Dose-Dependent Effects of Amino Acids on Clinical Outcomes in Adult Medical Inpatients Receiving Only Parenteral Nutrition: A Retrospective Cohort Study Using a Japanese Medical Claims Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Statements
2.2. Data Source
2.3. Data Extraction
2.4. Inclusion and Exclusion Criteria
2.5. Exposure
2.6. Outcome Variables
2.7. Statistical Analysis
3. Results
3.1. Patient characteristics
3.2. Primary Endpoint: In-Hospital Mortality
3.3. Secondary Endpoint
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iacone, R.; Scanzano, C.; Santarpia, L.; Cioffi, I.; Contaldo, F.; Pasanisi, F. Macronutrients in parenteral nutrition: Amino acids. Nutrients 2020, 12, 772. [Google Scholar] [CrossRef] [PubMed]
- Tomé, D. Amino acid metabolism and signalling pathways: Potential targets in the control of infection and immunity. Eur. J. Clin. Nutr. 2021, 75, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- American Society for Parenteral and Enteral Nutrition (ASPEN). Appropriate Dosing for Parenteral Nutrition: ASPEN Recommendations. 2019. Available online: http://www.nutritioncare.org/PNDosing (accessed on 28 May 2022).
- Sasabuchi, Y.; Ono, S.; Kamoshita, S.; Tsuda, T.; Murano, H.; Kuroda, A. A survey on total parenteral nutrition in 55,000 hospitalized patients: Retrospective cohort study using a medical claims database. Clin. Nutr. ESPEN 2020, 39, 198–205. [Google Scholar] [CrossRef]
- Tamiya, H.; Yasunaga, H.; Hosoi, T.; Yamana, H.; Matsui, H.; Fushimi, K.; Akishita, M.; Ogawa, S. Association between protein intake and mortality in older patients receiving parenteral nutrition: A retrospective observational study. Am. J. Clin. Nutr. 2021, 114, 1907–1916. [Google Scholar] [CrossRef]
- Maeda, K.; Murotani, K.; Kamoshita, S.; Horikoshi, Y.; Kuroda, A. Effect of parenteral energy or amino acid doses on in-hospital mortality, among patients with aspiration pneumonia: A cohort medical claims database study. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Yarandi, S.S.; Zhao, V.M.; Hebbar, G.; Ziegler, T.R. Amino acid composition in parenteral nutrition: What is the evidence? Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 75–82. [Google Scholar] [CrossRef]
- World Health Organization (WHO)-Regional Office for Europe. Body Mass Index-BMI. 2022. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi?source=post_page (accessed on 28 May 2022).
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Shigematsu, K.; Nakano, H.; Watanabe, Y. The eye response test alone is sufficient to predict stroke outcome -Reintroduction of Japan Coma Scale: A cohort study. BMJ Open 2013, 3, e002736. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development-OECD Data. Exchange Rates for 30 December 2021. Available online: https://data.oecd.org/conversion/exchange-rates.htm (accessed on 28 May 2022).
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef]
- Bendavid, I.; Zusman, O.; Kagan, I.; Theilla, M.; Cohen, J.; Singer, P. Early administration of protein in critically ill patients: A retrospective cohort study. Nutrients 2019, 11, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weijs, P.J.M.; Mogensen, K.M.; Rawn, J.D.; Christopher, K.B. Protein intake, ntritional status and outcomes in ICU survivors: A single center cohort study. J. Clin. Med. 2019, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Tribolet, P.; Bregenzer, T.; Braun, N.; et al. Individualised nutritional support in medical inpatients at nutritional risk: A randomised clinical trial. Lancet 2019, 393, 2312–2321. [Google Scholar] [CrossRef]
- Gomes, F.; Baumgartner, A.; Bounoure, L.; Bally, M.; Deutz, N.E.; Greenwald, J.L.; Stanga, Z.; Mueller, B.; Schuetz, P. Association of nutritional support with clinical outcomes among medical inpatients who are malnourished or at nutritional risk: An updated systematic review and meta-analysis. JAMA Netw. Open 2019, 2, e1915138. [Google Scholar] [CrossRef]
- Galvan, E.; Arentson-Lantz, E.; Lamon, S.; Paddon-Jones, D. Protecting skeletal muscle with protein and amino acid during periods of disuse. Nutrients 2016, 8, 404. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.C.; Schneider, S.M.; Feiveson, A.H.; Macias, B.R.; Smith, S.M.; Watenpaugh, D.E.; Hargens, A.R. WISE-2005: Countermeasures to prevent muscle deconditioning during bed rest in women. J. Appl. Physiol. 2014, 116, 654–667. [Google Scholar] [CrossRef]
- Wall, B.T.; van Loon, L.J. Nutritional strategies to attenuate muscle disuse atrophy. Nutr. Rev. 2013, 71, 195–208. [Google Scholar] [CrossRef]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef]
- Moisey, L.L.; Mourtzakis, M.; Cotton, B.A.; Premji, T.; Heyland, D.K.; Wade, C.E.; Bulger, E.; Kozar, R.A. Nutrition and Rehabilitation Investigators Consortium (NUTRIC). Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit. Care 2013, 17, R206. [Google Scholar] [CrossRef]
- Weijs, P.J.; Looijaard, W.P.G.; Dekker, I.M.; Stapel, S.N.; Girbes, A.R.; Oudemans-van Straaten, H.M.; Beishuizen, A. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit. Care 2014, 18, R12. [Google Scholar] [CrossRef]
- Maeda, K.; Akagi, J. Muscle mass loss is a potential predictor of 90-day mortality in older adults with aspiration pneumonia. J. Am. Geriatr. Soc. 2017, 65, e18–e22. [Google Scholar] [CrossRef] [PubMed]
- Yamana, H.; Moriwaki, M.; Horiguchi, H.; Kodan, M.; Fushimi, K.; Yasunaga, H. Validity of diagnoses, procedures, and laboratory data in Japanese administrative data. J. Epidemiol. 2017, 27, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Bendavid, I.; Singer, P.; Theilla, M.; Themessl-Huber, M.; Sulz, I.; Mouhieddine, M.; Schuh, C.; Mora, B.; Hiesmayr, M. Nutrition Day ICU: A 7 year worldwide prevalence study of nutrition practice in intensive care. Clin. Nutr. 2017, 36, 1122–1129. [Google Scholar] [CrossRef]
- Moick, S.; Hiesmayr, H.; Mouhieddine, M.; Kiss, N.; Bauer, P.; Sulz, I.; Singer, P.; Simon, J. Reducing the knowledge to action gap in hospital nutrition care-Developing and implementing Nutrition Day 2.0. Clin. Nutr. 2021, 40, 936–945. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Amino Acid Doses 1 | ||||
---|---|---|---|---|---|
Total (n = 86,702) n (%) | Adequate (n = 20,032) n (%) | Moderate (n = 25,537) n (%) | Low (n = 26,921) n (%) | Very Low (n = 14,212) n (%) | |
Age, years | |||||
18–59 | 13,773 (15.9) | 4296 (21.4) | 3672 (14.4) | 3992 (14.8) | 1813 (12.8) |
60–69 | 16,271 (18.8) | 4325 (21.6) | 4569 (17.9) | 5051 (18.8) | 2326 (16.4) |
70–79 | 23,280 (26.9) | 5452 (27.2) | 6653 (26.1) | 7418 (27.6) | 3757 (26.4) |
80–89 | 24,873 (28.7) | 4582 (22.9) | 7694 (30.1) | 7960 (29.6) | 4637 (32.6) |
>90 | 8505 (9.8) | 1377 (6.9) | 2949 (11.5) | 2500 (9.3) | 1679 (11.8) |
Sex | |||||
Male | 48,597 (56.1) | 10,723 (53.5) | 13,354 (52.3) | 16,552 (61.5) | 7968 (56.1) |
Female | 38,105 (43.9) | 9309 (46.5) | 12,183 (47.7) | 10,369 (38.5) | 6244 (43.9) |
Body mass index, kg/m2 | |||||
<16.0 | 11,713 (13.5) | 2064 (10.3) | 3643 (14.3) | 4119 (15.3) | 1887 (13.3) |
≥16.0 to <18.5 | 19,022 (21.9) | 4278 (21.4) | 5715 (22.4) | 6128 (22.8) | 2901 (20.4) |
≥18.5 to <22.5 | 33,945 (39.2) | 8220 (41.0) | 10,043 (39.3) | 10,200 (37.9) | 5482 (38.6) |
≥22.5 to <25.0 | 12,537 (14.5) | 3057 (15.3) | 3560 (13.9) | 3751 (13.9) | 2169 (15.3) |
≥25.0 to <30.0 | 7957 (9.2) | 1976 (9.9) | 2207 (8.6) | 2298 (8.5) | 1476 (10.4) |
≥30 | 1528 (1.8) | 437 (2.2) | 369 (1.4) | 425 (1.6) | 297 (2.1) |
Primary disease 2 | |||||
Digestive system malignancy | 22,853 (26.4) | 6146 (30.7) | 6994 (27.4) | 7055 (26.2) | 2658 (18.7) |
Hematological malignancy | 2865 (3.3) | 594 (3.0) | 843 (3.3) | 953 (3.5) | 475 (3.3) |
Other malignancy | 5577 (6.4) | 1306 (6.5) | 1692 (6.6) | 1867 (6.9) | 712 (5.0) |
Sepsis | 1494 (1.7) | 240 (1.2) | 407 (1.6) | 483 (1.8) | 364 (2.6) |
Coagulopathy disease | 827 (1.0) | 121 (0.6) | 190 (0.7) | 287 (1.1) | 229 (1.6) |
Cerebrovascular disease | 2952 (3.4) | 565 (2.8) | 933 (3.7) | 899 (3.3) | 555 (3.9) |
Cardiovascular disease | 3561 (4.1) | 444 (2.2) | 918 (3.6) | 1160 (4.3) | 1039 (7.3) |
Respiratory disease | 13,090 (15.1) | 2020 (10.1) | 4274 (16.7) | 4391 (16.3) | 2405 (16.9) |
Digestive system disease | 19,662 (22.7) | 5813 (29.0) | 5467 (21.4) | 5303 (19.7) | 3079 (21.7) |
Kidney/urinary tract disease | 2761 (3.2) | 398 (2.0) | 669 (2.6) | 799 (3.0) | 895 (6.3) |
Others | 11,060 (12.8) | 2385 (11.9) | 3150 (12.3) | 3724 (13.8) | 1801 (12.7) |
Charlson Comorbidity Index (CCI) | |||||
0 | 33,264 (38.4) | 7920 (39.5) | 9721 (38.1) | 10,179 (37.8) | 5444 (38.3) |
1 | 3676 (4.2) | 542 (2.7) | 940 (3.7) | 1124 (4.2) | 1070 (7.5) |
2 | 30,286 (34.9) | 7431 (37.1) | 9210 (36.1) | 9222 (34.3) | 4423 (31.1) |
≥3 | 19,476 (22.5) | 4139 (20.7) | 5666 (22.2) | 6396 (23.8) | 3275 (23.0) |
Barthel Index (BI) | |||||
100 | 31,278 (36.1) | 9477 (47.3) | 8894 (34.8) | 8995 (33.4) | 3912 (27.5) |
65–95 | 8177 (9.4) | 1932 (9.6) | 2393 (9.4) | 2622 (9.7) | 1230 (8.7) |
45–60 | 5588 (6.4) | 1175 (5.9) | 1636 (6.4) | 1815 (6.7) | 962 (6.8) |
25–40 | 3051 (3.5) | 568 (2.8) | 898 (3.5) | 1004 (3.7) | 581 (4.1) |
5–20 | 5333 (6.2) | 905 (4.5) | 1611 (6.3) | 1783 (6.6) | 1034 (7.3) |
0 | 23,117 (26.7) | 3783 (18.9) | 7140 (28.0) | 7587 (28.2) | 4607 (32.4) |
Missing | 10,158 (11.7) | 2192 (10.9) | 2965 (11.6) | 3115 (11.6) | 1886 (13.3) |
Japan Coma Scale (JCS) | |||||
0 | 65,633 (75.7) | 16,529 (82.5) | 19,081 (74.7) | 20,107 (74.7) | 9916 (69.8) |
1–3 | 11,463 (13.2) | 1938 (9.7) | 3506 (13.7) | 3803 (14.1) | 2216 (15.6) |
10–30 | 4655 (5.4) | 762 (3.8) | 1495 (5.9) | 1438 (5.3) | 960 (6.8) |
100–300 | 2638 (3.0) | 434 (2.2) | 758 (3.0) | 811 (3.0) | 635 (4.5) |
Missing | 2313 (2.7) | 369 (1.8) | 697 (2.7) | 762 (2.8) | 485 (3.4) |
Medical treatment 3 | |||||
Albumin infusion | 9840 (11.3) | 1661 (8.3) | 2389 (9.4) | 3294 (12.2) | 2496 (17.6) |
Blood transfusion | 16,208 (18.7) | 3125 (15.6) | 4461 (17.5) | 5321 (19.8) | 3301 (23.2) |
Respirator use | 5146 (5.9) | 528 (2.6) | 1130 (4.4) | 1883 (7.0) | 1605 (11.3) |
Dialysis | 2464 (2.8) | 100 (0.5) | 211 (0.8) | 602 (2.2) | 1551 (10.9) |
Nutrition support | 6204 (7.2) | 1281 (6.4) | 1913 (7.5) | 1981 (7.4) | 1029 (7.2) |
Rehabilitation | 29,906 (34.5) | 5450 (27.2) | 9130 (35.8) | 9938 (36.9) | 5388 (37.9) |
Parenteral nutrition (PN) 4 | |||||
Amino acid, g/kg/day, median (Q1,Q3) | 0.61 (0.47, 0.79) | 0.92 (0.85, 1.00) | 0.69 (0.64, 0.75) | 0.51 (0.47, 0.56) | 0.29 (0.20, 0.36) |
Energy, kcal/kg/day, median (Q1,Q3) | 15.0 (12.1, 19.4) | 20.0 (14.4, 25.2) | 17.1 (12.1, 20.1) | 14.1 (12.0, 16.1) | 12.1 (10.8, 14.7) |
Number of hospital beds | |||||
<200 | 8844 (10.2) | 1725 (8.6) | 2634 (10.3) | 2796 (10.4) | 1689 (11.9) |
≥200 to <500 | 47,890 (55.2) | 10,690 (53.4) | 14,019 (54.9) | 14,997 (55.7) | 8184 (57.6) |
≥500 | 29,968 (34.6) | 7617 (38.0) | 8884 (34.8) | 9128 (33.9) | 4339 (30.5) |
Year of admission | |||||
2011–2012 | 7412 (8.5) | 1997 (10.0) | 2153 (8.4) | 1998 (7.4) | 1264 (8.9) |
2013–2014 | 15,217 (17.6) | 3850 (19.2) | 4574 (17.9) | 4238 (15.7) | 2555 (18.0) |
2015–2016 | 21,442 (24.7) | 5167 (25.8) | 6526 (25.6) | 6339 (23.5) | 3410 (24.0) |
2017–2018 | 24,143 (27.8) | 5343 (26.7) | 7019 (27.5) | 7943 (29.5) | 3838 (27.0) |
2019–2020 | 18,488 (21.3) | 3675 (18.3) | 5265 (20.6) | 6403 (23.8) | 3145 (22.1) |
Type of admission | |||||
Elective | 47,395 (54.7) | 11,996 (59.9) | 13,897 (54.4) | 14,606 (54.3) | 6896 (48.5) |
Emergency | 39,233 (45.3) | 8027 (40.1) | 11,624 (45.5) | 12,291 (45.7) | 7291 (51.3) |
Missing | 74 (0.1) | 9 (0.0) | 16 (0.1) | 24 (0.1) | 25 (0.2) |
Secondary Endpoints | Amino Acid Doses 1 | p-Value | |||
---|---|---|---|---|---|
Adequate (n = 20,032) | Moderate (n = 25,537) | Low (n = 26,921) | Very Low (n = 14,212) | ||
Deterioration of ADL 2, n (%) | 1299 (9.5) | 1960 (12.3) | 2109 (13.5) | 936 (12.8) | <0.001 |
IV catheter infection, n (%) | 218 (1.1) | 236 (0.9) | 234 (0.9) | 132 (0.9) | 0.10 |
Hospital readmission 2, n (%) | 1127 (7.0) | 1383 (7.4) | 1393 (7.6) | 603 (6.9) | 0.08 |
Hospital LOS 2, days, median (Q1, Q3) | 33.0 (24.0, 49.0) | 34.0 (24.0, 53.0) | 34.0 (23.0, 53.0) | 36.0 (24.0, 57.0) | <0.001 |
Total medical costs, US $, median (Q1; Q3) | $15,729 ($10,430; $23,486) | $16,037 ($10,617; $24,299) | $16,411 ($10,701; $25,561) | $16,804 ($10,766; $27,009) | <0.001 |
Secondary Endpoints | Amino Acid Doses 2 | |||
---|---|---|---|---|
Adequate (n = 20,032) | Moderate (n = 25,537) | Low (n = 26,921) | Very Low (n = 14,212) | |
Deterioration of ADL 3 | Reference | 1.21 (1.11–1.32) | 1.34 (1.22–1.47) | 1.22 (1.09–1.37) |
IV Catheter infection | Reference | 1.06 (0.87–1.29) | 1.15 (0.92–1.42) | 1.21 (0.93–1.57) |
Hospital readmission 3 | Reference | 1.10 (1.01–1.20) | 1.11 (1.01–1.22) | 1.07 (0.95–1.20) |
Hospital LOS 3, days | Reference | 1.2 (0.4–2.1) | 1.5 (0.6–2.4) | 2.9 (1.8–4.1) |
Total medical cost, US $ | Reference | $1664 ($1234–$2093) | $2505 ($2047–$2953) | $2486 ($1944–$3028) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takagi, K.; Murotani, K.; Kamoshita, S.; Kuroda, A. Dose-Dependent Effects of Amino Acids on Clinical Outcomes in Adult Medical Inpatients Receiving Only Parenteral Nutrition: A Retrospective Cohort Study Using a Japanese Medical Claims Database. Nutrients 2022, 14, 3541. https://doi.org/10.3390/nu14173541
Takagi K, Murotani K, Kamoshita S, Kuroda A. Dose-Dependent Effects of Amino Acids on Clinical Outcomes in Adult Medical Inpatients Receiving Only Parenteral Nutrition: A Retrospective Cohort Study Using a Japanese Medical Claims Database. Nutrients. 2022; 14(17):3541. https://doi.org/10.3390/nu14173541
Chicago/Turabian StyleTakagi, Kosei, Kenta Murotani, Satoru Kamoshita, and Akiyoshi Kuroda. 2022. "Dose-Dependent Effects of Amino Acids on Clinical Outcomes in Adult Medical Inpatients Receiving Only Parenteral Nutrition: A Retrospective Cohort Study Using a Japanese Medical Claims Database" Nutrients 14, no. 17: 3541. https://doi.org/10.3390/nu14173541
APA StyleTakagi, K., Murotani, K., Kamoshita, S., & Kuroda, A. (2022). Dose-Dependent Effects of Amino Acids on Clinical Outcomes in Adult Medical Inpatients Receiving Only Parenteral Nutrition: A Retrospective Cohort Study Using a Japanese Medical Claims Database. Nutrients, 14(17), 3541. https://doi.org/10.3390/nu14173541