Google Scholar] [CrossRef]
- Tamburini, B.; La Manna, M.P.; La Barbera, L.; Mohammadnezhad, L.; Badami, G.D.; Shekarkar Azgomi, M.; Dieli, F.; Caccamo, N. Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease. Cells 2022, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Borralho Nunes, P.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohns Colitis 2019, 13, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Chuai, S.; Nessel, L.; Lichtenstein, G.R.; Aberra, F.N.; Ellenberg, J.H. Use of the noninvasive components of the Mayo score to assess clinical response in ulcerative colitis. Inflamm. Bowel Dis. 2008, 14, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.F.; Bradshaw, J.M. A simple index of Crohn’s-disease activity. Lancet 1980, 1, 514. [Google Scholar] [CrossRef]
- Hautzinger, M.; Bailer, M.; Hofmeister, D.; Keller, F. ADS: Manual; Hogrefe: Göttingen, Germany, 2012. [Google Scholar]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Hummel, T.; Sekinger, B.; Wolf, S.R.; Pauli, E.; Kobal, G. ‘Sniffin’ sticks’: Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 1997, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Walliczek, U.; Negoias, S.; Hahner, A.; Hummel, T. Assessment of Chemosensory Function Using “Sniffin’ Sticks”, Taste Strips, Taste Sprays, and Retronasal Olfactory Tests. Curr. Pharm. Des. 2016, 22, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Oleszkiewicz, A.; Schriever, V.A.; Croy, I.; Hahner, A.; Hummel, T. Updated Sniffin’ Sticks normative data based on an extended sample of 9139 subjects. Eur. Arch. Otorhinolaryngol. 2019, 276, 719–728. [Google Scholar] [CrossRef]
- Mueller, C.A.; Pintscher, K.; Renner, B. Clinical test of gustatory function including umami taste. Ann. Otol. Rhinol. Laryngol. 2011, 120, 358–362. [Google Scholar] [CrossRef]
- Hummel, T.; Hummel, C.; Welge-Luessen, A. Management of Smell and Taste Disorders: A Practical Guide for Clinicians; Thieme: New York, NY, USA, 2013. [Google Scholar]
- Welge-Lüssen, A.; Dörig, P.; Wolfensberger, M.; Krone, F.; Hummel, T. A study about the frequency of taste disorders. J. Neurol. 2011, 258, 386–392. [Google Scholar] [CrossRef]
- Fischer, M.; Zopf, Y.; Elm, C.; Pechmann, G.; Hahn, E.G.; Schwab, D.; Kornhuber, J.; Thuerauf, N.J. Subjective and objective olfactory abnormalities in Crohn’s disease. Chem. Senses 2014, 39, 529–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinbach, S.; Reindl, W.; Dempfle, A.; Schuster, A.; Wolf, P.; Hundt, W.; Huber, W. Smell and taste in inflammatory bowel disease. PLoS ONE 2013, 8, e73454. [Google Scholar] [CrossRef]
- Hummel, T.; Whitcroft, K.L.; Andrews, P.; Altundag, A.; Cinghi, C.; Costanzo, R.M.; Damm, M.; Frasnelli, J.; Gudziol, H.; Gupta, N.; et al. Position paper on olfactory dysfunction. Rhinol. Suppl. 2017, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Whitcroft, K.L.; Cuevas, M.; Haehner, A.; Hummel, T. Patterns of olfactory impairment reflect underlying disease etiology. Laryngoscope 2017, 127, 291–295. [Google Scholar] [CrossRef]
- Hedin, C.R.H.; Vavricka, S.R.; Stagg, A.J.; Schoepfer, A.; Raine, T.; Puig, L.; Pleyer, U.; Navarini, A.; van der Meulen-de Jong, A.E.; Maul, J.; et al. The Pathogenesis of Extraintestinal Manifestations: Implications for IBD Research, Diagnosis, and Therapy. J. Crohns Colitis 2019, 13, 541–554. [Google Scholar] [CrossRef]
- Park, J.H.; Peyrin-Biroulet, L.; Eisenhut, M.; Shin, J.I. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun. Rev. 2017, 16, 416–426. [Google Scholar] [CrossRef]
- Henkin, R.I.; Schmidt, L.; Velicu, I. Interleukin 6 in hyposmia. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 728–734. [Google Scholar] [CrossRef]
- Sultan, B.; May, L.A.; Lane, A.P. The role of TNF-alpha in inflammatory olfactory loss. Laryngoscope 2011, 121, 2481–2486. [Google Scholar] [CrossRef]
- Pozharskaya, T.; Lane, A.P. Interferon gamma causes olfactory dysfunction without concomitant neuroepithelial damage. Int. Forum Allergy Rhinol. 2013, 3, 861–865. [Google Scholar] [CrossRef]
- Brozzetti, L.; Sacchetto, L.; Cecchini, M.P.; Avesani, A.; Perra, D.; Bongianni, M.; Portioli, C.; Scupoli, M.; Ghetti, B.; Monaco, S.; et al. Neurodegeneration-Associated Proteins in Human Olfactory Neurons Collected by Nasal Brushing. Front. Neurosci. 2020, 14, 145. [Google Scholar] [CrossRef]
- Kohman, R.A.; Rhodes, J.S. Neurogenesis, inflammation and behavior. Brain Behav. Immun. 2013, 27, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwob, J.E.; Jang, W.; Holbrook, E.H.; Lin, B.; Herrick, D.B.; Peterson, J.N.; Hewitt Coleman, J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J. Comp. Neurol. 2017, 525, 1034–1054. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Reed, R.R.; Lane, A.P. Acute inflammation regulates neuroregeneration through the NF-kappaB pathway in olfactory epithelium. Proc. Natl. Acad. Sci. USA 2017, 114, 8089–8094. [Google Scholar] [CrossRef]
- Leung, C.T.; Coulombe, P.A.; Reed, R.R. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat. Neurosci. 2007, 10, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Sollai, G.; Melis, M.; Mastinu, M.; Paduano, D.; Chicco, F.; Magri, S.; Usai, P.; Hummel, T.; Barbarossa, I.T.; Crnjar, R. Olfactory Function in Patients with Inflammatory Bowel Disease (IBD) Is Associated with Their Body Mass Index and Polymorphism in the Odor Binding-Protein (OBPIIa) Gene. Nutrients 2021, 13, 703. [Google Scholar] [CrossRef]
- Ruijschop, R.M.; Boelrijk, A.E.; de Ru, J.A.; de Graaf, C.; Westerterp-Plantenga, M.S. Effects of retro-nasal aroma release on satiation. Br. J. Nutr. 2008, 99, 1140–1148. [Google Scholar] [CrossRef]
- Palouzier-Paulignan, B.; Lacroix, M.C.; Aime, P.; Baly, C.; Caillol, M.; Congar, P.; Julliard, A.K.; Tucker, K.; Fadool, D.A. Olfaction under metabolic influences. Chem. Senses 2012, 37, 769–797. [Google Scholar] [CrossRef]
- Melis, M.; Mastinu, M.; Sollai, G.; Paduano, D.; Chicco, F.; Magrì, S.; Usai, P.; Crnjar, R.; Tepper, B.J.; Barbarossa, I.T. Taste Changes in Patients with Inflammatory Bowel Disease: Associations with PROP Phenotypes and polymorphisms in the salivary protein, Gustin and CD36 Receptor Genes. Nutrients 2020, 12, 409. [Google Scholar] [CrossRef]
- Nielsen, O.H.; Ainsworth, M.A. Tumor necrosis factor inhibitors for inflammatory bowel disease. N. Engl. J. Med. 2013, 369, 754–762. [Google Scholar] [CrossRef]
- Jung, Y.G.; Lane, A.P. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model. Otolaryngol. Head Neck Surg. 2016, 154, 1149–1154. [Google Scholar] [CrossRef] [Green Version]
Remission (n = 38) | Mild (n = 45) | Moderate–Severe (n = 20) | Total (n = 103) | p-Value | |
---|---|---|---|---|---|
Age, years | 42.0 ± 12.5 | 40.3 ± 12.5 | 37.3 ± 11.0 | 40.3 ± 1.2 | 0.39 |
Gender, women | 19 (50.0%) | 25 (55.6%) | 7 (35.0%) | 51 (49.5%) | 0.31 |
BMI, kg/m2 | 23.96 ± 3.96 | 24.59 ± 5.28 | 24.56 ± 4.39 | 24.35 ± 0.46 | 0.81 |
Type of disease | 0.86 | ||||
UC | 15 (39.5%) | 17 (37.8%) | 9 (45.0%) | 41 (39.8%) | |
CD | 23 (60.5%) | 28 (62.2%) | 11 (55.0%) | 62 (60.2%) | |
Duration of disease, years | 18.4 ± 9.9 | 12.9 ± 7.9 a | 9.7 ± 7.8 a | 14.3 ± 0.9 | <0.001 ** |
CRP, mg/L | 2.38 ± 3.43 | 4.76 ± 6.90 | 6.97 ± 14.31 | 4.30 ± 0.80 | 0.11 |
Blood leucocytes count, GPt/L | 6.69 ± 1.94 | 7.08 ± 2.05 | 8.10 ± 2.56 | 7.14 ± 0.21 | 0.06 |
Fecal Calprotectin, µg/g | 39 ± 30 | 1017 ± 1617 | 1538 ± 3324 | 870 ± 231 | 0.06 |
ADS-L depression score | 15.71 ± 4.72 | 15.09 ± 4.43 | 12.05 ± 5.31 a, b | 14.73 ± 0.48 | 0.018 * |
TNF-inhibitor use, n | 16 (42.1%) | 27 (60.0%) | 7 (35.0%) | 50 (48.5%) | 0.10 |
Age Group (Years) | IBD Patients | Normative Data * | ||
---|---|---|---|---|
Hyposmia, n (%) | Normosmia, n (%) | Hyposmia, % | Normosmia, % | |
11–20 | 1 (50) | 1 (50) | 19.5 | 77.1 |
21–30 | 5 (24) | 16 (76) | 9.6 | 79.4 |
31–40 | 11 (31) | 25 (69) | 10.7 | 83.5 |
41–50 | 4 (19) | 17 (81) | 20.7 | 75.2 |
51–60 | 8 (42) | 11 (57) | 28.8 | 68.1 |
61–70 | 2 (100) | 0 (0) | 38.5 | 59.4 |
71–80 | 0 (0) | 2 (100) | 60.0 | 36.5 |
Total | 31 (30) | 72 (70) |
Remission (n = 38) | Mild (n = 45) | Moderate–Severe (n = 20) | p-Value | |
---|---|---|---|---|
Threshold scores | 6.58 ± 2.75 | 5.88 ± 2.52 | 8.64 ± 1.97 a,b | <0.001 ** |
Discrimination scores | 12.68 ± 1.40 | 12.76 ± 2.16 | 12.75 ± 1.74 | 0.98 |
Identification scores | 13.47 ± 1.47 | 13.67 ± 1.45 | 13.60 ± 1.31 | 0.83 |
TDI scores | 32.74 ± 3.91 | 32.30 ± 4.80 | 34.99 ± 3.35 | 0.06 |
Taste sprays scores | 3.97 ± 0.16 | 3.93 ± 0.25 | 3.90 ± 0.31 | 0.50 |
Threshold Scores | Discrimination Scores | Identification Scores | TDI Scores | Taste Sprays Scores | |
---|---|---|---|---|---|
Age, years | |||||
r | −0.17 | −0.02 | −0.14 | −0.16 | 0.07 |
p | 0.09 | 0.83 | 0.16 | 0.11 | 0.49 |
BMI | |||||
r | −0.25 | −0.08 | 0.08 | −0.17 | −0.15 |
p | 0.010 ** | 0.41 | 0.45 | 0.09 | 0.13 |
Duration of disease | |||||
r | 0.02 | 0.03 | −0.06 | 0.00 | 0.18 |
p | 0.85 | 0.81 | 0.58 | 0.97 | 0.08 |
CRP | |||||
r | −0.08 | 0.02 | −0.01 | −0.05 | −0.01 |
p | 0.42 | 0.83 | 0.91 | 0.65 | 0.92 |
Blood leucocytes count | |||||
r | 0.03 | −0.06 | −0.07 | −0.03 | −0.16 |
p | 0.74 | 0.53 | 0.48 | 0.77 | 0.12 |
Fecal calprotectin | |||||
r | 0.12 | −0.16 | 0.00 | 0.00 | 0.04 |
p | 0.30 | 0.17 | 0.98 | 0.99 | 0.72 |
ADS-L depression score | |||||
r | −0.02 | 0.13 | 0.10 | 0.08 | 0.12 |
p | 0.86 | 0.19 | 0.32 | 0.44 | 0.22 |
Unstandardized Coefficients | Standardized Coefficients | ||||
---|---|---|---|---|---|
B | SE | β | t | p | |
BMI | −0.16 | 0.06 | −0.27 | −0.28 | 0.006 ** |
Clinical disease activity grade | 0.84 | 0.35 | 0.23 | 2.41 | 0.018 * |
Model | R | R2 | adjusted R2 | ||
0.34 | 0.12 | 0.10 |
Before Treatment | After Treatment | p-Value | |
---|---|---|---|
Age, years | 35.4 ± 11.9 | - | - |
Gender, women | 4 (33.3%) | - | - |
Duration of disease, years | 7.3 ± 2.1 | - | - |
Clinical disease activity grade | 0.004 ** | ||
Remission | 0 | 3 (25%) | |
Mild | 3 (25%) | 7 (58.3%) | |
Moderate–Severe | 9 (75%) | 2 (16.7%) | |
BMI, kg/m2 | 24.53 ± 5.24 | 24.77 ± 5.07 | <0.001 ** |
CRP, mg/L | 4.66 ± 4.80 | 2.89 ± 4.53 | 0.49 |
Blood leucocytes count, GPt/L | 8.81 ± 2.25 | 6.88 ± 2.24 | 0.41 |
Fecal Calprotectin, µg/g | 2297 ± 4173 | 1339 ± 3127 | <0.001 ** |
ADS-L depression score | 12.6 ± 6.2 | 16.1 ± 4.9 | 0.020 * |
TNF-α inhibitor treatment, n (%) | |||
Infliximab | - | 6 (50%) | |
Adalimumab | - | 3 (25%) | |
Golimumab | - | 3 (25%) | |
Chemosensory function | |||
Threshold scores | 7.65 ± 1.98 | 8.31 ± 1.92 | 0.42 |
Discrimination scores | 12.83 ± 1.64 | 13.75 ± 1.36 | 0.09 |
Identification scores | 13.75 ± 1.22 | 14.25 ± 1.29 | 0.14 |
TDI scores | 34.23 ± 2.73 | 36.31 ± 2.94 | 0.038 * |
Taste sprays scores | 3.83 ± 0.39 | 3.92 ± 0.29 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Ordouie, A.-A.; Schmelz, R.; Hummel, T. Chemosensory Functions in Patients with Inflammatory Bowel Disease and Their Association with Clinical Disease Activity. Nutrients 2022, 14, 3543. https://doi.org/10.3390/nu14173543
Han X, Ordouie A-A, Schmelz R, Hummel T. Chemosensory Functions in Patients with Inflammatory Bowel Disease and Their Association with Clinical Disease Activity. Nutrients. 2022; 14(17):3543. https://doi.org/10.3390/nu14173543
Chicago/Turabian StyleHan, Xingyu, Ayda-Ayleen Ordouie, Renate Schmelz, and Thomas Hummel. 2022. "Chemosensory Functions in Patients with Inflammatory Bowel Disease and Their Association with Clinical Disease Activity" Nutrients 14, no. 17: 3543. https://doi.org/10.3390/nu14173543
APA StyleHan, X., Ordouie, A. -A., Schmelz, R., & Hummel, T. (2022). Chemosensory Functions in Patients with Inflammatory Bowel Disease and Their Association with Clinical Disease Activity. Nutrients, 14(17), 3543. https://doi.org/10.3390/nu14173543