Cooking Methods and Their Relationship with Anthropometrics and Cardiovascular Risk Factors among Older Spanish Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Diet Assessment
2.3. Outcome Variables
2.3.1. Anthropometrics
2.3.2. Cardiovascular Risk Factors
2.3.3. Cardiac Damage
2.3.4. Potential Confounders
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandhorst, S.; Longo, V.D. Dietary Restrictions and Nutrition in the Prevention and Treatment of Cardiovascular Disease. Circ. Res. 2019, 124, 952–965. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Willett, W.C.; Greenwald, P.; Alberts, D.; Bernstein, L.; Boyd, N.F.; Byers, T.; Clinton, S.K.; Fraser, G.; Freedman, L.; et al. Nutrition and Physical Activity and Chronic Disease Prevention: Research Strategies and Recommendations. 2004. [CrossRef] [Green Version]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. Dietary Guidelines for Americans 2020–2025, 9th ed.; 2020; pp. 1–164. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 25 June 2022).
- European Commission. Health Promotion and Disease Prevention. Food-Based Dietary Guidelines in Europe-Table1|Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/food-based-dietary-guidelines-europe-table-1_en (accessed on 19 June 2022).
- Health Promotion and Disease Prevention Knowledge Gateway. Food-Based Dietary Guidelines in Europe-Table4|Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/food-based-dietary-guidelines-europe-table-4_en (accessed on 12 March 2022).
- Hotz, C.; Gibson, R. Traditional Food-Processing and Preparation Practices to Enhance the Bioavailability of Micronutrients in Plant-Based Diets. J. Nutr. 2007, 137, 1097–1100. Available online: https://academic.oup.com/jn/article/137/4/1097/4664654 (accessed on 19 June 2022). [CrossRef] [PubMed]
- Bouaziz, F.; Koubaa, M.; Neifar, M.; Zouari-Ellouzi, S.; Besbes, S.; Chaari, F.; Kamoun, A.; Chaabouni, M.; Chaabouni, S.E.; Ghorbel, R.E. Feasibility of using almond gum as coating agent to improve the quality of fried potato chips: Evaluation of sensorial properties. LWT-Food Sci. Technol. 2016, 65, 800–807. [Google Scholar] [CrossRef]
- Kita, A.; Lisińska, G.; Gołubowska, G. The effects of oils and frying temperatures on the texture and fat content of potato crisps. Food Chem. 2007, 102, 1–5. [Google Scholar] [CrossRef]
- Osawa, C.C.; Gonçalves, L.A.G. Changes in breaded chicken and oil degradation during discontinuous frying with cottonseed oil. Food Sci. Technol. 2012, 32, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Miranda, J.; Martínez, B.; Pérez, B.; Antón, X.; Vázquez, B.; Fente, C.; Franco, C.; Rodríguez, J.; Cepeda, A. The effects of industrial pre-frying and domestic cooking methods on the nutritional compositions and fatty acid profiles of two different frozen breaded foods. LWT-Food Sci. Technol. 2010, 43, 1271–1276. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0023643810001131 (accessed on 19 June 2022). [CrossRef]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef]
- Jiménez-Monreal, A.M.; García-Diz, L.; Martínez-Tomé, M.; Mariscal, M.; Murcia, M.A. Influence of Cooking Methods on Antioxidant Activity of Vegetables. J. Food Sci. 2009, 74, 97–103. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010, 110, 911–916.e12. [Google Scholar] [CrossRef] [Green Version]
- DeChristopher, L.R. Perspective: The Paradox in Dietary Advanced Glycation End Products Research—The Source of the Serum and Urinary Advanced Glycation End Products Is the Intestines, Not the Food. Adv. Nutr. Int. Rev. J. 2017, 8, 679–683. Available online: https://academic.oup.com/advances/article/8/5/679-683/4772198 (accessed on 19 June 2022). [CrossRef] [Green Version]
- Yang, Y.-C.; Wang, Z.-H.; Yin, M.-C. Content of nitric oxide and glycative compounds in cured meat products-Negative impact upon health. BioMedicine 2018, 8, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodges, C.; Archer, F.; Chowdhury, M.; Evans, B.L.; Ghelani, D.J.; Mortoglou, M.; Guppy, F.M. Method of Food Preparation Influences Blood Glucose Response to a High-Carbohydrate Meal: A Randomised Cross-over Trial. Foods 2019, 9, 23. Available online: https://www.mdpi.com/2304-8158/9/1/23 (accessed on 19 June 2022). [CrossRef] [PubMed] [Green Version]
- Sonia, S.; Witjaksono, F.; Ridwan, R. Effect of cooling of cooked white rice on resistant starch content and glycemic response. Asia Pac. J. Clin. Nutr. 2015, 24, 620–625. [Google Scholar] [PubMed]
- Beaudry, K.M.; Ludwa, I.A.; Thomas, A.M.; Ward, W.; Falk, B.; Josse, A.R. First-year university is associated with greater body weight, body composition and adverse dietary changes in males than females. PLoS ONE 2019, 14, e0218554. [Google Scholar] [CrossRef] [Green Version]
- National Cancer Institute Division of Cancer Control & Population Sciences. Usual Dietary Intakes: NHANES Food Frequency Questionnaire (FFQ)|EGRP/DCCPS/NCI/NIH. NIH. Available online: https://epi.grants.cancer.gov/diet/usualintakes/ffq.html (accessed on 19 June 2022).
- De La Fuente-Arrillaga, C.; Vzquez Ruiz, Z.; Bes-Rastrollo, M.; Sampson, L.; Martinez-González, M.A. Reproducibility of an FFQ validated in Spain. Public Health Nutr. 2010, 13, 1364–1372. Available online: https://www.cambridge.org/core/journals/public-health-nutrition/article/reproducibility-of-an-ffq-validated-in-spain/731A27CDC36B744A56C430BEDFB16F29 (accessed on 19 June 2022). [CrossRef]
- Sun, Y.; Liu, B.; Snetselaar, L.G.; Robinson, J.G.; Wallace, R.B.; Peterson, L.L.; Bao, W. Association of Fried Food Consumption with All Cause, Cardiovascular, and Cancer Mortality: Prospective Cohort Study. BMJ 2019, 23, 364. [Google Scholar] [CrossRef] [Green Version]
- Cahill, L.E.; Pan, A.; Chiuve, S.E.; Sun, Q.; Willett, W.C.; Hu, F.B.; Rimm, E.B. Fried-food consumption and risk of type 2 diabetes and coronary artery disease: A prospective study in 2 cohorts of US women and men. Am. J. Clin. Nutr. 2014, 100, 667–675. [Google Scholar] [CrossRef]
- Rey-García, J.; Guallar-Castillón, P.; Donat-Vargas, C.; Moreno-Iribas, C.; Barricarte, A.; Rodriguez-Barranco, M.; Colorado-Yohar, S.; Huerta, J.-M.; Chirlaque, M.-D.; Lasheras, C.; et al. Fried-Food Consumption Does Not Increase the Risk of Stroke in the Spanish Cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. J. Nutr. 2020, 150, 3241–3248. Available online: https://academic.oup.com/jn/article/150/12/3241/5906639 (accessed on 19 June 2022). [CrossRef]
- Guallar-Castillón, P.; Rodríguez-Artalejo, F.; Lopez-Garcia, E.; Leon-Munoz, L.M.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Buckland, G.; Chirlaque, M.-D.; et al. Consumption of fried foods and risk of coronary heart disease: Spanish cohort of the European Prospective Investigation into Cancer and Nutrition study. BMJ 2012, 344, e363. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Gottdiener, J.S.; Siscovick, D.S. Intake of Tuna or Other Broiled or Baked Fish Versus Fried Fish and Cardiac Structure, Function, and Hemodynamics. Am. J. Cardiol. 2006, 97, 216–222. Available online: https://pubmed.ncbi.nlm.nih.gov/16442366/ (accessed on 19 June 2022). [CrossRef] [PubMed]
- Scherr, C.; Ribeiro, J.P. The influence of food preparation methods on atherosclerosis prevention. Rev. Da Assoc. Méd. Bras. 2013, 59, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moholdt, T.; Devlin, B.L.; Nilsen, T.I.L. Intake of Boiled Potato in Relation to Cardiovascular Disease Risk Factors in a Large Norwegian Cohort: The HUNT Study. Nutrients 2020, 12, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Q.; Kim, J.H.; Omiyale, W.; Bešević, J.; Conroy, M.; May, M.; Yang, Z.; Wong, S.Y.; Tsoi, K.K.; Allen, N.; et al. Raw and Cooked Vegetable Consumption and Risk of Cardiovascular Disease: A Study of 400,000 Adults in UK Biobank. Front. Nutr. 2022, 9, 831470. [Google Scholar] [CrossRef] [PubMed]
- Ortolá, R.; García-Esquinas, E.; Cabanas-Sánchez, V.; Migueles, J.H.; Martínez-Gómez, D.; Rodríguez-Artalejo, F. Association of Physical Activity, Sedentary Behavior, and Sleep with Unhealthy Aging: Consistent Results for Device-Measured and Self-reported Behaviors Using Isotemporal Substitution Models. J. Gerontol. Ser. A 2020, 76, 85–94. Available online: https://academic.oup.com/biomedgerontology/article/76/1/85/5875545 (accessed on 19 June 2022). [CrossRef]
- Rodríguez-Artalejo, F.; Graciani, A.; Guallar-Castillón, P.; León-Muñoz, L.M.; Zuluaga, M.C.; López-García, E.; Gutiérrez-Fisac, J.L.; Taboada, J.M.; Aguilera, M.T.; Regidor, E.; et al. Rationale and Methods of the Study on Nutrition and Cardiovascular Risk in Spain (ENRICA). Rev. Española Cardiol. 2011, 64, 876–882. [Google Scholar] [CrossRef]
- Guallar-Castillón, P.; Sagardui-Villamor, J.; Balboa-Castillo, T.; Sala-Vila, A.; Ariza Astolfi, M.J.; Sarrión Pelous, M.D.; León-Muñoz, L.M.; Graciani, A.; Laclaustra, M.; Benito, C. Validity and reproducibility of a Spanish dietary history. PLoS ONE 2014, 9, e86074. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, N.; Homma, K.; Wakana, N.; Kudo, K.; Suyama, A.; Ohazama, H.; Tsuji, C.; Ishiwata, K.; Eguchi, Y.; Nakazawa, H.; et al. Validation of the Friedewald Equation for Evaluation of Plasma LDL-Cholesterol. J. Clin. Biochem. Nutr. 2007, 43, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Banegas, J.R.; Graciani, A.; de la Cruz-Troca, J.J.; León-Muñoz, L.M.; Guallar-Castillón, P.; Coca, A.; Ruilope, L.M.; Rodríguez-Artalejo, F. Achievement of Cardiometabolic Goals in Aware Hypertensive Patients in Spain. Hypertension 2012, 60, 898–905. Available online: https://www.ahajournals.org/doi/abs/10.1161/HYPERTENSIONAHA.112.193078 (accessed on 19 June 2022). [CrossRef] [Green Version]
- Banegas, J.R.; De La Cruz, J.J.; Graciani, A.; López-García, E.; Gijón-Conde, T.; Ruilope, L.M.; Rodríguez-Artalejo, F. Impact of Ambulatory Blood Pressure Monitoring on Reclassification of Hypertension Prevalence and Control in Older People in Spain. J. Clin. Hypertens. 2015, 17, 453–461. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/jch.12525 (accessed on 19 June 2022). [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, D.; Bennett, G.G.; Svetkey, L. The DASH Diet, 20 Years Later. JAMA 2017, 317, 1529–1530. [Google Scholar] [CrossRef] [Green Version]
- von Elm, E.; Altaman, D.; Egger, M.; Pocock, S.; Gotzsche, P.; Vandenbroucke, J. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranceta-Bartrina, J.; Partearroyo, T.; López-Sobaler, A.M.; Ortega, R.M.; Varela-Moreiras, G.; Serra-Majem, L. Updating the Food-Based Dietary Guidelines for the Spanish Population: The Spanish Society of Community Nutrition (SENC) Proposal. Nutrients 2019, 11, 2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.H.; Beason, T.S.; Hunleth, J.M.; Colditz, G.A. A systematic review of body fat distribution and mortality in older people. Maturitas 2012, 72, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2020, 10, 861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romaguera, D.; Ängquist, L.; Du, H.; Jakobsen, M.U.; Forouhi, N.; Halkjær, J.; Feskens, E.; Van Der, A.D.L.; Masala, G.; Steffen, A.; et al. Food Composition of the Diet in Relation to Changes in Waist Circumference Adjusted for Body Mass Index. PLoS ONE 2011, 6, e23384. Available online: https://dx.plos.org/10.1371/journal.pone.0023384 (accessed on 19 June 2022). [CrossRef] [Green Version]
- Newby, P.; Muller, D.; Hallfrisch, J.; Qiao, N.; Andres, R.; Tucker, K.L. Dietary patterns and changes in body mass index and waist circumference in adults. Am. J. Clin. Nutr. 2003, 77, 1417–1425. Available online: https://academic.oup.com/ajcn/article/77/6/1417/4689846 (accessed on 19 June 2022). [CrossRef] [Green Version]
- Weng, C.-H.; Tien, C.-P.; Li, C.-I.; L’Heureux, A.; Liu, C.-S.; Lin, C.-H.; Lin, C.-C.; Lai, S.-W.; Lai, M.-M.; Lin, W.-Y. Mid-upper arm circumference, calf circumference and mortality in Chinese long-term care facility residents: A prospective cohort study. BMJ Open 2018, 8, e020485. Available online: http://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2017-020485 (accessed on 19 June 2022). [CrossRef] [Green Version]
- Koebnick, C.; Garcia, A.L.; Dagnelie, P.C.; Strassner, C.; Lindemans, J.; Katz, N.; Leitzmann, C.; Hoffmann, I. Long-Term Consumption of a Raw Food Diet Is Associated with Favorable Serum LDL Cholesterol and Triglycerides but Also with Elevated Plasma Homocysteine and Low Serum HDL Cholesterol in Humans. J. Nutr. 2005, 135, 2372–2378. Available online: https://academic.oup.com/jn/article/135/10/2372/4669843 (accessed on 19 June 2022). [CrossRef]
- Zhao, Q.; Hou, D.; Laraib, Y.; Xue, Y.; Shen, Q. Comparison of the effects of raw and cooked adzuki bean on glucose/lipid metabolism and liver function in diabetic mice. Cereal Chem. 2021, 98, 1081–1090. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/cche.10456 (accessed on 7 December 2021). [CrossRef]
- Lee, E.-S.; Shin, H.; Seo, J.-M.; Nam, Y.-D.; Lee, B.-H.; Seo, D.-H. Effects of raw potato starch on body weight with controlled glucose delivery. Food Chem. 2018, 256, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Li, L.; Bennett, D.; Guo, Y.; Turnbull, I.; Yang, L.; Bragg, F.; Bian, Z.; Chen, Y.; Chen, J. Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: A 7-y prospective study of 0.5 million Chinese adults. PLoS Med. 2017, 14, e1002279. [Google Scholar] [CrossRef]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant Starch—A Review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Inan Eroglu, E.; Buyuktuncer, Z. The effect of various cooking methods on resistant starch content of foods. Nutr. Food Sci. 2017, 47, 522–533. [Google Scholar] [CrossRef]
- Wahjuningsih, S.B.; Haslina, H.; Marsono, M. Hypolipidaemic Effects of High Resistant Starch Sago and Red Bean Flour- based Analog Rice on Diabetic Rats. Mater. Socio-Med. 2018, 30, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.D.; Bickerton, A.S.; Dennis, A.L.; Vidal, H.; Frayn, K.N. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am. J. Clin. Nutr. 2005, 82, 559–567. Available online: https://academic.oup.com/ajcn/article/82/3/559/4607459 (accessed on 19 June 2022). [CrossRef]
- Robertson, T.M.; Alzaabi, A.Z.; Robertson, M.D.; Fielding, B.A. Starchy carbohydrates in a healthy diet: The role of the humble potato. Nutrients 2018, 10, 1764. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.; De JBerrios, J.; Tang, J. Impact of food processing on the glycemic index (GI) of potato products. Food Res. Int. 2014, 56, 35–46. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0963996913006741 (accessed on 19 June 2022). [CrossRef]
- Kumar, A.; Sahoo, U.; Baisakha, B.; Okpani, O.A.; Ngangkham, U.; Parameswaran, C.; Ngangkham, U.; Basak, N.; Kumar, G.; Sharma, S.G. Resistant starch could be decisive in determining the glycemic index of rice cultivars. J. Cereal Sci. 2018, 79, 348–353. [Google Scholar] [CrossRef]
- Sayon-Orea, C.; Carlos, S.; Martínez-Gonzalez, M.A. Does cooking with vegetable oils increase the risk of chronic diseases? A systematic review. Br. J. Nutr. 2015, 113, S36–S48. Available online: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/does-cooking-with-vegetable-oils-increase-the-risk-of-chronic-diseases-a-systematic-review/AF44097B0E9C4FF9BD44F1D55CD353D6 (accessed on 20 June 2022). [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Kim, J. Association between fried food consumption and hypertension in Korean adults. Br. J. Nutr. 2015, 115, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Provido, S.M.P.; Abris, G.P.; Hong, S.; Yu, S.H.; Lee, C.B.; Lee, J.E. Association of fried food intake with prehypertension and hypertension: The Filipino women’s diet and health study. Nutr. Res. Pract. 2020, 14, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Sayon-Orea, C.; Bes-Rastrollo, M.; Gea, A.; Zazpe, I.; Basterra-Gortari, F.J.; Martinez-Gonzalez, M.A. Reported fried food consumption and the incidence of hypertension in a Mediterranean cohort: The SUN (Seguimiento Universidad de Navarra) project. Br. J. Nutr. 2014, 112, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesimi, A.; Aslan, B.; Ozturk, M.; Aykut, M.; Ilhan, I. Improving control of high blood pressure among middle-aged Turkish women of low socio-economic status through public health training. Croat. Med. J. 2004, 45, 477–482. Available online: https://pubmed.ncbi.nlm.nih.gov/15311423/ (accessed on 19 June 2022).
- Ansorena, D.; Guembe, A.; Mendizábal, T.; Astiasarán, I. Effect of Fish and Oil Nature on Frying Process and Nutritional Product Quality. J. Food Sci. 2010, 75, H62–H67. Available online: https://pubmed.ncbi.nlm.nih.gov/20492236/ (accessed on 19 June 2022). [CrossRef]
- Livingstone, K.M.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; Forster, H.; O’Donovan, C.B.; Woolhead, C.; Marsaux, C.F.; Macready, A.L.; Fallaize, R. Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: The Food4Me study. Br. J. Nutr. 2016, 115, 440–448. Available online: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/fat-mass-and-obesityassociated-genotype-dietary-intakes-and-anthropometric-measures-in-european-adults-the-food4me-study/174273DA8681B5D8AF2B190EF16EC299 (accessed on 19 June 2022). [CrossRef] [Green Version]
- Razavi, A.C.; Dyer, A.; Jones, M.; Sapin, A.; Caraballo, G.; Nace, H.; Dotson, K.; Razavi, M.A.; Harlan, T.S. Achieving Dietary Sodium Recommendations and Atherosclerotic Cardiovascular Disease Prevention through Culinary Medicine Education. Nutrients 2020, 12, 3632. [Google Scholar] [CrossRef]
- Lam, M.C.L.; Adams, J. Association between home food preparation skills and behaviour, and consumption of ultra-processed foods: Cross-sectional analysis of the UK National Diet and nutrition survey (2008–2009). Int. J. Behav. Nutr. Phys. Act. 2017, 14, 68. [Google Scholar] [CrossRef] [Green Version]
- Andrade, G.C.; Julia, C.; Deschamps, V.; Srour, B.; Hercberg, S.; Kesse-Guyot, E.; Allès, B.; Chazelas, E.; Deschasaux, M.; Touvier, M.; et al. Consumption of Ultra-Processed Food and Its Association with Sociodemographic Characteristics and Diet Quality in a Representative Sample of French Adults. Nutrients 2021, 13, 682. [Google Scholar] [CrossRef]
- Sandoval-Insausti, H.; Jiménez-Onsurbe, M.; Donat-Vargas, C.; Rey-García, J.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-Processed Food Consumption Is Associated with Abdominal Obesity: A Prospective Cohort Study in Older Adults. Nutrients 2020, 12, 2368. Available online: https://pubmed.ncbi.nlm.nih.gov/32784758/ (accessed on 19 June 2022). [CrossRef]
- Donat-Vargas, C.; Sandoval-Insausti, H.; Rey-García, J.; Moreno-Franco, B.; Åkesson, A.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. High Consumption of Ultra-Processed Food is Associated with Incident Dyslipidemia: A Prospective Study of Older Adults. J. Nutr. 2021, 151, 2390–2398. Available online: https://pubmed.ncbi.nlm.nih.gov/34038538/ (accessed on 19 June 2022). [CrossRef] [PubMed]
- Rey-García, J.; Donat-Vargas, C.; Sandoval-Insausti, H.; Bayan-Bravo, A.; Moreno-Franco, B.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-Processed Food Consumption is Associated with Renal Function Decline in Older Adults: A Prospective Cohort Study. Nutrients 2021, 13, 428. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Franco, B.; Rodríguez-Ayala, M.; Donat-Vargas, C.; Sandoval-Insausti, H.; Rey-García, J.; Lopez-Garcia, E.; Banegas, J.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Association of Cooking Patterns with Inflammatory and Cardio-Metabolic Risk Biomarkers. Nutrients 2021, 13, 633. Available online: https://pubmed.ncbi.nlm.nih.gov/33669219/ (accessed on 19 June 2022). [CrossRef] [PubMed]
Characteristics | Total |
---|---|
N | 2467 |
Women, (%) | 1308 (53.0) |
Age, mean (SD), years | 71.6 (4.4) |
Educational level, no. (%) | |
Primary or less | 1569 (63.6) |
Secondary | 460 (18.7) |
Higher | 438 (17.8) |
Cigarette smoking status, no. (%) | |
Current | 226 (9.2) |
Former | 941 (38.1) |
Never | 1300 (52.7) |
Alcohol consumption, median (IQR), g/d | |
Ex-drinker status, no. (%) | 251 (10.2) |
Recreational physical activity, median (IQR), METS·h/week | 24.5 (16.3–36.8) |
Household physical activity, median (IQR), METS·h/week | 35.0 (17.5–54.6) |
Hours of television watching, mean (SD) | 22.3 (11.0) |
No. of chronic diseases *, median (IQR) | 1.0 (0–2.0) |
No. of medications, median (IQR) | 3.0 (1.0–5.0) |
Dietary variables | |
Energy intake, mean (SD), kcal/d | 2382 (449) |
Very-long-chain omega-3 fatty acids, median (IQR), g/d | 0.6 (0.3–0.9) |
Fiber, mean (SD), g/d | 31.5 (8.4) |
Cooking methods consumption | |
Raw, mean (SD), g/d | 470 (208) |
Boiling, mean (SD), g/d | 277 (119) |
Roasting, mean (SD), g/d | 156 (68.0) |
Pan-frying, mean (SD), g/d | 63.0 (47.0) |
Frying, mean (SD), g/d | 42.0 (33.0) |
Toasting, mean (SD), g/d | 42.0 (40.0) |
Sautéing, mean (SD), g/d | 22.0 (21.0) |
Stewing, mean (SD), g/d | 19.0 (21.0) |
Raw Food Consumption | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | PDs | p | |
n (median, g/kg of body weight) in men | 232 (2.98) | 232 (4.90) | 232 (6.32) | 232 (8.08) | 231 (10.5) | ||
n (median, g/kg of body weight) in women | 262 (3.15) | 262 (4.77) | 261 (6.30) | 262 (8.02) | 261 (10.9) | ||
Anthropometrics | |||||||
Weight (kg) | 76.7 (76.1–77.3) | 74.2 (73.6–74.9) | 71.6 (71.0–72.2) | 70.4 (69.8–71.0) | 66.4 (65.8–67.0) | −13.4 | <0.001 |
BMI (kg/m2) | 29.4 (29.2–29.6) | 28.7 (28.5–28.8) | 27.7 (27.5–27.8) | 27.3 (27.1–27.4) | 25.6 (25.5–25.8) | −12.9 | <0.001 |
MUAC (cm) | 29.3 (29.2–29.4) | 28.9 (28.8–29.0) | 28.8 (28.7–28.9) | 28.4 (28.3–28.5) | 27.7 (27.6–27.8) | −5.50 | <0.001 |
Waist circumference (cm) | 100.3 (99.8–100.8) | 97.9 (97.3–98.4) | 95.3 (94.8–95.8) | 94.8 (94.2–95.3) | 91.5 (91.0–92.0) | −8.80 | <0.001 |
Hip circumference (cm) | 106.2 (105.9–106.5) | 104.2 (103.9–104.5) | 102.6 (102.3–102.9) | 101.9 (101.6–102.2) | 99.7 (99.4–100) | −6.10 | <0.001 |
Calf circumference (cm) | 34.4 (34.3–34.5) | 34.1 (34.0–34.2) | 33.6 (33.6–33.7) | 33.6 (33.5–33.7) | 33.2 (33.1–33.3) | −3.50 | <0.001 |
Cardiovascular risk factors | |||||||
Total cholesterol (mg/dL) | 190.3 (188.9–191.8) | 189.2 (187.7–190.7) | 188.3 (186.8–189.8) | 189.7 (188.2–191.1) | 192.4 (190.9–193.9) | 1.10 | 0.949 |
HDL-cholesterol (mg/dL) | 53.1 (52.5–53.6) | 52.1 (51.6–52.7) | 53.5 (52.9–54.1) | 53.9 (53.3–54.5) | 57.8 (57.2–58.4) | 8.90 | <0.001 |
LDL-cholesterol (mg/dL) | 113.6 (112.6–114.7) | 113.5 (112.4–114.7) | 112.6 (111.5–113.7) | 114.0 (112.9–115.0) | 114.4 (113.4–115.5) | 0.70 | 0.409 |
Triglycerides (mg/dL) | 110.6 (109.7–111.5) | 111.5 (110.5–112.4) | 104.6 (103.7–105.5) | 102.4 (101.6–103.2) | 94.2 (93.5–94.9) | −14.8 | <0.001 |
Glucose (mg/dL) | 100.3 (99.7–100.9) | 100.3 (99.7–100.9) | 97.0 (96.5–97.6) | 97.0 (96.5–97.6) | 93.7 (93.2–94.2) | −6.60 | <0.001 |
HbA1c (%) | 5.82 (5.79–5.85) | 5.89 (5.86–5.92) | 5.75 (5.72–5.78) | 5.77 (5.74–5.80) | 5.70 (5.67–5.72) | −2.10 | 0.086 |
Insulin (μU/mL) | 10.6 (10.3–10.9) | 10.9 (10.7–11.2) | 9.05 (8.81–9.29) | 9.89 (9.64–10.1) | 9.16 (8.96–9.37) | −13.6 | 0.115 |
Blood pressure | |||||||
Casual SBP (mmHg) | 136.1 (135.8–136.3) | 137.0 (136.8–137.2) | 134.5 (134.3–134.7) | 135.5 (135.3–135.7) | 134.9 (134.7–135.1) | −0.90 | 0.092 |
Casual DBP (mmHg) | 79.8 (79.5–80.1) | 81.1 (80.8–81.4) | 79.2 (78.9–79.5) | 80.1 (79.9–80.4) | 79.8 (79.6–80.1) | 0.00 | 0.325 |
Casual HR (bpm) | 71.2 (71.0–71.5) | 71.0 (70.8–71.2) | 70.3 (70.1–70.5) | 69.1 (68.8–69.3) | 69.2 (69.0–69.5) | −2.80 | 0.058 |
24 h SBP (mmHg) | 128.4 (128.2–128.6) | 128.1 (127.9–128.3) | 126.6 (126.4–126.8) | 127.2 (127.0–127.4) | 125.3 (125.1–125.4) | −2.40 | 0.005 |
24 h DBP (mmHg) | 74.9 (74.6–75.1) | 75.0 (74.7–75.2) | 74.0 (73.7–74.2) | 74.5 (74.3–74.7) | 74.0 (73.8–74.2) | −1.20 | 0.148 |
24 h HR (bpm) | 69.4 (69.2–69.6) | 68.3 (68.1–68.5) | 68.0 (67.9–68.5) | 67.0 (66.8–67.2) | 67.1 (66.9–67.3) | −3.30 | 0.028 |
Cardiac function biomarkers | |||||||
NT-proBNP (pg/mL) | 92.9 (90.3–95.6) | 81.9 (79.7–84.2) | 82.2 (80.1–84.3) | 87.0 (84.7–89.3) | 88.1 (86.0–90.3 | −5.20 | 0.649 |
Troponin T (ng/L) | 10.0 (9.80–10.2) | 9.90 (9.70–10.1) | 9.30 (9.10–9.50) | 9.40 (9.20–9.60) | 9.50 (9.30–9.70) | −5.00 | 0.287 |
Boiled Food Consumption | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | PDs | p | |
n (median, g/kg of body weight) in men | 232 (2.04) | 232 (2.91) | 232 (3.62) | 232 (4.59) | 231 (6.09) | ||
n (median, g/kg of body weight) in women | 262 (2.02) | 262 (2.90) | 261 (3.65) | 262 (4.57) | 261 (6.10) | ||
Anthropometrics | |||||||
Weight (kg) | 76.9 (76.3–77.5) | 74.0 (73.3–74.6) | 72.0 (71.4–72.6) | 69.9 (69.2–70.6) | 66.7 (65.9–67.4) | −13.3 | <0.001 |
BMI (kg/m2) | 29.1 (29.0–29.3) | 28.2 (28.1–28.4) | 27.9 (27.7–28.1) | 27.2 (27.0–27.3) | 26.2 (26.0–26.4) | −10.0 | <0.001 |
MUAC (cm) | 29.2 (29.1–29.3) | 28.9 (28.8–28.9) | 28.6 (28.6–28.7) | 28.4 (28.3–28.5) | 27.9 (27.8–28.0) | −4.50 | <0.001 |
Waist circumference (cm) | 99.3 (98.8–99.8) | 97.7 (97.1–98.2) | 96.4 (95.9–97.0) | 94.4 (93.8–95.0) | 91.8 (91.2–92.4 | −7.60 | <0.001 |
Hip circumference (cm) | 105.6 (105.3–106.0) | 103.9 (103.6–104.2) | 103.1 (102.8–103.4) | 101.5 (101.2–101.8) | 100.4 (100.1–100.7) | −4.90 | <0.001 |
Calf circumference (cm) | 34.3 (34.3–34.4) | 34.0 (33.9–34.1) | 33.7 (33.6–33.8) | 33.7 (33.6–33.8) | 33.2 (33.1–33.3) | −3.20 | <0.001 |
Cardiovascular risk factors | |||||||
Total cholesterol (mg/dL) | 188.6 (187.2–190.1) | 189.2 (187.7–190.6) | 190.0 (188.5–191.5) | 190.9 (189.4–192.3) | 191.3 (189.8–192.8) | 1.40 | 0.021 |
HDL-cholesterol (mg/dL) | 52.6 (52.0–53.2) | 53.8 (53.2–54.3) | 54.4 (53.8–55.0) | 54.6 (54.0–55.2) | 55.0 (54.4–55.7) | 4.60 | <0.001 |
LDL-cholesterol (mg/dL) | 112.6 (111.6–113.7) | 113.7 (112.6–114.8) | 113.5 (112.4–114.6) | 113.8 (112.8–114.9) | 114.5 (113.4–115.5) | 1.70 | 0.152 |
Triglycerides (mg/dL) | 109.2 (108.2–110.3) | 102.0 (101.1–102.9) | 103.8 (102.9–104.7) | 105.3 (10.4–106.3) | 102.1 (101.3–103.0) | −6.50 | 0.043 |
Glucose (mg/dL) | 98.4 (97.8–99.0) | 97.2 (96.6–97.8) | 98.5 (97.9–99.1) | 97.7 (97.1–98.3) | 96.4 (95.8–97.0) | −2.00 | 0.214 |
HbA1c (%) | 5.82 (5.79–5.85) | 5.76 (5.73–5.78) | 5.83 (5.80–5.86) | 5.74 (5.71–5.77) | 5.77 (5.74–5.80) | −0.90 | 0.338 |
Insulin (μU/mL) | 11.0 (10.7–11.3) | 9.94 (9.70–10.2) | 10.1 (9.80–10.4) | 9.63 (9.34–9.92) | 8.75 (8.52–8.99) | −20.5 | <0.001 |
Blood pressure | |||||||
Casual SBP (mmHg) | 135.0 (134.8–135.1) | 135.9 (135.7–136.1) | 135.4 (135.2–135.6) | 135.4 (135.2–135.6) | 136.3 (136.1–136.5) | 1.00 | 0.884 |
Casual DBP (mmHg) | 79.4 (79.1–79.7) | 80.2 (79.9–80.4) | 80.0 (79.7–80.2) | 80.0 (79.7–80.3) | 80.5 (80.2–80.8) | 1.40 | 0.539 |
Casual HR (bpm) | 69.8 (69.5–70.0) | 69.6 (69.3–69.8) | 70.5 (70.3–70.8) | 70.7 (70.5–70.9) | 70.3 (70.0–70.5) | 0.70 | 0.042 |
24 h SBP (mmHg) | 127.5 (127.3–127.7) | 128.0 (127.8–128.2) | 127.2 (127.1–127.4) | 125.9 (125.7–126.1) | 127.0 (126.8–127.1) | −0.40 | 0.084 |
24 h DBP (mmHg) | 74.7 (74.4–74.9) | 75.0 (74.7–75.2) | 74.3 (74.1–74.5) | 74.0 (73.7–74.2) | 74.4 (74.1–74.6) | −0.40 | 0.085 |
24 h HR (bpm) | 68.0 (67.8–68.3) | 67.7 (67.5–67.9) | 68.6 (68.4–68.9) | 67.9 (67.6–68.1) | 67.6 (67.4–67.9) | −0.60 | 0.495 |
Cardiac function biomarkers | |||||||
NT-proBNP (pg/mL) | 83.5 (81.5–85.6) | 86.2 (84.0–88.5) | 90.1 (87.7–92.5) | 83.0 (80.9–85.2) | 89.1 (86.7–91.7) | 6.70 | 0.142 |
Troponin T (ng/L) | 9.90 (9.70–10.0) | 9.70 (9.50–9.90) | 9.60 (9.40–9.90) | 9.30 (9.10–9.50) | 9.50 (9.30–9.70) | −4.00 | 0.032 |
Roasted Food Consumption | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | PC | p | |
n (median, g/kg of body weight) in men | 232 (1.06) | 232 (1.72) | 232 (2.15) | 232 (2.58) | 232 (3.41) | ||
n (median, g/kg of body weight) in women | 262 (0.960) | 262 (1.70) | 261 (2.16) | 262 (2.65) | 261 (3.49) | ||
Anthropometrics | |||||||
Weight (kg) | 73.8 (73.1–74.4) | 75.8 (75.2–76.5) | 73.2 (72.6–73.9) | 71.0 (70.4–71.6) | 65.6 (64.9–66.2) | −11.1 | <0.001 |
BMI (kg/m2) | 28.3 (28.1–28.5) | 28.9 (28.7–29.0) | 28.2 (28.1–28.4) | 27.5 (27.3–27.6) | 25.8 (25.6–25.9) | −8.80 | <0.001 |
MUAC (cm) | 29.2 (29.1–29.3) | 29.5 (29.4–29.6) | 28.6 (28.5–28.7) | 28.5 (28.4–28.6) | 27.2 (27.1–27.3) | −6.90 | <0.001 |
Waist circumference (cm) | 96.7 (96.1–97.2) | 99.3 (98.7–99.8) | 97.1 (96.5–97.6) | 95.5 (95.0–96.0) | 91.1 (90.6–91.7) | −5.80 | <0.001 |
Hip circumference (cm) | 104.1 (103.8–104.4) | 105.3 (105.0–105.6) | 103.5 (103.2–103.8) | 102.7 (102.4–103.0) | 98.9 (98.6–99.2) | −5.20 | <0.001 |
Calf circumference (cm) | 34.4 (34.3–34.5) | 34.4 (34.4–34.5) | 34.0 (34.0–34.1) | 33.8 (33.7–33.9) | 32.3 (32.2–32.4) | −6.10 | <0.001 |
Cardiovascular risk factors | |||||||
Total cholesterol (mg/dL) | 190.8 (189.2–192.3) | 188.5 (187.0–190.0) | 188.9 (187.5–190.4) | 191.2 (189.8–192.6) | 190.6 (189.1–192.0) | −0.10 | 0.622 |
HDL-cholesterol (mg/dL) | 54.2 (53.6–54.8) | 52.1 (51.5–52.7) | 53.6 (53.0–54.2) | 54.8 (54.2–55.4) | 55.6 (55.0–56.2) | 2.60 | <0.001 |
LDL-cholesterol (mg/dL) | 114.3 (113.1–115.4) | 113.1 (112.0–114.2) | 112.6 (111.5–113.6) | 114.5 (113.5–115.5) | 113.7 (112.6–114.8) | −0.50 | 0.817 |
Triglycerides (mg/dL) | 103.6 (102.7–104.5) | 108.9 (107.9–110.0) | 106.2 (105.3–107.1) | 103.0 (102.1–103.9) | 100.8 (99.9–101.7) | −2.70 | 0.030 |
Glucose (mg/dL) | 97.1 (96.4–97.7) | 98.7 (98.1–99.3) | 98.6 (98.0–99.2) | 97.1 (96.6–97.7) | 96.7 (96.1–97.2) | −0.40 | 0.300 |
HbA1c (%) | 5.77 (5.74–5.80) | 5.84 (5.81–5.87) | 5.82 (5.79–5.85) | 5.73 (5.70–5.75) | 5.74 (5.71–5.77) | −0.50 | 0.163 |
Insulin (μU/mL) | 10.7 (10.4–11.0) | 10.4 (10.1–10.7) | 10.5 (10.2–10.8) | 9.21 (9.00–9.44) | 8.21 (7.96–8.46) | −23.3 | <0.001 |
Blood pressure | |||||||
Casual SBP (mmHg) | 135.0 (134.8–135.2) | 135.4 (135.2–135.6) | 136.2 (136.0–136.4) | 135.0 (134.8–135.2) | 136.4 (136.2–136.6) | −1.04 | 0.819 |
Casual DBP (mmHg) | 79.7 (79.4–78.0) | 80.4 (80.1–80.6) | 80.1 (79.8–80.3) | 79.7 (79.4–80.0) | 80.2 (79.9–80.5) | 0.60 | 0.803 |
Casual HR (bpm) | 70.1 (69.9–70.4) | 70.3(70.1–70.5) | 69.7 (69.5–69.9) | 70.7 (70.5–70.9) | 70.0 (69.8–70.2) | −0.10 | 0.751 |
24 h SBP (mmHg) | 126.8 (126.6–126.9) | 127.8 (127.6–127.9) | 127.4 (127.3–127.6) | 126.7 (126.6–126.9) | 126.9 (126.7–127.0) | 0.10 | 0.210 |
24 h DBP (mmHg) | 74.4 (74.2–74.6) | 74.9 (74.7–75.1) | 74.7 (74.5–74.9) | 74.0 (73.8–74.3) | 74.2 (74.0–74.4) | −0.30 | 0.138 |
24 h HR (bpm) | 67.9 (67.7–68.1) | 68.0 (67.7–68.2) | 67.9 (67.6–68.1) | 68.4 (68.2–68.7) | 67.8 (67.5–68.0) | −0.10 | 0.922 |
Cardiac function biomarkers | |||||||
NT-proBNP (pg/mL) | 84.3 (82.1–86.5) | 81.7 (79.6–83.9) | 89.9 (87.7–92.2) | 84.4 (82.1–86.7) | 91.8 (89.4–94.3) | 8.90 | 0.191 |
Troponin T (ng/L) | 9.20 (9.00–9.40) | 9.80 (9.60–10.0) | 9.80 (9.60–10.0) | 9.50 (9.30–9.70) | 9.80 (9.60–10.0) | 6.50 | 0.751 |
Pan-Fried Food Consumption | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | PC | p | |
n (median, g/kg of body weight) in men | 232 (0.200) | 232 (0.480) | 232 (0.760) | 232 (1.13) | 231 (1.74) | ||
n (median, g/kg of body weight) in women | 262 (0.130) | 262 (0.500) | 261 (0.770) | 262 (1.14) | 261 (1.78) | ||
Anthropometrics | |||||||
Weight (kg) | 73.7 (73.1–74.4) | 72.9 (72.3–73.5) | 72.4 (71.8–73.0) | 71.4 (70.7–72.0) | 69.0 (68.4–69.6) | −6.40 | <0.001 |
BMI (kg/m2) | 28.5 (28.3–28.6) | 28.1 (27.9–28.2) | 27.7 (27.6–27.9) | 27.6 (27.4–27.8) | 26.8 (26.6–26.9) | −6.00 | <0.001 |
MUAC (cm) | 28.8 (28.7–28.9) | 28.9 (28.8–29.0) | 28.5 (28.4–28.6) | 28.6 (28.5–28.7) | 28.2 (28.1–28.3) | −2.10 | 0.026 |
Waist circumference (cm) | 97.7 (97.2–98.3) | 96.3 (95.8–96.8) | 96.3 (95.8–96.8) | 95.3 (94.8–95.9) | 94.0 (93.5–94.5) | −3.80 | <0.001 |
Hip circumference (cm) | 104.3 (104.0–104.7) | 103.6 (103.3–103.9) | 102.9 (102.6–103.2) | 102.6 (102.3–102.9) | 101.2 (100.9–101.5) | −3.00 | <0.001 |
Calf circumference (cm) | 33.8 (33.7–33.9) | 34.2 (34.1–34.3) | 33.8 (33.7–3.9) | 33.8 (33.8–33.9) | 33.4 (33.3–33.5) | −1.20 | 0.013 |
Cardiovascular risk factors | |||||||
Total cholesterol (mg/dL) | 190.3 (188.8–191.7) | 191.1 (189.6–192.5) | 90.6 (189.2–192.0) | 188.4 (186.9–189.9) | 189.6 (188.1–191.1) | −0.40 | 0.157 |
HDL-cholesterol (mg/dL) | 54.2 (53.6–54.8) | 53.8 (53.2–54.4) | 53.8 (53.2–54.4) | 53.6 (53.0–54.1) | 55.0 (54.4–55.6) | 1.50 | 0.939 |
LDL-cholesterol (mg/dL) | 113.3 (112.2–114.4) | 114.6 (113.8–115.9) | 114.8 (113.8–115.9) | 112.2 (111.1–113.3) | 113.3 (112.2–114.4) | 0.00 | 0.216 |
Triglycerides (mg/dL) | 107.1 (106.1–108.1) | 107.0 (106.1–107.9) | 102.9 (102.1–103.8) | 105.2 (104.3–106.1) | 100.2 (99.4–101.0) | −6.40 | 0.141 |
Glucose (mg/dL) | 97.9 (97.3–98.5) | 98.4 (97.8–99.0) | 97.2 (96.6–97.8) | 97.7 (97.1–98.3) | 96.9 (96.4–97.5) | −1.02 | 0.955 |
HbA1c (%) | 5.79 (5.75–5.82) | 5.78 (5.75–5.80) | 5.78 (5.75–5.81) | 5.77 (5.74–5.80) | 5.79 (5.76–5.81) | 0.00 | 0.194 |
Insulin (μU/mL) | 10.6 (10.3–10.9) | 10.3 (10.1–10.6) | 9.87 (9.62–10.1) | 10.1(9.88–10.4) | 8.62 (8.44–8.82) | −18.7 | 0.019 |
Blood pressure | |||||||
Casual SBP (mmHg) | 135.3 (135.1–135.5) | 136.1 (136.0–136.3) | 136.0 (135.8–136.2) | 136.2 (136.0–136.4) | 134.3 (134.1–134.5) | −0.70 | 0.655 |
Casual DBP (mmHg) | 80.0 (79.7–80.2) | 80.5 (80.3–80.8) | 80.4 (80.1–80.6) | 80.4 (80.1–80.7) | 78.8 (78.5–79.0) | −1.50 | 0.112 |
Casual HR (bpm) | 71.4 (71.2–71.6) | 69.6 (69.3–69.8) | 70.2 (70.0–70.4) | 69.9 (69.6–70.1) | 69.8 (69.6–70.0) | −2.20 | 0.610 |
24 h SBP (mmHg) | 127.1 (126.9–127.3) | 127.6 (127.5–127.8) | 127.2 (127.1–127.4) | 128.0 (127.8–128.2) | 125.6 (125.4–125.7) | −1.20 | 0.862 |
24 h DBP (mmHg) | 74.4 (74.1–74.6) | 74.7 (74.4–74.9) | 74.8 (74.6–75.0) | 75.1 (74.9–75.4) | 73.3 (73.1–73.6) | −1.50 | 0.251 |
24 h HR (bpm) | 68.5 (68.5–69.0) | 67.2 (67.0–67.4) | 68.2 (67.9–68.4) | 68.2 (68.0–68.4) | 67.6 (67.4–67.8) | −1.30 | 0.875 |
Cardiac function biomarkers | |||||||
NT-proBNP (pg/mL) | 94.9 (92.1–97.8) | 83.7 (81.7–85.8) | 88.3 (86.1–90.5) | 85.0 (82.9–87.2) | 80.4 (78.4–82.6) | −15.3 | 0.094 |
Troponin T (ng/L) | 10.1 (9.90–10.3) | 9.40 (9.20–9.60) | 9.70 (9.50–9.90) | 9.90 (9.70–10.1) | 9.00 (8.80–9.20) | −10.9 | 0.295 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Ayala, M.; Sandoval-Insausti, H.; Bayán-Bravo, A.; Banegas, J.R.; Donat-Vargas, C.; Ortolá, R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Cooking Methods and Their Relationship with Anthropometrics and Cardiovascular Risk Factors among Older Spanish Adults. Nutrients 2022, 14, 3426. https://doi.org/10.3390/nu14163426
Rodríguez-Ayala M, Sandoval-Insausti H, Bayán-Bravo A, Banegas JR, Donat-Vargas C, Ortolá R, Rodríguez-Artalejo F, Guallar-Castillón P. Cooking Methods and Their Relationship with Anthropometrics and Cardiovascular Risk Factors among Older Spanish Adults. Nutrients. 2022; 14(16):3426. https://doi.org/10.3390/nu14163426
Chicago/Turabian StyleRodríguez-Ayala, Montserrat, Helena Sandoval-Insausti, Ana Bayán-Bravo, José R. Banegas, Carolina Donat-Vargas, Rosario Ortolá, Fernando Rodríguez-Artalejo, and Pilar Guallar-Castillón. 2022. "Cooking Methods and Their Relationship with Anthropometrics and Cardiovascular Risk Factors among Older Spanish Adults" Nutrients 14, no. 16: 3426. https://doi.org/10.3390/nu14163426
APA StyleRodríguez-Ayala, M., Sandoval-Insausti, H., Bayán-Bravo, A., Banegas, J. R., Donat-Vargas, C., Ortolá, R., Rodríguez-Artalejo, F., & Guallar-Castillón, P. (2022). Cooking Methods and Their Relationship with Anthropometrics and Cardiovascular Risk Factors among Older Spanish Adults. Nutrients, 14(16), 3426. https://doi.org/10.3390/nu14163426