Hypertensive Disorders of Pregnancy and Fetal Growth Restriction: Clinical Characteristics and Placental Lesions and Possible Preventive Nutritional Targets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Biochemical Marker
2.3. Placental Examination
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bokslag, A.; van Weissenbruch, M.; Mol, B.W.; de Groot, C.J. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum. Dev. 2016, 102, 47–50. [Google Scholar] [CrossRef]
- Myatt, L.; Redman, C.W.; Staff, A.C.; Hansson, S.; Wilson, M.; Laivuori, H.; Poston, L.; Roberts, J.M.; Global Pregnancy CoLaboratory. Strategy for Standardization of Preeclampsia Research Study Design. Hypertension 2014, 63, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ 2019, 15, 366. [Google Scholar] [CrossRef] [Green Version]
- Redman, C.W.; Staff, A.C. Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am. J. Obstet. Gynecol. 2015, 213, S9.e1–S9.e4. [Google Scholar] [CrossRef]
- Hung, T.-H.; Skepper, J.N.; Burton, G.J. In Vitro Ischemia-Reperfusion Injury in Term Human Placenta as a Model for Oxidative Stress in Pathological Pregnancies. Am. J. Pathol. 2001, 159, 1031–1043. [Google Scholar] [CrossRef] [Green Version]
- Jauniaux, E.; Watson, A.L.; Hempstock, J.; Bao, Y.-P.; Skepper, J.N.; Burton, G.J. Onset of Maternal Arterial Blood Flow and Placental Oxidative Stress: A Possible Factor in Human Early Pregnancy Failure. Am. J. Pathol. 2000, 157, 2111–2122. [Google Scholar] [CrossRef]
- Pereira, R.D.; De Long, N.E.; Wang, R.C.; Yazdi, F.T.; Holloway, A.C.; Raha, S. Angiogenesis in the Placenta: The Role of Reactive Oxygen Species Signaling. BioMed Res. Int. 2015, 2015, 814543. [Google Scholar] [CrossRef] [Green Version]
- Cuffe, J.S.; Holland, O.; Salomon, C.; Rice, G.E.; Perkins, A.V. Review: Placental derived biomarkers of pregnancy disorders. Placenta 2017, 54, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Stanek, J. Chorangiosis of Chorionic Villi: What Does It Really Mean? Arch. Pathol. Lab. Med. 2016, 140, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Khong, T.Y.; Mooney, E.E.; Ariel, I.; Balmus, N.C.M.; Boyd, T.K.; Brundler, M.-A.; Derricott, H.; Evans, M.J.; Faye-Petersen, O.M.; Gillan, J.E.; et al. Sampling and Definitions of Placental Lesions: Amsterdam Placental Workshop Group Consensus Statement. Arch. Pathol. Lab. Med. 2016, 140, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Hempstock, J.; Jauniaux, E.; Greenwold, N.; Burton, G.J. The contribution of placental oxidative stress to early pregnancy failure. Hum. Pathol. 2003, 34, 1265–1275. [Google Scholar] [CrossRef]
- Aris, A.; Benali, S.; Ouellet, A.; Moutquin, J.; Leblanc, S. Potential Biomarkers of Preeclampsia: Inverse Correlation between Hydrogen Peroxide and Nitric Oxide Early in Maternal Circulation and at Term in Placenta of Women with Preeclampsia. Placenta 2009, 30, 342–347. [Google Scholar] [CrossRef]
- Melchiorre, K.; Thilaganathan, B. Maternal cardiac function in preeclampsia. Curr. Opin. Obstet. Gynecol. 2011, 23, 440–447. [Google Scholar] [CrossRef]
- Tay, J.; Foo, L.; Masini, G.; Bennett, P.R.; McEniery, C.M.; Wilkinson, I.B.; Lees, C.C. Early and late preeclampsia are characterized by high cardiac output, but in the presence of fetal growth restriction, cardiac output is low: Insights from a prospective study. Am. J. Obstet. Gynecol. 2018, 218, 517.e1–517.e12. [Google Scholar] [CrossRef]
- Ferrazzi, E.; Zullino, S.; Stampalija, T.; Vener, C.; Cavoretto, P.; Gervasi, M.T.; Vergani, P.; Mecacci, F.; Marozio, L.; Oggè, G.; et al. Bedside diagnosis of two major clinical phenotypes of hypertensive disorders of pregnancy. Ultrasound Obstet. Gynecol. 2015, 48, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Magee, L.A.; Pels, A.; Helewa, M.; Rey, E.; von Dadelszen, P.; Audibert, F.; Bujold, E.; Côté, A.-M.; Douglas, M.J.; Eastabrook, G.; et al. Diagnosis, Evaluation, and Management of the Hypertensive Disorders of Pregnancy: Executive Summary. J. Obstet. Gynaecol. Can. 2014, 36, 416–438. [Google Scholar] [CrossRef]
- Egbor, M.; Ansari, T.; Morris, N.; Green, C.; Sibbons, P. Maternal medicine: Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG Int. J. Obstet. Gynaecol. 2006, 113, 580–589. [Google Scholar] [CrossRef]
- Orabona, R.; Donzelli, C.M.; Falchetti, M.; Santoro, A.; Valcamonico, A.; Frusca, T. Placental histological patterns and uterine artery Doppler velocimetry in pregnancies complicated by early or late pre-eclampsia. Ultrasound Obstet. Gynecol. 2016, 47, 580–585. [Google Scholar] [CrossRef]
- Redman, C.W.; Sargent, I.L.; Staff, A.C. IFPA Senior Award Lecture: Making sense of pre-eclampsia—Two placental causes of preeclampsia? Placenta 2014, 35, S20–S25. [Google Scholar] [CrossRef]
- Brosens, I.; Pijnenborg, R.; Vercruysse, L.; Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 2011, 204, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Mifsud, W.; Sebire, N.J. Placental Pathology in Early-Onset and Late-Onset Fetal Growth Restriction. Fetal Diagn. Ther. 2014, 36, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Staff, A.; Redman, C. IFPA Award in Placentology Lecture: Preeclampsia, the decidual battleground and future maternal cardiovascular disease. Placenta 2014, 35, S26–S31. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Simões, R.V.; Paules, C.; Cañueto, D.; Pardo-Cea, M.A.; García-Martín, M.L.; Crovetto, F.; Fuertes-Martin, R.; Domenech, M.; Gómez-Roig, M.D.; et al. Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction. Sci. Rep. 2018, 8, 13614. [Google Scholar] [CrossRef] [PubMed]
- Chatzi, L.; Mendez, M.; Garcia, R.; Roumeliotaki, T.; Ibarluzea, J.; Tardon, A.; Amiano, P.; Lertxundi, A.; Iñiguez, C.; Vioque, J.; et al. Mediterranean diet adherence during pregnancy and fetal growth: INMA (Spain) and RHEA (Greece) mother–child cohort studies. Br. J. Nutr. 2012, 107, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, S.; Steegers-Theunissen, R.P.; Vujkovic, M.; den Breeijen, H.; Russcher, H.; Lindemans, J.; MacKenbach, J.; Hofman, A.; Lesaffre, E.E.; Jaddoe, V.V.; et al. The Mediterranean diet and fetal size parameters: The Generation R Study. Br. J. Nutr. 2012, 108, 1399–1409. [Google Scholar] [CrossRef] [Green Version]
- Crovetto, F.; Crispi, F.; Borras, R.; Paules, C.; Casas, R.; Martín-Asuero, A.; Arranz, A.; Vieta, E.; Estruch, R.; Gratacós, E. Mediterranean diet, Mindfulness-Based Stress Reduction and usual care during pregnancy for reducing fetal growth restriction and adverse perinatal outcomes: IMPACT BCN (Improving Mothers for a better PrenAtal Care Trial BarCeloNa): A study protocol for a randomized controlled trial. Trials 2021, 22, 362. [Google Scholar] [CrossRef]
- Menard, M.K.; Kilpatrick, S.; Saade, G.; Hollier, L.M.; Joseph, G.F., Jr.; Barfield, W.; Callaghan, W.; Jennings, J.; Conry, J. American College of Obstetricians and Gynecologists and the Society for Maternal–Fetal Medicine with the assistance of. ACOG/SMFM obstetric care consensus: Levels of maternal care. Obstet. Gynecol. 2015, 125, 502–515. [Google Scholar]
- Robinson, H.P.; Fleming, J.E.E. A critical evaluation of sonar “crown-rump length” measurements. BJOG Int. J. Obstet. Gynaecol. 1975, 82, 702–710. [Google Scholar] [CrossRef]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef]
- Burton, G.; Woods, A.; Jauniaux, E.; Kingdom, J. Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy. Placenta 2009, 30, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Jauniaux, E.; Hempstock, J.; Greenwold, N.; Burton, G.J. Trophoblastic Oxidative Stress in Relation to Temporal and Regional Differences in Maternal Placental Blood Flow in Normal and Abnormal Early Pregnancies. Am. J. Pathol. 2003, 162, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Khong, T.Y.; DE Wolf, F.; Robertson, W.B.; Brosens, I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. BJOG Int. J. Obstet. Gynaecol. 1986, 93, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.; Youssef, L.; Rovira, C.; Crovetto, F.; Nadal, A.; Peguero, A.; Figueras, F.; Eixarch, E.; Crispi, F.; Miranda, J.; et al. Distinctive patterns of placental lesions in pre-eclampsia vs small-for-gestational age and their association with fetoplacental Doppler. Ultrasound Obstet. Gynecol. 2019, 54, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzi, E.; Bulfamante, G.; Mezzopane, R.; Barberà, A.; Ghidini, A.; Pardi, G. Uterine Doppler Velocimetry and Placental Hypoxic-ischemic Lesion in Pregnancies with Fetal Intrauterine Growth Restriction. Placenta 1999, 20, 389–394. [Google Scholar] [CrossRef]
- Parra-Saavedra, M.; Crovetto, F.; Triunfo, S.; Savchev, S.; Peguero, A.; Nadal, A.; Gratacós, E.; Figueras, F. Association of Doppler parameters with placental signs of underperfusion in late-onset small-for-gestational-age pregnancies. Ultrasound Obstet. Gynecol. 2014, 44, 330–337. [Google Scholar] [CrossRef]
- Ferrazzi, E.; Rigano, S.; Padoan, A.; Boito, S.; Pennati, G.; Galan, H. Uterine artery blood flow volume in pregnant women with an abnormal pulsatility index of the uterine arteries delivering normal or intrauterine growth restricted newborns. Placenta 2011, 32, 487–492. [Google Scholar] [CrossRef]
- Kingdom, J.; Huppertz, B.; Seaward, G.; Kaufmann, P. Development of the placental villous tree and its consequences for fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 92, 35–43. [Google Scholar] [CrossRef]
- Falco, M.L.; Sivanathan, J.; Laoreti, A.; Thilaganathan, B.; Khalil, A. Placental histopathology associated with pre-eclampsia: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 50, 295–301. [Google Scholar] [CrossRef]
- Schoots, M.H.; Bourgonje, M.F.; Bourgonje, A.R.; Prins, J.R.; van Hoorn, E.G.; Abdulle, A.E.; Kobold, A.C.M.; van der Heide, M.; Hillebrands, J.-L.; van Goor, H.; et al. Oxidative stress biomarkers in fetal growth restriction with and without preeclampsia. Placenta 2021, 115, 87–96. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Dołęgowska, B.; Kwiatkowska, E.; Rzepka, R.; Marczuk, N.; Loj, B.; Mikolajek-Bedner, W.; Torbe, A. Do the physiological aging of the placenta and the changes in angiogenesis marker sFlt-1 and PlGF concentrations predispose patients to late-onset preeclampsia? J. Matern. Fetal Neonatal Med. 2019, 32, 11–20. [Google Scholar] [CrossRef]
- Cindrova-Davies, T. The therapeutic potential of antioxidants, ER chaperones, NO and H2S donors, and statins for treatment of preeclampsia. Front. Pharmacol. 2014, 5, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2019, 145 (Suppl. S1), 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 17, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.G.; Staff, A.C.; Roberts, J.M. Syncytiotrophoblast stress in preeclampsia: The convergence point for multiple pathways. Am. J. Obstet. Gynecol. 2022, 226, S907–S927. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Balder, H.F.; Virtanen, M.; Brants, H.A.M.; Krogh, V.; Dixon, L.B.; Tan, F.; Mannisto, S.; Bellocco, R.; Pietinen, P.; Wolk, A.; et al. Common and Country-Specific Dietary Patterns in Four European Cohort Studies. J. Nutr. 2003, 133, 4246–4251. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yao, M.; McCrory, M.A.; Ma, G.; Li, Y.; Roberts, S.B.; Tucker, K.L. Dietary Pattern Is Associated with Homocysteine and B Vitamin Status in an Urban Chinese Population. J. Nutr. 2003, 133, 3636–3642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, T.; Picciano, M.F. Folate and human reproduction. Am. J. Clin. Nutr. 2006, 83, 993–1016. [Google Scholar] [CrossRef]
- Larqué, E.; Zamora, S.; Gil, A. Dietary trans fatty acids in early life: A review. Early Hum. Dev. 2001, 65, S31–S41. [Google Scholar] [CrossRef]
- Costanza, J.; Camanni, M.; Ferrari, M.M.; De Cosmi, V.; Tabano, S.; Fontana, L.; Radaelli, T.; Privitera, G.; Alberico, D.; Colapietro, P.; et al. Assessment of pregnancy dietary intake and association with maternal and neonatal outcomes. Pediatr. Res. 2022, 91, 1890–1896. [Google Scholar] [CrossRef]
- Knudsen, V.K.; Orozova-Bekkevold, I.; Mikkelsen, T.B.; Wolff, S.; Olsen, S. Major dietary patterns in pregnancy and fetal growth. Eur. J. Clin. Nutr. 2008, 62, 463–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleker, O.; Buimer, M.; Van Der Post, J.; Van Der Veen, F. Ted (G.J.) Kloosterman: On Intrauterine Growth. The Significance of Prenatal Care. Studies on Birth Weight, Placental Weight and Placental Index. Placenta 2006, 27, 1052–1054. [Google Scholar] [CrossRef] [PubMed]
- Goodger, A.M.; Rogers, P.A.W. Uterine endothelial cell proliferation before and after embryo implantation in rats. Reproduction 1993, 99, 451–457. [Google Scholar] [CrossRef]
- Burton, G.J.; Jaunaiux, E. Maternal vascularisation of the human placenta: Does the embryo develop in a hypoxic environment? Gynecol. Obs. Fertil. 2001, 29, 503–508. [Google Scholar] [CrossRef]
- Nettleton, J.A.; Steffen, L.M.; Mayer-Davis, E.J.; Jenny, N.S.; Jiang, R.; Herrington, D.M.; Jacobs, D.R. Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2006, 83, 1369–1379. [Google Scholar] [CrossRef]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 22, 1440–1446. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; van der A, D.L.; van Bakel, M.M.; van der Kallen, C.J.; Blaak, E.E.; van Greevenbroek, M.M.; Jansen, E.H.; Nijpels, G.; Stehouwer, C.D.; Dekker, J.M.; et al. Glycemic index and glycemic load in relation to food and nutrient intake and metabolic risk factors in a Dutch population. Am. J. Clin. Nutr. 2008, 87, 655–661. [Google Scholar] [CrossRef] [Green Version]
- Steegers-Theunissen, R.P.; Obermann-Borst, S.A.; Kremer, D.; Lindemans, J.; Siebel, C.; Steegers, E.A.; Slagboom, P.E.; Heijmans, B.T. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS ONE 2009, 16, e7845. [Google Scholar]
Variable | Pregnancy Complication Group | p-Value | ||||
---|---|---|---|---|---|---|
HDP-AGA Fetus (n = 10) | HDP-FGR (n = 26) | Early FGR (n = 12) | Late FGR (n = 24) | Controls (n = 16) | ||
Maternal characteristics | ||||||
Gestational age at recruitment (weeks) | 36.8 ± 2.4 | 31.1 ± 3.9 | 28.0 ± 3.6 | 34.1 ± 4.1 | 32.7 ± 5.0 | p < 0.01 b |
Age (years) | 34 ± 4 | 34 ± 6 | 33 ± 6 | 30 ± 6 | 35 ± 3 | p = 0.13 b |
Pre-pregnancy BMI (kg/m2) | 25.9 ± 4.9 | 24.5 ± 5.8 | 22.1 ± 3.3 | 21.7 ± 3.2 | 22.3 ± 3.8 | p = 0.05 b |
Smoking status during pregnancy | 0 (0) | 1 (4) | 4 (33) | 4 (17) | 0 (0) | p = 0.02 c |
Family history of hypertension | 7 (70) | 16 (62) | 5 (42) | 14 (58) | 10 (63) | p = 0.74 c |
Nulliparous women | 8 (80) | 19 (73) | 5 (42) | 18 (75) | 11 (69) | p = 0.29 c |
Obstetric characteristics | ||||||
Gestational age at delivery (weeks) | 38.0 ± 2.4 | 32.8 ± 3.9 | 33.2 ± 3.9 | 38.5 ± 1.8 | 40.0 ± 1.3 | p < 0.01 b |
Obstetric history, previous HDP or FGR | 2 (20) | 5 (19) | 3 (25) | 1 (4) | 0 (0) | p = 0.08 c |
Caesarean section | 5 (50) | 25 (96) | 10 (83) | 5 (21) | 2 (13) | p < 0.01 c |
Neonatal characteristics | ||||||
Neonatal weight percentile | 54 ± 30 | 6 ± 3 | 2 ± 3 | 5 ± 3 | 49 ± 18 | p < 0.01 b |
NICU admission d | 1 (10) | 17 (65) | 9 (75) | 3 (13) | 0 (0) | p < 0.01 c |
Perinatal morbidity | 1 (10) | 12 (46) | 8 (67) | 1 (4) | 0 (0) | p < 0.01 c |
Neonatal death | 0 (0.0) | 4 e (15) | 1 f (8) | 0 (0.0) | 0 (0) | p = 0.11 c |
Time recruitment-to-delivery (weeks) | 1.2 ± 1.2 | 1.8 ± 2.3 | 5.2 ± 2.7 | 4.5 ± 3.7 | 7.3 ± 5.2 | p < 0.01 |
Variable | Pregnancy Complication Group | p-Value | ||||
---|---|---|---|---|---|---|
HDP-AGA Fetus (n = 10) | HDP-FGR (n = 26) | Early FGR (n = 12) | Late FGR (n = 24) | Controls (n = 16) | ||
Biophysical marker | ||||||
Uterine pulsatility index | 0.74 ± 0.30 | 1.32 ± 0.39 | 1.62 ± 0.54 | 0.75 ± 0.22 | 0.70 ± 0.21 | p < 0.01 b |
Umbilical artery pulsatility index | 0.89 ± 0.16 | 1.33 ± 0.48 | 1.73 ± 0.33 | 0.95 ± 0.18 | 0.92 ± 0.15 | p < 0.01 b |
Middle cerebral artery pulsatility index c | 1.75 ± 0.27 | 1.66 ± 0.64 | 1.57 ± 0.42 | 1.74 ± 0.41 | 1.82 ± 0.39 | p = 0.69 b |
Cerebral placental ratio c | 2.06 ± 0.58 | 1.39 ± 0.62 | 0.93 ± 0.27 | 1.84 ± 0.34 | 1.99 ± 0.47 | p < 0.01 b |
Biochemical marker | ||||||
Soluble fms-like tirosin-kinasi 1 (pg/ML) d | 5872 ± 3755 | 8916 ± 7500 | 4282 ± 3693 | 3247 ± 2345 | 2020 ± 1104 | p < 0.01 b |
Placental growth factor (pg/ML) e | 60 ± 37 | 39 ± 51 | 155 ± 267 | 230 ± 261 | 498 ± 438 | p < 0.01 b |
Soluble fms-like tirosin-kinasi 1 to placental growth factor ratio f | 187 ± 341 | 584 ± 799 | 129 ± 180 | 33 ± 39 | 25 ± 60 | p < 0.01 b |
Variable | Pregnancy Complication Group | p-Value | ||||
---|---|---|---|---|---|---|
HDP-AGA Fetus (n = 10) | HDP-FGR (n = 26) | Early FGR (n = 12) | Late FGR (n = 24) | Controls (n = 16) | ||
Placental characteristics | ||||||
Placental weight (g) b | 512 ± 116 | 269 ± 114 | 214 ± 84 | 411 ± 70 | 502 ± 54 | p < 0.01 c |
Placental area (cm2) | 968 ± 320 | 505 ± 175 | 409 ± 142 | 745 ± 306 | 870 ± 165 | p < 0.01 c |
Feto-placental ratio b | 6.0 ± 0.7 | 5.5 ± 2.7 | 6.0 ± 1.2 | 6.3 ± 1.1 | 6.6 ± 0.6 | p = 0.27 |
Amsterdam classification system | ||||||
Maternal vascular malperfusion | 6 (60) | 24 (92) | 10 (83) | 15 (63) | 6 (38) | p < 0.01 d |
Placental infarction | 3 (30) | 12 (46) | 3 (25) | 8 (33) | 0 (0) | p = 0.01 d |
Retroplacental hemorrhage | 0 (0) | 4 (15) | 2 (17) | 1 (4) | 0 (0) | p = 0.24 d |
Distal villous hypoplasia | 0 (0) | 11 (42) | 2 (17) | 3 (13) | 1 (6) | p = 0.01 d |
Accelerated villous maturation | 5 (50) | 15 (58) | 5 (42) | 9 (38) | 4 (25) | p = 0.30 d |
Decidual arteriopathy | 3 (30) | 11 (42) | 8 (67) | 5 (21) | 1 (6) | p < 0.01 d |
Fetal vascular malperfusion | 0 (0) | 3 (12) | 1 (8) | 0 (0) | 0 (0) | p = 0.24 d |
Delayed villous maturation | 4 (40) | 13 (50) | 5 (42) | 20 (83) | 6 (38) | p = 0.01 d |
Villitis of unknown etiology e | 0 (0) | 4 (15) | 2 (17) | 0 (0) | 2 (13) | p = 0.23 d |
Ascending Intrauterine Infection | 2 (20) | 7 (27) | 5 (42) | 4 (17) | 3 (19) | p = 0.55 d |
Pregnancy Complication Group | Placental Injury According to Amsterdam Classification System | ||||
---|---|---|---|---|---|
Maternal Vascular Malperfusion | Fetal Vascular Malperfusion | Delayed Villous Maturation | Villitis of Unknown Etiology | Ascending Intrauterine Infection | |
OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Unadjusted model | |||||
Controls | Ref. | Not applicable | Ref. | Not applicable | Ref. |
HDP-AGA fetus | 2.50 (0.51–13.64) | 1.11 (0.21–5.68) | 1.08 (0.12–8.00) | ||
HDP-FGR | 20.00 (4.03–155.90) | 1.67 (0.47–6.20) | 1.60 (0.37–8.47) | ||
Early FGR | 8.33 (1.55–67.77) | 1.19 (0.25–5.61) | 3.10 (0.58–19.09) | ||
Late FGR | 2.78 (0.77–10.80) | 8.33 (2.04–40.73) | 0.87 (0.16–5.00) | ||
Adjusted modela | |||||
Controls | Ref. | Not applicable | Ref. | Not applicable | Ref. |
HDP-AGA fetus | 5.27 (0.66–50.94) | 2.80 (0.36–21.97) | 1.93 (0.17–20.27) | ||
HDP-FGR | 54.94 (2.90–2902.41) | 16.83 (1.85–204.44) | 6.31 (0.58–83.89) | ||
Early FGR | 6.54 (0.29–191.19) | 7.54 (0.57–114.87) | 5.06 (0.31–93.57) | ||
Late FGR | 2.45 (0.43–14.90) | 21.64 (3.54–171.87) | 0.88 (0.11–6.96) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Martino, D.D.; Avagliano, L.; Ferrazzi, E.; Fusè, F.; Sterpi, V.; Parasiliti, M.; Stampalija, T.; Zullino, S.; Farina, A.; Bulfamante, G.P.; et al. Hypertensive Disorders of Pregnancy and Fetal Growth Restriction: Clinical Characteristics and Placental Lesions and Possible Preventive Nutritional Targets. Nutrients 2022, 14, 3276. https://doi.org/10.3390/nu14163276
Di Martino DD, Avagliano L, Ferrazzi E, Fusè F, Sterpi V, Parasiliti M, Stampalija T, Zullino S, Farina A, Bulfamante GP, et al. Hypertensive Disorders of Pregnancy and Fetal Growth Restriction: Clinical Characteristics and Placental Lesions and Possible Preventive Nutritional Targets. Nutrients. 2022; 14(16):3276. https://doi.org/10.3390/nu14163276
Chicago/Turabian StyleDi Martino, Daniela Denis, Laura Avagliano, Enrico Ferrazzi, Federica Fusè, Vittoria Sterpi, Marco Parasiliti, Tamara Stampalija, Sara Zullino, Antonio Farina, Gaetano Pietro Bulfamante, and et al. 2022. "Hypertensive Disorders of Pregnancy and Fetal Growth Restriction: Clinical Characteristics and Placental Lesions and Possible Preventive Nutritional Targets" Nutrients 14, no. 16: 3276. https://doi.org/10.3390/nu14163276
APA StyleDi Martino, D. D., Avagliano, L., Ferrazzi, E., Fusè, F., Sterpi, V., Parasiliti, M., Stampalija, T., Zullino, S., Farina, A., Bulfamante, G. P., Di Maso, M., & D’Ambrosi, F. (2022). Hypertensive Disorders of Pregnancy and Fetal Growth Restriction: Clinical Characteristics and Placental Lesions and Possible Preventive Nutritional Targets. Nutrients, 14(16), 3276. https://doi.org/10.3390/nu14163276