Effect of Peripheral Magnetic Stimulation for Dysphagia Rehabilitation: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Quality Appraisal
3. Results
3.1. Participants’ Characteristics
3.2. Intervention Approaches
3.3. Outcome Measures
3.3.1. Physiological Changes in Swallowing Function
3.3.2. Swallowing Safety
3.3.3. Swallowing Performance
3.3.4. Quality of Life
3.3.5. Swallowing Biomechanics
Author (Year) | Design Participants | Intervention Regime | Outcome Measure Assessment | Key Finding |
---|---|---|---|---|
Ogawa et al. 2020 [22] | RCT Healthy adults rPMS = 12 HLE = 12 | Active rPMS |
|
|
| ||||
HLE | ||||
| ||||
Momosaki et al., 2014 [23] | RCT Poststroke dysphagic patients (IG = 10, CG = 10) | Active rPMS | Swallowing ability: timed water swallow test, ISI, swallowing volume velocity (speed), volume per swallow (capacity) |
|
| ||||
Sham rPMS | ||||
| ||||
Mori et al., 2019 [24] | Case study Dysphagic patients with reduced hyoid elevation n = 2 | Active rPMS |
| Case 1 |
| ||||
| Case 2 | |||
| ||||
Momosaki et al., 2016 [25] | One group pre–post Healthy adults n = 10 | Active rPMS | Swallowing biomechanics: MEP |
|
| ||||
Momosaki et al., 2015 [26] | One group pre–post Poststroke dysphagic patients (n = 8) | Active rPMS |
|
|
| ||||
Kagaya et al., 2019 [27] | One group pre–post Healthy adults n = 12 | Active rPMS |
|
|
| ||||
Nagashima et al., 2021 [28] | One group pre–post Healthy adults (n = 20) | EMG-triggered rPMS |
|
|
|
Outcome | Number of Studies That Assessed This Outcome | Study | Effect | |
---|---|---|---|---|
Physiological changes in swallowing function | Displacement in the hyoid bone | 4 | Ogawa, 2020 [22] | – (forward, upward) |
Kagaya, 2019 [27] | x | |||
Mori, 2019 [24] | ^ (forward, upward) | |||
Nagashima, 2021 [28] | +++ (forward), – (upward) | |||
Opening width of UES | 2 | Ogawa, 2020 [22] | – | |
Nagashima, 2021 [28] | +++ | |||
LEDT | 1 | Momosaki, 2015 [26] | +++ | |
ISI | 1 | Momosaki, 2014 [23] | ^ | |
Swallowing speed | 1 | Momosaki, 2014 [23] | +++ | |
Swallowing capacity | 1 | Momosaki, 2014 [23] | +++ | |
Muscle strength | 2 | Ogawa, 2020 [22] | ++ (cervical flexor), ^(JOF) | |
Mori, 2019 [24] | ^ (cervical flexor, JOF) | |||
UES relaxation time | 1 | Nagashima, 2021 [28] | – | |
Swallowing safety | PAS | 1 | Momosaki, 2015 [26] | +++ |
Swallowing performance | MASA | 2 | Momosaki, 2015 [26] | +++ |
FOIS | Momosaki, 2015 [26] | ^ | ||
Quality of life | SWAL-QOL | 1 | Momosaki, 2015 [26] | +++ |
Swallowing biomechanics | EMG-MF rate | 2 | Ogawa, 2020 [22] | – |
Mori, 2019 [24] | ^ | |||
Tongue pressure | 2 | Ogawa, 2020 [22] | + | |
Nagashima, 2021 [28] | – | |||
Maximum post-closure UES pressure | 1 | Nagashima, 2021 [28] | +++ | |
Maximum velopharyngeal pressure | 1 | Nagashima, 2021 [28] | – | |
Maximum pre-opening UES pressure | 1 | Nagashima, 2021 [28] | – | |
Maximum nadir UES pressure | 1 | Nagashima, 2021 [28] | – | |
Neurophysiological changes | MEP | 1 | Momosaki, 2016 [25] | +++ |
Other measures | Pain | 3 | Ogawa, 2020 [22] | NRS = 0 |
Kagaya, 2019 [27] | NRS (median) = 1 | |||
Mori, 2019 [24] | NRS = 0 | |||
Compliance | 1 | Ogawa, 2020 [22] | # | |
Adverse reactions | 4 | Mori, 2019 [24] | * | |
Momosaki, 2016 [25] | * | |||
Momosaki, 2015 [26] | * | |||
Momosaki, 2014 [23] | * |
3.3.6. Neurophysiological Changes
3.3.7. Other Measures: Pain, Compliance, and Adverse Reactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishida, R.; Palmer, J.B.; Hiiemae, K.M. Hyoid motion during swallowing: Factors affecting forward and upward displacement. Dysphagia 2002, 17, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Cook, I.J.; Dodds, W.J.; Dantas, R.O.; Kern, M.K.; Massey, B.T.; Shaker, R.; Hogan, W.J. Timing of videofluoroscopic, manometric events, and bolus transit during the oral and pharyngeal phases of swallowing. Dysphagia 1989, 4, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Todd, T.; Lintzenich, C.R.; Ding, J.; Carr, J.J.; Ge, Y.; Browne, J.D.; Kritchevsky, S.B.; Butler, S.G. Aging-related geniohyoid muscle atrophy is related to aspiration status in healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 853–860. [Google Scholar] [CrossRef]
- Chen, Y.W.; Chang, K.H.; Chen, H.C.; Liang, W.M.; Wang, Y.H.; Lin, Y.N. The effects of surface neuromuscular electrical stimulation on post-stroke dysphagia: A systemic review and meta-analysis. Clin. Rehabil. 2016, 30, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Liu, Y.; Li, W.; Liu, J.; Chen, L. Transcutaneous neuromuscular electrical stimulation can improve swallowing function in patients with dysphagia caused by non-stroke diseases: A meta-analysis. J. Oral Rehabil. 2013, 40, 472–480. [Google Scholar] [CrossRef]
- Oh, D.H.; Park, J.S.; Kim, H.J.; Chang, M.Y.; Hwang, N.K. The effect of neuromuscular electrical stimulation with different electrode positions on swallowing in stroke patients with oropharyngeal dysphagia: A randomized trial. J. Back Musculoskelet. Rehabil. 2020, 33, 637–644. [Google Scholar] [CrossRef]
- Park, J.S.; Oh, D.H.; Hwang, N.K.; Lee, J.H. Effects of neuromuscular electrical stimulation combined with effortful swallowing on post-stroke oropharyngeal dysphagia: A randomised controlled trial. J. Oral Rehabil. 2016, 43, 426–434. [Google Scholar] [CrossRef]
- Humbert, I.A.; Christopherson, H.; Lokhande, A.; German, R.; Gonzalez-Fernandez, M.; Celnik, P. Human hyolaryngeal movements show adaptive motor learning during swallowing. Dysphagia 2013, 28, 139–145. [Google Scholar] [CrossRef]
- Humbert, I.A.; Poletto, C.J.; Saxon, K.G.; Kearney, P.R.; Crujido, L.; Wright-Harp, W.; Payne, J.; Jeffries, N.; Sonies, B.C.; Ludlow, C.L. The effect of surface electrical stimulation on hyolaryngeal movement in normal individuals at rest and during swallowing. J. Appl. Physiol. 2006, 101, 1657–1663. [Google Scholar] [CrossRef]
- Kim, S.J.; Han, T.R. Effect of surface electrical stimulation of suprahyoid muscles on hyolaryngeal movement. Neuromodulation 2009, 12, 134–140. [Google Scholar] [CrossRef]
- Kagaya, H.; Baba, M.; Saitoh, E.; Okada, S.; Yokoyama, M.; Muraoka, Y. Hyoid bone and larynx movements during electrical stimulation of motor points in laryngeal elevation muscles: A preliminary study. Neuromodulation 2011, 14, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, L.D.; Schneider, C. Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review. Neurophysiol. Clin. 2013, 43, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.T.; Freeston, I.L.; Jalinous, R.; Jarratt, J.A. Magnetic stimulation of the human brain and peripheral nervous system: An introduction and the results of an initial clinical evaluation. Neurosurgery 1987, 20, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Tsubahara, A.; Watanabe, S. Use of electrical or magnetic stimulation for generating hip flexion torque. Am. J. Phys. Med. Rehabil. 2013, 92, 755–761. [Google Scholar] [CrossRef]
- Han, T.R.; Shin, H.I.; Kim, I.S. Magnetic stimulation of the quadriceps femoris muscle: Comparison of pain with electrical stimulation. Am. J. Phys. Med. Rehabil. 2006, 85, 593–599. [Google Scholar] [CrossRef]
- Tsubahara, A.; Kamiue, M.; Ito, T.; Kishimoto, T.; Kurozumi, C. Measurement of maximal muscle contraction force induced by high-frequency magnetic stimulation: A preliminary study on the identification of the optimal stimulation site. Jpn. J. Compr. Rehabil. Sci. 2021, 12, 27–31. [Google Scholar] [CrossRef]
- Heldmann, B.; Kerkhoff, G.; Struppler, A.; Havel, P.; Jahn, T. Repetitive peripheral magnetic stimulation alleviates tactile extinction. Neuroreport 2000, 11, 3193–3198. [Google Scholar] [CrossRef]
- Struppler, A.; Angerer, B.; Gündisch, C.; Havel, P. Modulatory effect of repetitive peripheral magnetic stimulation on skeletal muscle tone in healthy subjects: Stabilization of the elbow joint. Exp. Brain Res. 2004, 157, 59–66. [Google Scholar] [CrossRef]
- Sakai, K.; Yasufuku, Y.; Kamo, T.; Ota, E.; Momosaki, R. Repetitive peripheral magnetic stimulation for impairment and disability in people after stroke. Cochrane Database Syst. Rev. 2019, 11, CD011968. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The well-built clinical question: A key to evidence-based decisions. ACP J. Club 1995, 123, A12–A13. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Kagaya, H.; Nagashima, Y.; Mori, S.; Shibata, S.; Inamoto, Y.; Aoyagi, Y.; Toda, F.; Ozeki, M.; Saitoh, E. Repetitive Peripheral Magnetic Stimulation for Strengthening of the Suprahyoid Muscles: A Randomized Controlled Trial. Neuromodulation 2020, 23, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Momosaki, R.; Abo, M.; Watanabe, S.; Kakuda, W.; Yamada, N.; Mochio, K. Functional magnetic stimulation using a parabolic coil for dysphagia after stroke. Neuromodulation 2014, 17, 637–641. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Kagaya, H.; Nagashima, Y.; Toda, F.; Kuwabara, A.; Masuda, Y.; Sato, Y.; Ogawa, M.; Tsunoda, T.; Akahori, R.; et al. Feasibility of repetitive peripheral magnetic stimulation for dysphagia with reduced hyoid elevation: A report of two cases. Jpn. J. Compr. Rehabili. Sci. 2019, 10, 42–46. [Google Scholar] [CrossRef]
- Momosaki, R.; Kakuda, W.; Yamada, N.; Abo, M. Influence of repetitive peripheral magnetic stimulation on neural plasticity in the motor cortex related to swallowing. Int. J. Rehabil. Res. 2016, 39, 263–266. [Google Scholar] [CrossRef]
- Momosaki, R.; Abo, M.; Watanabe, S.; Kakuda, W.; Yamada, N.; Kinoshita, S. Repetitive Peripheral Magnetic Stimulation with Intensive Swallowing Rehabilitation for Poststroke Dysphagia: An Open-Label Case Series. Neuromodulation 2015, 18, 630–635. [Google Scholar] [CrossRef]
- Kagaya, H.; Ogawa, M.; Mori, S.; Aoyagi, Y.; Shibata, S.; Inamoto, Y.; Mori, H.; Saitoh, E. Hyoid Bone Movement at Rest by Peripheral Magnetic Stimulation of Suprahyoid Muscles in Normal Individuals. Neuromodulation 2019, 22, 593–596. [Google Scholar] [CrossRef]
- Nagashima, Y.; Kagaya, H.; Toda, F.; Aoyagi, Y.; Shibata, S.; Saitoh, E.; Abe, K.; Nakayama, E.; Ueda, K. Effect of electromyography-triggered peripheral magnetic stimulation on voluntary swallow in healthy humans. J. Oral Rehabil. 2021, 48, 1354–1362. [Google Scholar] [CrossRef]
- Xie, Y.L.; Wang, S.; Jia, J.M.; Xie, Y.H.; Chen, X.; Qing, W.; Wang, Y.X. Transcranial Magnetic Stimulation for Improving Dysphagia After Stroke: A Meta-Analysis of Randomized Controlled Trials. Front. Neurosci. 2022, 16, 854219. [Google Scholar] [CrossRef]
- Yu-Lei, X.; Shan, W.; Ju, Y.; Yu-Han, X.; Wu, Q.; Yin-Xu, W. Theta burst stimulation versus high-frequency repetitive transcranial magnetic stimulation for poststroke dysphagia: A randomized, double-blind, controlled trial. Medicine 2022, 101, e28576. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, G.; Dai, Y. Clinical effect of repetitive transcranial magnetic stimulation on dysphagia due to stroke. Neurol. Sci. 2022, 43, 3139–3144. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Rao, J.; Wang, J.; Li, F.; Peng, Y.; Liu, H.; Zhang, Y.; Wang, P. Repetitive Transcranial Magnetic Stimulation at Different Sites for Dysphagia after Stroke: A Randomized, Observer-Blind Clinical Trial. Front. Neurol. 2021, 12, 625683. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E.M.; Mohamed, K.O.; Soliman, R.K.; Hassan, A.M.M.; Rothwell, J.C. The Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Advancing Parkinson’s Disease with Dysphagia: Double Blind Randomized Clinical Trial. Neurorehabil. Neural Repair 2019, 33, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Safi, M.F.; Martin, S.; Gray, L.; Ludlow, C.L. Healthy Volunteers Immediately Adapt to Submental Stimulation during Swallowing. Neuromodulation, 2021; in press. [Google Scholar] [CrossRef]
- Park, J.S.; Oh, D.H.; Chang, M.Y.; Kim, K.M. Effects of expiratory muscle strength training on oropharyngeal dysphagia in subacute stroke patients: A randomised controlled trial. J. Oral Rehabil. 2016, 43, 364–372. [Google Scholar] [CrossRef]
- Wheeler, K.M.; Chiara, T.; Sapienza, C.M. Surface electromyographic activity of the submental muscles during swallow and expiratory pressure threshold training tasks. Dysphagia 2007, 22, 108–116. [Google Scholar] [CrossRef]
- Matsuo, K.; Palmer, J.B. Anatomy and physiology of feeding and swallowing: Normal and abnormal. Phys. Med. Rehabil. Clin. N. Am. 2008, 19, 691–707. [Google Scholar] [CrossRef]
- Ertekin, C.; Aydogdu, I. Neurophysiology of swallowing. Clin. Neurophysiol. 2003, 114, 2226–2244. [Google Scholar] [CrossRef]
- Pae, E.K.; Blasius, J.J.; Nanda, R. Heterogeneity in vertical positioning of the hyoid bone in relation to genioglossal activity in men. Angle Orthod. 2004, 74, 343–348. [Google Scholar]
- Park, J.S.; Hwang, N.K.; Kim, H.H.; Choi, J.B.; Chang, M.Y.; Jung, Y.J. Effects of lingual strength training on oropharyngeal muscles in South Korean adults. J. Oral Rehabil. 2019, 46, 1036–1041. [Google Scholar] [CrossRef]
- Gallas, S.; Marie, J.P.; Leroi, A.M.; Verin, E. Sensory transcutaneous electrical stimulation improves post-stroke dysphagic patients. Dysphagia 2010, 25, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Struppler, A.; Binkofski, F.; Angerer, B.; Bernhardt, M.; Spiegel, S.; Drzezga, A.; Bartenstein, P. A fronto-parietal network is mediating improvement of motor function related to repetitive peripheral magnetic stimulation: A PET-H2O15 study. Neuroimage 2007, 36 (Suppl. 2), T174–T186. [Google Scholar] [CrossRef] [PubMed]
Author Year | Ogawa 2019 [22] | Momosaki 2014 [23] |
Randomization process | some concern | some concern |
Deviations from intended interventions | low risk | low risk |
Missing outcome data | low risk | low risk |
Measurement of the outcome | low risk | some concern |
Selection of the reported result | low risk | low risk |
Overall bias | low risk | some concern |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, N.-K.; Park, J.-S.; Choi, J.-B.; Jung, Y.-J. Effect of Peripheral Magnetic Stimulation for Dysphagia Rehabilitation: A Systematic Review. Nutrients 2022, 14, 3514. https://doi.org/10.3390/nu14173514
Hwang N-K, Park J-S, Choi J-B, Jung Y-J. Effect of Peripheral Magnetic Stimulation for Dysphagia Rehabilitation: A Systematic Review. Nutrients. 2022; 14(17):3514. https://doi.org/10.3390/nu14173514
Chicago/Turabian StyleHwang, Na-Kyoung, Ji-Su Park, Jong-Bae Choi, and Young-Jin Jung. 2022. "Effect of Peripheral Magnetic Stimulation for Dysphagia Rehabilitation: A Systematic Review" Nutrients 14, no. 17: 3514. https://doi.org/10.3390/nu14173514
APA StyleHwang, N. -K., Park, J. -S., Choi, J. -B., & Jung, Y. -J. (2022). Effect of Peripheral Magnetic Stimulation for Dysphagia Rehabilitation: A Systematic Review. Nutrients, 14(17), 3514. https://doi.org/10.3390/nu14173514