Association of Japanese Breakfast Intake with Macro- and Micronutrients and Morning Chronotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Protocol
2.2.1. Questionnaire
2.2.2. Sleep Parameters and Assessment of Morning Type or Evening Type
2.2.3. Physical Activity
2.2.4. Dietary Data
2.2.5. Breakfast Style
2.2.6. Eating Period
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dashti, H.S.; Scheer, F.A.; Jacques, P.F.; Lamon-Fava, S.; Ordovás, J.M. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Lipinski, J.; Romero-Martín, M.; Jiménez-Picón, N.; Lomas-Campos, M.; Romero-Castillo, R.; Ponce-Blandón, J.A. Breakfast Habits among Schoolchildren in the City of Uruguaiana, Brazil. J. Vis. Exp. 2020, 161, e61490. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A.; et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef]
- Affenito, S.G. Breakfast: A missed opportunity. J. Am. Diet. Assoc. 2007, 107, 565–569. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K. Meal Timing and Frequency:Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, F.; Marcovecchio, M.L. Insulin resistance and obesity in childhood. Eur. J. Endocrinol. 2008, 159 (Suppl. 1), S67–S74. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Gan, Y.; Yang, C.; Chen, Y.; Tong, X.; Lu, Z. Breakfast skipping and the risk of type 2 diabetes: A meta-analysis of observational studies. Public Health Nutr. 2015, 18, 3013–3019. [Google Scholar] [CrossRef]
- Kant, A.K.; Graubard, B.I. Within-person comparison of eating behaviors, time of eating, and dietary intake on days with and without breakfast: NHANES 2005–2010. Am. J. Clin. Nutr. 2015, 102, 661–670. [Google Scholar] [CrossRef]
- Ogata, H.; Horie, M.; Kayaba, M.; Tanaka, Y.; Ando, A.; Park, I.; Zhang, S.; Yajima, K.; Shoda, J.I.; Omi, N.; et al. Skipping Breakfast for 6 Days Delayed the Circadian Rhythm of the Body Temperature without Altering Clock Gene Expression in Human Leukocytes. Nutrients 2020, 12, 2797. [Google Scholar] [CrossRef]
- Pendergast, F.J.; Livingstone, K.M.; Worsley, A.; McNaughton, S.A. Correlates of meal skipping in young adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 125. [Google Scholar] [CrossRef] [Green Version]
- Mazri, F.H.; Manaf, Z.A.; Shahar, S.; Mat Ludin, A.F. The Association between Chronotype and Dietary Pattern among Adults: A Scoping Review. Int. J. Environ. Res. Public Health 2019, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Kohsaka, A.; Laposky, A.D.; Ramsey, K.M.; Estrada, C.; Joshu, C.; Kobayashi, Y.; Turek, F.W.; Bass, J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007, 6, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Bertone, E.R.; Stanek, E.J., 3rd; Reed, G.W.; Hebert, J.R.; Cohen, N.L.; Merriam, P.A.; Ockene, I.S. Association between eating patterns and obesity in a free-living US adult population. Am. J. Epidemiol. 2003, 158, 85–92. [Google Scholar] [CrossRef]
- Shinozaki, N.; Murakami, K.; Asakura, K.; Masayasu, S.; Sasaki, S. Identification of Dish-Based Dietary Patterns for Breakfast, Lunch, and Dinner and Their Diet Quality in Japanese Adults. Nutrients 2020, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Livingstone, M.B.E.; Shinozaki, N.; Sugimoto, M.; Fujiwara, A.; Masayasu, S.; Sasaki, S. Food Combinations in Relation to the Quality of Overall Diet and Individual Meals in Japanese Adults: A Nationwide Study. Nutrients 2020, 12, 327. [Google Scholar] [CrossRef]
- Aoyama, S.; Shibata, S. Time-of-Day-Dependent Physiological Responses to Meal and Exercise. Front. Nutr. 2020, 7, 18. [Google Scholar] [CrossRef]
- Tahara, Y.; Shinto, T.; Inoue, K.; Roshanmehr, F.; Ito, A.; Michie, M.; Shibata, S. Changes in sleep phase and body weight of mobile health App users during COVID-19 mild lockdown in Japan. Int. J. Obes. 2021, 45, 2277–2280. [Google Scholar] [CrossRef]
- Shimpo, M.; Fukkoshi, Y.; Akamatsu, R. Correlations between self-efficacy in resisting six temptations and dietary energy and macronutrient intake at each meal. Eat. Behav. 2014, 15, 563–566. [Google Scholar] [CrossRef]
- Matsuzaki, E.; Michie, M.; Kawabata, T. Validity of nutrient intakes derived from an internet website dish-based dietary record for self-management of weight among japanese women. Nutrients 2017, 9, 1058. [Google Scholar] [CrossRef]
- Shinozaki, N.; Murakami, K. Evaluation of the ability of diet-tracking mobile applications to estimate energy and nutrient intake in japan. Nutrients 2020, 12, 3327. [Google Scholar] [CrossRef]
- Ministry of Health, Labour and Welfare, Japan. In The National Health and Nutrition Survey in Japan; 2019. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed on 5 October 2021). (In Japanese)
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social jetlag and obesity. Curr. Biol. 2012, 22, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Van der Vinne, V.; Zerbini, G.; Siersema, A.; Pieper, A.; Merrow, M.; Hut, R.A.; Roenneberg, T.; Kantermann, T. Timing of examinations affects school performance differently in early and late chronotypes. J. Biol. Rhythms 2015, 30, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Imamura, M.; Sasaki, H.; Shinto, T.; Tahara, Y.; Makino, S.; Kuwahara, M.; Tada, A.; Abe, N.; Michie, M.; Shibata, S. Association between Na, K and lipid intake in each meal and blood pressure. Front Nutr. 2022, 9, 853118. [Google Scholar] [CrossRef]
- Paoli, A.; Tinsley, G.; Bianco, A.; Moro, T. The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. Nutrients 2019, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz, D.; Barnea, M.; Wainstein, J.; Froy, O. High caloric intake at breakfast vs. Dinner differentially influences weight loss of overweight and obese women. Obesity 2013, 21, 2504–2512. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A.S.; Ninomiya, K.; Uneyama, H. The Role of the Japanese Traditional Diet in Healthy and Sustainable Dietary Patterns around the World. Nutrients 2018, 10, 173. [Google Scholar] [CrossRef]
- Calder, P.C. Very long-chain n-3 fatty acids and human health: Fact, fiction and the future. Proc. Nutr. Soc. 2017, 17, 1–21. [Google Scholar] [CrossRef]
- Jayagopal, V.; Albertazzi, P.; Kilpatrick, E.S.; Howarth, E.M.; Jennings, P.E.; Hepburn, D.A.; Atkin, S.L. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care 2002, 25, 1709–1714. [Google Scholar] [CrossRef]
- Rivas, M.; Garay, R.P.; Escanero, J.F.; Cia, P.; Cia, P., Jr.; Alda, J.O. Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. J. Nutr. 2002, 132, 1900–1902. [Google Scholar] [CrossRef]
- Shimazu, T.; Kuriyama, S.; Hozawa, A.; Ohmori, K.; Sato, Y.; Nakaya, N.; Nishino, Y.; Tsubono, Y.; Tsuji, I. Dietary patterns and cardiovascular disease mortality in Japan: A prospective cohort study. Int. J. Epidemiol. 2007, 63, 600–609. [Google Scholar] [CrossRef] [Green Version]
- Wehrens, S.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. CB 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef] [PubMed]
- Sato-Mito, N.; Sasaki, S.; Murakami, K.; Okubo, H.; Takahashi, Y.; Shibata, S.; Yamada, K.; Sato, K.; Freshmen in Dietetic Courses Study II group. The midpoint of sleep is associated with dietary intake and dietary behavior among young Japanese women. Sleep Med. 2011, 12, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Sato-Mito, N.; Shibata, S.; Sasaki, S.; Sato, K. Dietary intake is associated with human chronotype as assessed by both morningness-eveningness score and preferred midpoint of sleep in young Japanese women. Int. J. Food Sci. Nutr. 2011, 62, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Fleig, D.; Randler, C. Association between chronotype and diet in adolescents based on food logs. Eat. Behav. 2009, 10, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Hood, M.M.; Crowley, S.J.; Morgan, M.K.; Teodori, M.; Knutson, K.L. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol. Int. 2014, 31, 64–71. [Google Scholar] [CrossRef]
- Silva, C.M.; Mota, M.C.; Miranda, M.T.; Paim, S.L.; Waterhouse, J.; Crispim, C.A. Chronotype, social jetlag and sleep debt are associated with dietary intake among Brazilian undergraduate students. Chronobiol. Int. 2016, 33, 740–748. [Google Scholar] [CrossRef]
- Toktas, N.; Erman, K.A.; Mert, Z. Nutritional Habits According to Human Chronotype and Nutritional Status of Morningness and Eveningness. J. Educ. Train. Stud. 2018, 6, 61–67. [Google Scholar] [CrossRef]
- Maukonen, M.; Kanerva, N.; Partonen, T.; Kronholm, E.; Konttinen, H.; Wennman, H.; Männistö, S. The associations between chronotype, a healthy diet and obesity. Chronobiol. Int. 2016, 33, 972–981. [Google Scholar] [CrossRef]
- Tahara, Y.; Shibata, S. Entrainment of the mouse circadian clock: Effects of stress, exercise, and nutrition. Free. Radic. Biol. Med. 2018, 119, 129–138. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kamagata, M.; Hirao, M.; Yasuda, S.; Iwami, S.; Sasaki, H.; Tsubosaka, M.; Hattori, Y.; Todoh, A.; Tamura, K.; et al. Glucagon and/or IGF-1 Production Regulates Resetting of the Liver Circadian Clock in Response to a Protein or Amino Acid-only Diet. EBioMedicine 2018, 28, 210–224. [Google Scholar] [CrossRef] [Green Version]
- Furutani, A.; Ikeda, Y.; Itokawa, M.; Nagahama, H.; Ohtsu, T.; Furutani, N.; Kamagata, M.; Yang, Z.H.; Hirasawa, A.; Tahara, Y.; et al. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120. PLoS ONE 2015, 10, e0132472. [Google Scholar] [CrossRef]
- Tahara, Y.; Yamazaki, M.; Sukigara, H.; Motohashi, H.; Sasaki, H.; Miyakawa, H.; Haraguchi, A.; Ikeda, Y.; Fukuda, S.; Shibata, S. Gut Microbiota-Derived Short Chain Fatty Acids Induce Circadian Clock Entrainment in Mouse Peripheral Tissue. Sci. Rep. 2018, 8, 1395. [Google Scholar] [CrossRef] [PubMed]
- Varsamis, N.A.; Christou, G.A.; Kiortsis, D.N. A critical review of the effects of vitamin K on glucose and lipid homeostasis: Its potential role in the prevention and management of type 2 diabetes. Hormones 2021, 20, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Oike, H.; Nagai, K.; Fukushima, T.; Ishida, N.; Kobori, M. High-salt diet advances molecular circadian rhythms in mouse peripheral tissues. Biochem. Bioph. Res. Co. 2021, 402, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Livingstone, M.B.E.; Masayasu, S.; Sasaki, S. Eating patterns in a nationwide sample of Japanese aged 1–79 years from MINNADE study: Eating frequency, clock time for eating, time spent on eating and variability of eating patterns. Public Health Nutr. 2021, 25, 1–13. [Google Scholar] [CrossRef]
- Ishihara, K.; Miyake, S.; Miyasita, A.; Miyata, Y. Morningness-eveningness preference and sleep habits in Japanese office workers of different ages. Chronobiologia 1992, 19, 9–16. [Google Scholar]
- Treven Pišljar, N.; Štukovnik, V.; Zager Kocjan, G.; Dolenc-Groselj, L. Validity and reliability of the Slovene version of the Morningness-Eveningness Questionnaire. Chronobiol. Int. 2019, 36, 1409–1417. [Google Scholar] [CrossRef]
- Sasaki, S. The value of the National Health and Nutrition Survey in Japan. Lancet 2011, 378, 1205–1206. [Google Scholar] [CrossRef]
- Ikeda, N.; Saito, E.; Kondo, N.; Inoue, M.; Ikeda, S.; Satoh, T.; Wada, K.; Stickley, A.; Katanoda, K.; Mizoue, T.; et al. What has made the population of Japan healthy? Lancet 2011, 378, 1094–1105. [Google Scholar] [CrossRef]
Male (Mean ± SD) | Female (Mean ± SD) | p | |
---|---|---|---|
Number | 766 | 1805 | |
Age | 50.05 ± 10.9 | 44.3 ± 11.28 | <0.0001 |
BMI | 24.27 ± 3.3 | 22.78 ±3.8 | <0.0001 |
Physical activity (METs) | 38.04 ± 44.2 | 29.7 ± 39.3 | <0.0001 |
BF style; Japanese (%) | 223(29) | 417(23) | 0.001 |
BF style; J-W | 69(9) | 236(13) | 0.003 |
BF style; Western | 204(27) | 543(30) | NS |
BF style; Cereal | 228(30) | 558(31) | NS |
weekday sleep onset (1) | 23.24 ± 0.84 | 23.81 ± 1.24 | <0.0001 |
weekday wake-up (1) | 6.28 ± 1.26 | 6.67 ± 1.37 | NS |
free day sleep onset (1) | 23.75 ± 1.36 | 24.11 ± 1.32 | <0.0001 |
free day wake-up (1) | 7.24 ± 1.45 | 7.80 ± 1.51 | <0.0001 |
weekday sleep duration (2) | 6.73 ± 1.1 | 6.85 ± 1.12 | 0.0175 |
free day sleep duration (2) | 7.49 ± 1.24 | 7.68 ± 1.16 | 0.0001 |
MSFsc (1) | 3.06 ± 1.25 | 3.49 ± 1.26 | <0.0001 |
Sex | Age | BMI | Mets | Japanese | J-W | Western | Cereal | |
---|---|---|---|---|---|---|---|---|
weekday sleep onset | −0.035 | 0.092 ** | −0.034 | 0.061 ** | 0.020 | 0.008 | 0.013 | −0.009 |
weekday wake-up | 0.136 ** | −0.222 ** | 0.071 ** | −0.086 ** | −0.090 ** | 0.001 | −0.048 * | 0.054 ** |
free day sleep onset | −0.050 * | 0.070 ** | −0.023 | 0.043 * | 0.011 | 0.008 | 0.015 | −0.014 |
free day wake-up | 0.168 ** | −0.295 ** | 0.071 ** | −0.126 ** | −0.093 ** | −0.031 | −0.049 * | 0.079 ** |
weekday sleep duration | 0.047 * | −0.109 ** | 0.013 | −0.042 * | 0.001 | 0.021 | −0.032 | −0.002 |
free day duration | 0.075 ** | −0.176 ** | 0.034 | −0.099 ** | 0.000 | −0.028 | −0.032 | 0.019 |
MSFsc | 0.161 ** | −0.246 ** | 0.071 ** | −0.092 ** | −0.110 ** | −0.010 | −0.035 | 0.067 ** |
Japanese | J-W | Western | Cereal | |||||||
---|---|---|---|---|---|---|---|---|---|---|
β | P | β | P | β | P | β | P | R2 | F | |
weekday sleep onset | 0.196 | 0.000 | 0.13 | 0.000 | 0.155 | 0.000 | 0.135 | 0.001 | 0.044 | 14.4 |
weekday wake-up | −0.327 | 0.000 | −0.208 | 0.000 | −0.289 | 0.000 | −0.255 | 0.000 | 0.108 | 61.4 |
free day sleep onset | 0.180 | 0.000 | 0.115 | 0.000 | 0.141 | 0.000 | 0.112 | 0.004 | 0.048 | 15.8 |
free daywake-up | −0.313 | 0.000 | −0.212 | 0.000 | −0.259 | 0.000 | −0.219 | 0.000 | 0.155 | 57.0 |
weekday sleep duration | −0.074 | 0.053 | −0.039 | 0.217 | −0.092 | 0.021 | −0.091 | 0.023 | 0.017 | 5.49 |
free day sleep duration | −0.064 | 0.088 | −0.063 | 0.044 | −0.079 | 0.044 | −0.069 | 0.081 | 0.032 | 10.19 |
MSFsc | −0.334 | 0.000 | −0.203 | 0.000 | −0.264 | 0.000 | −0.226 | 0.000 | 0.131 | 66.7 |
Breakfast | Japanese | J-W | Western | Cereal | ||||||
---|---|---|---|---|---|---|---|---|---|---|
β | P | β | P | β | P | β | P | R2 | F | |
Energy | 0.647 | 0.000 | 0.429 | 0.000 | 0.548 | 0.000 | 0.316 | 0.000 | 0.239 | 96.5 |
protein | 0.522 | 0.000 | 0.326 | 0.000 | 0.385 | 0.000 | 0.390 | 0.000 | 0.126 | 44.0 |
lipid | 0.376 | 0.000 | 0.301 | 0.000 | 0.457 | 0.000 | 0.171 | 0.000 | 0.146 | 52.6 |
carbohydrate | 0.668 | 0.000 | 0.432 | 0.000 | 0.532 | 0.000 | 0.327 | 0.000 | 0.225 | 89.1 |
sodium | 0.566 | 0.000 | 0.340 | 0.000 | 0.282 | 0.000 | 0.057 | 0.107 | 0.278 | 118.1 |
potassium | 0.502 | 0.000 | 0.309 | 0.000 | 0.331 | 0.000 | 0.387 | 0.000 | 0.122 | 42.3 |
calcium | 0.241 | 0.000 | 0.170 | 0.000 | 0.268 | 0.000 | 0.352 | 0.000 | 0.060 | 19.7 |
magnesium | 0.358 | 0.000 | 0.182 | 0.000 | 0.157 | 0.000 | 0.347 | 0.000 | 0.082 | 27.6 |
phosphorus | 0.540 | 0.000 | 0.321 | 0.000 | 0.378 | 0.000 | 0.355 | 0.000 | 0.117 | 41.3 |
iron | 0.208 | 0.000 | 0.121 | 0.000 | 0.118 | 0.004 | 0.278 | 0.000 | 0.031 | 9.90 |
zinc | 0.225 | 0.000 | 0.125 | 0.000 | 0.096 | 0.019 | 0.181 | 0.000 | 0.043 | 13.1 |
vitamin A | 0.170 | 0.000 | 0.129 | 0.000 | 0.120 | 0.003 | 0.194 | 0.000 | 0.027 | 8.75 |
vitamin D | 0.018 | 0.657 | −0.003 | 0.921 | −0.028 | 0.499 | 0.046 | 0.270 | 0.008 | 2.46 |
vitamin E | 0.048 | 0.231 | 0.048 | 0.139 | 0.032 | 0.440 | 0.081 | 0.052 | 0.006 | 2.02 |
vitamin K | 0.501 | 0.000 | 0.206 | 0.000 | 0.064 | 0.083 | 0.063 | 0.090 | 0.202 | 78.5 |
vitamin B1 | −0.039 | 0.324 | −0.026 | 0.417 | −0.034 | 0.410 | 0.012 | 0.778 | 0.008 | 2.40 |
vitamin B2 | −0.042 | 0.291 | −0.028 | 0.398 | −0.059 | 0.153 | 0.007 | 0.867 | 0.005 | 1.69 |
niacin | −0.082 | 0.039 | −0.066 | 0.042 | −0.127 | 0.002 | −0.082 | 0.048 | 0.008 | 2.35 |
vitamin B6 | −0.025 | 0.528 | −0.023 | 0.481 | −0.034 | 0.412 | 0.019 | 0.650 | 0.005 | 1.60 |
vitamin B12 | 0.010 | 0.796 | −0.011 | 0.739 | 0.005 | 0.913 | 0.007 | 0.874 | 0.005 | 1.67 |
folate | 0.216 | 0.000 | 0.134 | 0.000 | 0.125 | 0.002 | 0.206 | 0.000 | 0.028 | 8.98 |
pantothenic acid | 0.071 | 0.075 | 0.032 | 0.327 | 0.016 | 0.693 | 0.073 | 0.077 | 0.010 | 3.05 |
vitamin C | −0.012 | 0.754 | −0.010 | 0.759 | −0.049 | 0.233 | 0.058 | 0.159 | 0.013 | 4.17 |
dietary fiber | 0.481 | 0.000 | 0.285 | 0.000 | 0.317 | 0.000 | 0.384 | 0.000 | 0.091 | 31.01 |
Daily intake | Japanese | J-W | Western | Cereal | ||||||
---|---|---|---|---|---|---|---|---|---|---|
β | P | β | P | β | P | β | P | R2 | F | |
Energy | 0.168 | 0.000 | 0.084 | 0.002 | 0.164 | 0.000 | 0.054 | 0.123 | 0.249 | 103.3 |
protein | 0.189 | 0.000 | 0.094 | 0.001 | 0.117 | 0.001 | 0.229 | 0.000 | 0.185 | 70.9 |
lipid | −0.010 | 0.769 | −0.002 | 0.953 | 0.083 | 0.024 | −0.018 | 0.634 | 0.163 | 60.9 |
carbohydrate | 0.201 | 0.000 | 0.117 | 0.000 | 0.196 | 0.000 | 0.031 | 0.401 | 0.182 | 69.2 |
sodium | 0.194 | 0.000 | 0.106 | 0.000 | 0.147 | 0.000 | 0.030 | 0.404 | 0.202 | 80.3 |
potassium | 0.280 | 0.000 | 0.149 | 0.000 | 0.149 | 0.000 | 0.255 | 0.000 | 0.073 | 24.6 |
calcium | 0.118 | 0.002 | 0.040 | 0.198 | 0.084 | 0.032 | 0.234 | 0.000 | 0.052 | 17.0 |
magnesium | 0.152 | 0.000 | 0.008 | 0.800 | −0.013 | 0.732 | 0.200 | 0.000 | 0.088 | 30.0 |
phosphorus | 0.168 | 0.000 | 0.036 | 0.215 | 0.053 | 0.150 | 0.143 | 0.000 | 0.158 | 58.5 |
iron | 0.022 | 0.564 | −0.031 | 0.312 | −0.043 | 0.272 | 0.142 | 0.000 | 0.043 | 13.9 |
zinc | 0.081 | 0.028 | −0.001 | 0.971 | −0.026 | 0.491 | 0.086 | 0.025 | 0.079 | 26.6 |
vitamin A | 0.002 | 0.950 | −0.024 | 0.439 | −0.072 | 0.067 | 0.033 | 0.402 | 0.022 | 7.02 |
vitamin D | 0.011 | 0.773 | −0.031 | 0.329 | -0.032 | 0.424 | 0.056 | 0.163 | 0.013 | 4.01 |
vitamin E | 0.027 | 0.475 | 0.003 | 0.916 | 0.002 | 0.967 | 0.072 | 0.074 | 0.008 | 2.45 |
vitamin K | 0.283 | 0.000 | 0.093 | 0.002 | 0.051 | 0.190 | 0.145 | 0.000 | 0.065 | 21.8 |
vitamin B1 | −0.040 | 0.294 | −0.043 | 0.167 | −0.070 | 0.078 | 0.026 | 0.522 | 0.016 | 5.00 |
vitamin B2 | −0.039 | 0.304 | −0.049 | 0.123 | −0.080 | 0.044 | 0.026 | 0.519 | 0.014 | 4.60 |
niacin | −0.151 | 0.000 | −0.129 | 0.000 | −0.192 | 0.000 | −0.101 | 0.011 | 0.037 | 12.0 |
vitamin B6 | −0.037 | 0.331 | −0.036 | 0.250 | −0.059 | 0.139 | 0.036 | 0.363 | 0.015 | 4.80 |
vitamin B12 | −0.001 | 0.982 | −0.009 | 0.769 | −0.022 | 0.587 | 0.003 | 0.940 | 0.008 | 2.70 |
folate | 0.071 | 0.060 | 0.001 | 0.964 | −0.016 | 0.676 | 0.125 | 0.002 | 0.042 | 13.5 |
pantothenic acid | −0.002 | 0.961 | −0.033 | 0.290 | −0.051 | 0.196 | 0.039 | 0.330 | 0.031 | 10.1 |
vitamin C | −0.019 | 0.622 | −0.036 | 0.246 | −0.069 | 0.082 | 0.071 | 0.076 | 0.020 | 6.22 |
dietary fiber | 0.167 | 0.000 | 0.046 | 0.135 | 0.068 | 0.081 | 0.185 | 0.000 | 0.065 | 21.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshanmehr, F.; Tahara, Y.; Makino, S.; Tada, A.; Abe, N.; Michie, M.; Shibata, S. Association of Japanese Breakfast Intake with Macro- and Micronutrients and Morning Chronotype. Nutrients 2022, 14, 3496. https://doi.org/10.3390/nu14173496
Roshanmehr F, Tahara Y, Makino S, Tada A, Abe N, Michie M, Shibata S. Association of Japanese Breakfast Intake with Macro- and Micronutrients and Morning Chronotype. Nutrients. 2022; 14(17):3496. https://doi.org/10.3390/nu14173496
Chicago/Turabian StyleRoshanmehr, Farnaz, Yu Tahara, Saneyuki Makino, Ayako Tada, Nanako Abe, Mikiko Michie, and Shigenobu Shibata. 2022. "Association of Japanese Breakfast Intake with Macro- and Micronutrients and Morning Chronotype" Nutrients 14, no. 17: 3496. https://doi.org/10.3390/nu14173496
APA StyleRoshanmehr, F., Tahara, Y., Makino, S., Tada, A., Abe, N., Michie, M., & Shibata, S. (2022). Association of Japanese Breakfast Intake with Macro- and Micronutrients and Morning Chronotype. Nutrients, 14(17), 3496. https://doi.org/10.3390/nu14173496