Vitamin D-Related Risk Factors for Maternal Morbidity during Pregnancy: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Question PECO
2.2. Literature Search
2.3. Study Inclusion/Exclusion Criteria and Data Extraction
- Original research article or review (abstracts, case reports, ecological studies, and comments were excluded)
- Available in English and Spanish
- Published between 2010 and May 2022
- Study carried out on humans
- Exposure of interest is vitamin D status or supplementation during pregnancy
- Data on vitamin D or metabolite concentration in maternal blood during pregnancy available
- Main outcomes of interest are the incidence of maternal morbidity.
2.4. Data Extraction
2.5. Study Quaity Assessment
3. Results
3.1. Study Characteristics
3.2. Original Research Studies
4. Discussion
5. Strengths and Limitations of This Review
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weinert, L.S.; Reichelt, A.J.; Schmitt, L.R.; Boff, R.; Oppermann, M.L.; Camargo, J.L.; Silveiro, S.P. Vitamin D Deficiency Increases the Risk of Adverse Neonatal Outcomes in Gestational Diabetes. PLoS ONE 2016, 11, e0164999. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Feleke, Y.; Abdulkadir, J.; Mshana, R.; Mekbib, T.A.; Brunvand, L.; Berg, J.P.; Falch, J.A. Low levels of serum calcidiol in an African population compared to a North European population. Eur. J. Endocrinol. Eur. Fed. Endocr. Soc. 1999, 141, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Farrant, H.J.; Krishnaveni, G.V.; Hill, J.C.; Boucher, B.J.; Fisher, D.J.; Noonan, K.; Osmond, C.; Veena, S.R.; Fall, C.H. Vitamin D insufficiency is common in Indian mothers but is not associated with gestational diabetes or variation in newborn size. Eur. J. Clin. Nutr. 2009, 63, 646–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcenes, W.; Kassebaum, N.J.; Bernabé, E.; Flaxman, A.; Naghavi, M.; Lopez, A.; Murray, C.J. Global Burden of Oral Conditions in 1990–2010: A Systematic Analysis. J. Dent. Res. 2013, 92, 592–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, K.; Thomas, K.; AbouZahr, C.; Walker, N.; Say, L.; Inoue, M.; Suzuki, E.; Maternal Mortality Working Group. Estimates of Maternal Mortality Worldwide between 1990 and 2005: An Assessment of Available Data. Lancet 2007, 370, 1311–1319. [Google Scholar] [CrossRef]
- Kilpatrick, S.J. Next Steps to Reduce Maternal Morbidity and Mortality in the USA. Women’s Health 2015, 11, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, W.M.; Creanga, A.A.; Kuklina, E.V. Severe Maternal Morbidity among Delivery and Postpartum Hospitalizations in the United States. Obstet. Gynecol. 2012, 120, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Hirshberg, A.; Srinivas, S.K. Epidemiology of Maternal Morbidity and Mortality. Semin Perinatol. 2017, 41, 332–337. [Google Scholar] [CrossRef]
- Barrera, D.; Díaz, L.; Noyola-Martínez, N.; Halhali, A. Vitamin D and Inflammatory Cytokines in Healthy and Preeclamptic Pregnancies. Nutrients 2015, 7, 6465–6490. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G. The 2011 Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. J. Clin. Endocr. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sempos, C.T.; Vesper, H.W.; Phinney, K.W.; Thienpont, L.M.; Coates, P.M.; Vitamin D Standardization Program (VDSP). Vitamin D Status as an International Issue: National Surveys and the Problem of Standardization. Scand. J. Clin. Lab. Investig. 2012, 72, 32–40. [Google Scholar]
- Varsavsky, M.; Moreno, P.R.; Fernández, A.B.; Fernández, I.L.; Gómez, J.M.Q.; Rubio, V.Á.; Martín, A.G.; Berdonces, M.C.; Cortés, S.N.; Muñoz, M.R. Recommended Vitamin D Levels in the General Population. Endocrinol. Diabetes Nutr. 2017, 64, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, G.; He, X.; Gao, J.; Wang, R.; Wang, Y.; Zhao, W. Serum 25-Hydroxyvitamin D Levels and Prognosis in Hematological Malignancies: A Systematic Review and Meta-Analysis. Cell. Physiol. Biochem. 2015, 35, 1999–2005. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzegorzewska, A.E.; Izdebska, A.; Niepolski, L.; Warchol, W.; Jagodzinski, P.P. Self-Reported Physical Activity, Quality of Life, and Psychological Status in Relation to Plasma 25-Hydroxyvitamin D Concentration in Patients Treated with Hemodialysis. Kidney Blood Press. Res. 2016, 41, 886–900. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, H.; Ji, C.; Guo, X.; Hu, L.; Wen, J.; Cai, M. Association of Maternal Serum 25-Hydroxyvitamin D Concentrations in Second Trimester with Delivery Mode in A Chinese Population. Int. J. Med. Sci. 2017, 14, 1008–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson-Hughes, B.; Heaney, R.P.; Holick, M.F.; Lips, P.; Meunier, P.J.; Vieth, R. Estimates of Optimal Vitamin D Status. Osteoporos. Int. 2005, 16, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J.; Adams, J.S.; Bikle, D.D.; Black, D.M.; Demay, M.B.; Manson, J.E.; Murad, M.H.; Kovacs, C.S. The Nonskeletal Effects of Vitamin D: An Endocrine Society Scientific Statement. Endocr. Rev. 2012, 33, 456–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieth, R. Why the Minimum Desirable Serum 25-Hydroxyvitamin D Level should be 75 Nmol/L (30 Ng/mL). Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 681–691. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Giovannucci, E.; Willett, W.C.; Dietrich, T.; Dawson-Hughes, B. Estimation of Optimal Serum Concentrations of 25-Hydroxyvitamin D for Multiple Health Outcomes. Am. J. Clin. Nutr. 2006, 84, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Gertner, J.M.; Glassman, M.S.; Coustan, D.R.; Goodman, D.B. Fetomaternal Vitamin D Relationships at Term. J. Pediatr. 1980, 97, 637–640. [Google Scholar] [CrossRef]
- Delvin, E.E.; Glorieux, F.H.; Salle, B.L.; David, L.; Varenne, J.P. Control of Vitamin D Metabolism in Preterm Infants: Feto-Maternal Relationships. Arch. Dis. Child. 1982, 57, 754–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, K.O.; Li, S.; Cao, C.; Kent, T.; Young, B.V.; Queenan, R.A.; Pressman, E.K.; Cooper, E.M. Placental CYP27B1 and CYP24A1 Expression in Human Placental Tissue and their Association with Maternal and Neonatal Calcitropic Hormones. J. Clin. Endocrinol. Metab. 2014, 99, 1348–1356. [Google Scholar] [CrossRef] [Green Version]
- Hollis, B.W.; Pittard, W.B., III. Evaluation of the Total Fetomaternal Vitamin D Relationships at Term: Evidence for Racial Differences. J. Clin. Endocrinol. Metab. 1984, 59, 652–657. [Google Scholar] [CrossRef]
- Young, B.E.; McNanley, T.J.; Cooper, E.M.; McIntyre, A.W.; Witter, F.; Harris, Z.L.; O’Brien, K.O. Vitamin D Insufficiency is Prevalent and Vitamin D is Inversely Associated with Parathyroid Hormone and Calcitriol in Pregnant Adolescents. J. Bone Miner. Res. 2012, 27, 177–186. [Google Scholar] [CrossRef]
- Institute of Medicine (IOM). Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Heaney, R.P.; Holick, M.F. Why the IOM recommendations for vitamin D are deficient. J. Bone Miner. Res. 2011, 26, 455–457. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: A D-Lightful Solution for Health. J. Investig. Med. 2011, 59, 872–880. [Google Scholar] [CrossRef]
- Singh, S.; Garg, R.; Meena, A.; Kumar, D. Perinatal Outcome in Vitamin D Deficiency and Effect of Oral and Intramuscular Vitamin D3 Supplementation in Antenatal Women on Pregnancy Outcomes. J. South Asian Feder. Obst. Gyne. 2021, 13, 86–89. [Google Scholar] [CrossRef]
- Hollis, B.W.; Wagner, C.L.; Howard, C.R.; Ebeling, M.; Shary, J.R.; Smith, P.G.; Taylor, S.N.; Morella, K.; Lawrence, R.A.; Hulsey, T.C. Maternal Versus Infant Vitamin D Supplementation During Lactation: A Randomized Controlled Trial. Pediatrics 2015, 136, 625–634. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, S.L.; Baggerly, K.A.; Baggerly, C.A.; Aliano, J.L.; French, C.B.; Baggerly, L.L.; Ebeling, M.D.; Rittenberg, C.S.; Goodier, C.G.; Niño, J.F.; et al. Maternal 25(OH)D concentrations ≥40 ng/mL associated with 60% lower preterm birth risk among general obstetrical patients at an urban medical center. PLoS ONE 2017, 12, e0180483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmos-Ortiz, A.; Avila, E.; Durand-Carbajal, M.; Díaz, L. Regulation of Calcitriol Biosynthesis and Activity: Focus on Gestational Vitamin D Deficiency and Adverse Pregnancy Outcomes. Nutrients 2015, 7, 443–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamblyn, J.; Hewison, M.; Wagner, C.; Bulmer, J.; Kilby, M. Immunological Role of Vitamin D at the Maternal–fetal Interface. J. Endocrinol. 2015, 224, R107–R121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Gu, Y.; Zhao, S.; Sun, J.; Groome, L.J.; Wang, Y. Expressions of Vitamin D Metabolic Components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in Placentas from Normal and Preeclamptic Pregnancies. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E928–E935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, L.; Arranz, C.; Avila, E.; Halhali, A.; Vilchis, F.; Larrea, F. Expression and Activity of 25-Hydroxyvitamin D-1α-Hydroxylase are Restricted in Cultures of Human Syncytiotrophoblast Cells from Preeclamptic Pregnancies. J. Clin. Endocrinol. Metab. 2002, 87, 3876–3882. [Google Scholar] [PubMed]
- Pospechova, K.; Rozehnal, V.; Stejskalova, L.; Vrzal, R.; Pospisilova, N.; Jamborova, G.; May, K.; Siegmund, W.; Dvorak, Z.; Nachtigal, P. Expression and Activity of Vitamin D Receptor in the Human Placenta and in Choriocarcinoma BeWo and JEG-3 Cell Lines. Mol. Cell. Endocrinol. 2009, 299, 178–187. [Google Scholar] [CrossRef]
- Slominski, A.T.; Kim, T.; Shehabi, H.Z.; Semak, I.; Tang, E.K.; Nguyen, M.N.; Benson, H.A.; Korik, E.; Janjetovic, Z.; Chen, J. In Vivo Evidence for a Novel Pathway of Vitamin D3 Metabolism Initiated by P450scc and Modified by CYP27B1. FASEB J. 2012, 26, 3901–3915. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Cordero, M.; Lasserrot-Cuadrado, A.; Mur-Villar, N.; León-Ríos, X.; Rivero-Blanco, T.; Pérez-Castillo, I. Vitamin D, Preeclampsia and Prematurity: A Systematic Review and Meta-Analysis of Observational and Interventional Studies. Midwifery 2020, 87, 102707. [Google Scholar] [CrossRef]
- Marino, R.; Misra, M. Extra-Skeletal Effects of Vitamin D. Nutrients 2019, 11, 1460. [Google Scholar] [CrossRef] [Green Version]
- Larque, E.; Morales, E.; Leis, R.; Blanco-Carnero, J.E. Maternal and Foetal Health Implications of Vitamin D Status during Pregnancy. Ann. Nutr. Metab. 2018, 72, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Qi, H.; Luo, Z.; Fraser, W.D. Maternal Vitamin D Status and Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. J. Matern. Fetal. Neonatal. Med. 2013, 26, 889–899. [Google Scholar] [CrossRef]
- Dawodu, A.; Akinbi, H. Vitamin D Nutrition in Pregnancy: Current Opinion. Int. J. Woman’s Health 2013, 5, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöttker, B.; Ball, D.; Gellert, C.; Brenner, H. Serum 25-Hydroxyvitamin D Levels and overall Mortality. A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Ageing Res. Rev. 2013, 12, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, G.A.; Tugwell, P.; O’Connell, D.; Welch, V.; Peterson, J.; Shea, B.; Losos, M. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses. Syst. Rev. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. (accessed on 1 June 2022).
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scottish Intercollegiate Guidelines Network (SIGN). SIGN 50: A Guideline Developer’s Handbook; Scottish Intercollegiate Guidelines Network: Edinburgh, UK, 2015. [Google Scholar]
- Sackett, D.L. Evidence-Based Medicine. Semin. Perinatol. 1997, 21, 3–5. [Google Scholar] [CrossRef]
- Nandi, A.; Wadhwani, N.; Randhir, K.; Wagh, G.; Joshi, S. Association of Vitamin D with Fatty Acids in Pregnancy. Prostaglandins Leukot. Essent. Fat. Acids 2020, 157, 102030. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, A.; Shinde, V.; Ravindran, R. Pooled estimate of Vitamin D deficiency among pregnant women in India: A systematic review and meta-analysis. J. Heath Popul. Nutr. 2021, 40, 48. [Google Scholar] [CrossRef]
- Nandi, A.A.; Wadhwani, N.S.; Randhir, K.N.; Madiwale, S.D.; Deshpande, J.S.; Wagh, G.N.; Joshi, S.R. Maternal vitamin D deficiency influences long-chain polyunsaturated fatty acids and pregnancy outcome in association with alterations in one-carbon metabolism. Nutr. Res. 2021, 86, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Rohr Thomsen, C.; Brink Henriksen, T.; Uldbjerg, N.; Milidou, I. Seasonal Variation in the Hypertensive Disorders of Pregnancy in Denmark. Acta Obstet. Gynecol. Scand. 2020, 99, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Mirzakhani, H.; Litonjua, A.A.; McElrath, T.F.; O’Connor, G.; Lee-Parritz, A.; Iverson, R.; Macones, G.; Strunk, R.C.; Bacharier, L.B.; Zeiger, R. Early Pregnancy Vitamin D Status and Risk of Preeclampsia. J. Clin. Investig. 2016, 126, 4702–4715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Accortt, E.E.; Mirocha, J.; Schetter, C.D.; Hobel, C.J. Adverse Perinatal Outcomes and Postpartum Multi-Systemic Dysregulation: Adding Vitamin D Deficiency to the Allostatic Load Index. Matern. Child Health J. 2017, 21, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Brodowski, L.; Burlakov, J.; Hass, S.; von Kaisenberg, C.; von Versen-Höynck, F. Impaired Functional Capacity of Fetal Endothelial Cells in Preeclampsia. PLoS ONE 2017, 12, e0178340. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.A. A Study of Vitamin D Status of Women with Gestational Diabetes Mellitus in Abuja, Nigeria. Fac. Pathol. 2016, 62 (Suppl. S1), 527. [Google Scholar]
- Lechtermann, C.; Hauffa, B.P.; Herrmann, R.; Schündeln, M.M.; Gellhaus, A.; Schmidt, M.; Grasemann, C. Maternal Vitamin D Status in Preeclampsia: Seasonal Changes are Not Influenced by Placental Gene Expression of Vitamin D Metabolizing Enzymes. PLoS ONE 2014, 9, e105558. [Google Scholar] [CrossRef] [PubMed]
- Achkar, M.; Dodds, L.; Giguère, Y.; Forest, J.; Armson, B.A.; Woolcott, C.; Agellon, S.; Spencer, A.; Weiler, H.A. Vitamin D Status in Early Pregnancy and Risk of Preeclampsia. Obstet. Gynecol. 2015, 212, 511.e1–511.e7. [Google Scholar] [CrossRef] [PubMed]
- Rezende, V.B.; Sandrim, V.C.; Palei, A.C.; Machado, L.; Cavalli, R.C.; Duarte, G.; Tanus-Santos, J.E. Vitamin D Receptor Polymorphisms in Hypertensive Disorders of Pregnancy. Mol. Biol. Rep. 2012, 39, 10903–10906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, O.M.; Gaafar, T.; Eissa, T.S.; Abdella, R.; Ebrashy, A.; Ellithy, A. Prevalence of Vitamin D Deficiency in Egyptian Patients with Pregnancy-Induced Hypertension. J. Perinat. Med. 2020, 48, 583–588. [Google Scholar] [CrossRef]
- Schoenmakers, I.; Piec, I.; Baban, S.; Barebring, L.; Green, D.; Washbourne, C.J.; Tang, J.C.Y.; Fraser, W.D.; Augustin, H. Gestational hypercalcemia: Prevalence and biochemical profile. J. Steroid Biochem. Mol. Biol. 2020, 199, 105611. [Google Scholar] [CrossRef]
- Olmos-Ortiz, A.; Olivares-Huerta, A.; García-Quiroz, J.; Avila, E.; Halhali, A.; Quesada-Reyna, B.; Larrea, F.; Zaga-Clavellina, V.; Díaz, L. Cord serum calcitriol inversely correlates with maternal blood pressure in urinary tract infection-affected pregnancies: Sex-dependent immune implications. Nutrients 2021, 13, 3114. [Google Scholar] [CrossRef]
- de Souza, E.A.; Pisani, L.P. The Relationship among Vitamin D, TLR4 Pathway and Preeclampsia. Mol. Biol. Rep. 2020, 47, 6259–6267. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.A.; Wadhwani, N.S.; Joshi, S.R. Altered Metabolic Homeostasis between Vitamin D and Long Chain Polyunsaturated Fatty Acids in Preeclampsia. Med. Hypotheses 2017, 100, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Kovilam, O.; Agrawal, D.K. Vitamin D and its Impact on Maternal-Fetal Outcomes in Pregnancy: A Critical Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 755–769. [Google Scholar] [CrossRef]
- Palacios, C.; De-Regil, L.M.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D Supplementation during Pregnancy: Updated Meta-Analysis on Maternal Outcomes. J. Steroid Biochem. Mol. Biol. 2016, 164, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-López, F.R.; Pasupuleti, V.; Mezones-Holguin, E.; Benites-Zapata, V.A.; Thota, P.; Deshpande, A.; Hernandez, A.V. Effect of Vitamin D Supplementation during Pregnancy on Maternal and Neonatal Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Fertil. Steril. 2015, 103, 1278–1288.e4. [Google Scholar] [CrossRef] [PubMed]
- Weinert, L.S.; Silveiro, S.P. Maternal–fetal Impact of Vitamin D Deficiency: A Critical Review. Matern. Child Health J. 2015, 19, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Girling, J.; Sykes, L. Thyroid Disorders and Other Endocrinological Disorders in Pregnancy. Obstet. Gynaecol. Reprod. Med. 2013, 23, 171–179. [Google Scholar] [CrossRef]
- Tabesh, M.; Salehi-Abargouei, A.; Tabesh, M.; Esmaillzadeh, A. Maternal Vitamin D Status and Risk of Pre-Eclampsia: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2013, 98, 3165–3173. [Google Scholar] [CrossRef] [Green Version]
- Alzaim, M.; Wood, R.J. Vitamin D and Gestational Diabetes Mellitus. Nutr. Rev. 2013, 71, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Senti, J.; Thiele, D.K.; Anderson, C.M. Maternal Vitamin D Status as a Critical Determinant in Gestational Diabetes. J. Obstet. Gynecol. Neonatal. Nurs. 2012, 41, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Barrett, H.; McElduff, A. Vitamin D and Pregnancy: An Old Problem Revisited. Best Pract. Res. Clin. Endocrinol. Metabo. 2010, 24, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, M.L.; Felton, S.K.; Riek, A.E.; Bernal-Mizrachi, C. Implications of Vitamin D Deficiency in Pregnancy and Lactation. Obstet. Gynecol. 2010, 202, 429.e1–429.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorne-Lyman, A.; Fawzi, W.W. Vitamin D during Pregnancy and Maternal, Neonatal and Infant Health Outcomes: A Systematic Review and Meta-Analysis. Paediatr. Perinat. Epidemiol. 2012, 26, 75–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, A.M.; Haeri, S.; Camargo, C.A., Jr.; Espinola, J.A.; Stuebe, A.M. A nested case-control study of midgestation vitamin D deficiency and risk of se-vere preeclampsia. J. Clin. Endocrinol. Metab. 2010, 95, 5105–5109. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Seely, E.W.; Rana, S.; Bhan, I.; Ecker, J.; Karumanchi, S.A.; Thadhani, R. First trimester vitamin D, vitamin D binding protein, and subsequent preeclampsia. Hypertension 2010, 56, 758–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shand, A.; Nassar, N.; Von Dadelszen, P.; Innis, S.; Green, T. Maternal vitamin D status in pregnancy and adverse pregnancy outcomes in a group at high risk for pre-eclampsia. BJOG Int. J. Obstet. Gynaecol. 2010; 117, 1593–1598. [Google Scholar]
- Holick, M.F.; Chen, T.C. Vitamin D Deficiency: A Worldwide Problem with Health Consequences. Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Baggerly, C.A.; Cuomo, R.E.; French, C.B.; Garland, C.F.; Gorham, E.D.; Grant, W.B.; Heaney, R.P.; Holick, M.F.; Hollis, B.W.; McDonnell, S.L. Sunlight and Vitamin D: Necessary for Public Health. J. Am. Coll. Nutr. 2015, 34, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Bodnar, L.M.; Catov, J.M.; Simhan, H.N.; Holick, M.F.; Powers, R.W.; Roberts, J.M. Maternal Vitamin D Deficiency Increases the Risk of Preeclampsia. J. Clin. Endocrinol. Metab. 2007, 92, 3517–3522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, T.; Christin-Maitre, S. Vitamin D and Pregnancy. Ann. Endocrinol. 2011, 72 (Suppl. S1), S23–S28. [Google Scholar] [CrossRef]
- Brannon, P.M. Vitamin D and Adverse Pregnancy Outcomes: Beyond Bone Health and Growth. Proc. Nutr. Soc. 2012, 71, 205–212. [Google Scholar] [CrossRef]
- Palaniswamy, S.; Williams, D.; Järvelin, M.; Sebert, S. Vitamin D and the Promotion of Long-Term Metabolic Health from a Programming Perspective. Nutr. Metab. Insights 2015, 8, S29526. [Google Scholar]
- Saraf, R.; Morton, S.M.; Camargo, C.A., Jr.; Grant, C.C. Global Summary of Maternal and Newborn Vitamin D Status—A Systematic Review. Matern. Child Nutr. 2016, 12, 647–668. [Google Scholar] [CrossRef] [PubMed]
- De-Regil, L.M.; Palacios, C.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D Supplementation for Women during Pregnancy. Cochrane Database Syst. Rev. 2016, 1, CD008873. [Google Scholar]
- Hollis, B.W.; Johnson, D.; Hulsey, T.C.; Ebeling, M.; Wagner, C.L. Vitamin D Supplementation during Pregnancy: Double-blind, Randomized Clinical Trial of Safety and Effectiveness. J. Bone Miner. Res. 2011, 26, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Vitamin D Supplementation during Pregnancy; WHO: Geneva, Switzerland, 2021; ISBN 978-92-4-150493-5. [Google Scholar]
- American Pregnancy Association. Vitamin D and Pregnancy; American Pregnancy Association: Irving, TX, USA, 2021. [Google Scholar]
- Hong-Bi, S.; Yin, X.; Xiaowu, Y.; Ying, W.; Yang, X.; Ting, C.; Na, W. High Prevalence of Vitamin D Deficiency in Pregnant Women and its Relationship with Adverse Pregnancy Outcomes in Guizhou, China. J. Int. Med. Res. 2018, 46, 4500–4505. [Google Scholar] [CrossRef]
- Hynes, C.; Jesurasa, A.; Evans, P.; Mitchell, C. Vitamin D Supplementation for Women before and during Pregnancy: An Update of the Guidelines, Evidence, and Role of GPs and Practice Nurses. Br. J. Gen. Pract. 2017, 67, 423–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lötscher, Q.; l’Alemand, D.; Bischoff-Ferrari, H.; Burckhardt, P. Vitamin D Deficiency: Evidence, Safety, and Recommendations for the Swiss Population. 2012. Available online: https://www.zora.uzh.ch/id/eprint/73029/ (accessed on 1 June 2022).
- Health Canada. Vitamin D and Calcium: Updated Dietary Reference Intakes. 2021. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/vitamins-minerals/vitamin-calcium-updated-dietary-reference-intakes-nutrition.html (accessed on 1 June 2022).
- Özdemir, A.A.; Gündemir, Y.E.; Küçük, M.; Sarıcı, D.Y.; Elgörmüş, Y.; Çağ, Y.; Bilek, G. Vitamin D Deficiency in Pregnant Women and their Infants. J. Clin. Pediatr. Endocrinol. 2018, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, P.; Jandaghi, P.; Shafiee, M.; Islam, N.; Vatanparast, H. Maternal Vitamin D Status among Different Ethnic Groups and its Potential Contribution to Adverse Pregnancy and Child Outcomes. In Vitamin D Deficiency; IntechOpen: London, UK, 2020. [Google Scholar]
- Ministry of Health. Companion Statement on Vitamin D and Sun Exposure in Pregnancy and Infancy in New Zealand: A Supplement to the Consensus Statement on Vitamin D and Sun Exposure in New Zealand. 2021. Available online: https://www.health.govt.nz/publication/companion-statement-vitamin-d-and-sun-exposure-pregnancy-and-infancy-new-zealand (accessed on 20 June 2022).
Author | Location, Year(s) | Study Type | Data Source | Sample Size | Primary Outcome | Findings | SING& | NOS | |
---|---|---|---|---|---|---|---|---|---|
LE | GR | ||||||||
Rezende et al., 2012 [50] | Brazil | Case-control; observational | IRB at the Faculty of Medicine of Ribeirao Preto, University of São Paulo | n = 529: n = 154 (GH) n = 162 (PE) n = 213 (healthy) | PE and GH | Similar genotype distributions were found for the 3 VDR polymorphisms in both the PE and GH groups compared with the HP group (all p > 0.05). VDR haplotype frequency distribution was similar in both the PE and GH groups compared with the HP group (all p > 0.05). | 2++ | B | 8 |
Lechtermann et al., 2014 [51] | Northern Hemisphere, 2005–2008 | Cohort; observational | Department of Gynecology and Obstetrics, UK-Essen, University of Duisburg-Essen, Germany | n = 63: n = 20 (PE) n = 43 (healthy) | PE | In patients with PE, vitamin D levels were lower but differed significantly from the controls only in the summer (18.21 ± 17.1 vs. 49.2 ± 29.2 ng/mL; p < 0.001), whereas 1,25-(OH)2 vitamin D levels were significantly lower only in the winter (291 ± 217 vs. 612.3 ± 455 pmol/mL; p < 0.05). A two-factorial ANOVA produced a statistically significant model (p < 0.0001) with an effect of season (p < 0.01) and PE (p = 0.01) on maternal vitamin D levels, as well as a significant interaction between the two variables (p = 0.02). | 2++ | B | 8 |
Achkar et al., 2015 [52] | Canada, 2014 | Nested case-control | Canadian cohort studies of pregnant women, Quebec City, Nova Scotia, and Halifax, 2002–2010 | n = 169 (PE) n = 1975 (control) | PE | Women who developed PE had a significantly lower vitamin D concentration (47.2 ± 17.7 vs. 52.3 ± 17.2 nmol/L; p < 0.0001). Women with vitamin D <30 nmol/L, compared with those with at least 50 nmol/L, had a greater risk of developing PE (adjusted OR = 2.23; 95% CI, 1.29–3.83) after adjustment for pre-pregnancy BMI, maternal age, smoking, parity, season and year of blood collection, gestational week at blood collection, and cohort site. An exploratory analysis with cubic splines showed a dose–response relationship between maternal vitamin D and the risk of PE, up to levels ~50 nmol/L, where the association appears to plateau. | 2++ | B | 8 |
Lawal et al., 2016 [53] | Nigeria, 2014 | Case-control; observational | Department of Chemical Pathology of the tertiary health care facility | n = 100 (GDM) n = 100 (control) | GDM | Overall mean values of plasma 25-hydroxycholecalciferol were 28.77 ± 12.42 ng/mL. Overall, 58% of subjects had plasma 25-hydroxycholecalciferol levels < 30 ng/mL. The proportion of cases with vitamin D insufficiency was 62% (54% for controls). The OR for GDM was 1.39 (95% CI, 0.79–2.44) and p = 0.3159. | 2++ | B | 8 |
Mirzakhani et al., 2016 [54] | USA, 2009–2011 | Randomized, double-blind, placebo-controlled clinical trial; experimental | Boston University Medical Center; Washington University in St. Louis, Missouri; and Kaiser Permanente Southern California Region in San Diego | n = 440 (4400 IU) n = 436 (placebo 400 IU) | PE | No significant difference was found between the treatment or control groups in terms of incidence of PE (8.08% vs. 8.33%, respectively; relative risk: 0.97; 95% CI, 0.61–1.53). In a cohort analysis and after adjustment for confounders, a significant effect of sufficient vitamin D status (≥30 ng/mL was observed in both early and late pregnancy compared with insufficient levels (adjusted OR, 0.28; 95% CI, 0.10–0.96). The differential expression of 348 vitamin D-associated genes (158 upregulated) was found in the peripheral blood of women who developed PE (FDR <0.05 in the Vitamin D Antenatal Asthma Reduction Trial [VDAART]; p < 0.05 in a replication cohort). | 2++ | B | 8 |
Brodowski et al., 2017 [55] | Germany | Cohort; observational | Hannover Medical Center (Germany) | n = 12 (PE) n = 13 (NC) | PE | Vitamin D3 improved HUVEC function in neither group. No effect of vitamin D3 on VEGF expression was found. | 2++ | B | 8 |
Accortt et al., 2017 [56] | USA, 2004–2016 | Nested cohort; observational | Community Child Health Network | n = 164 (cohort) | PE and GDM | Serum vitamin D was significantly inversely correlated with the AL index (Spearman’s r = −0.247; p = 0.002). | 2+ | B | 8 |
Singla et al., 2019 [57] | India, 2017–2018 | Prospective comparative; observational | Department of Obstetrics and Gynaecology, Adesh Institute of Medical Sciences and Research, Bathinda, Punjab | n = 60: n = 30 (PE) n = 30 (NC) | PE | Vitamin D deficiency was found in all participants, but the mean vitamin D level was significantly lower in the PE group (8.7 ± 5.32 vs. 14.2 ± 7.88 ng/mL, p < 0.05). | 2++ | B | 8 |
Nandi et al., 2020 [58] | India | Cross-sectional; observational | Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Pune | n = 50 (PE) n = 69 (NC) | PE | Vitamin D levels were lower (p < 0.01 for both) in women with PE. PUFA levels were lower (p < 0.05), whereas SFA and total MUFA were higher (p < 0.05 for both) in women with PE. Cord erythrocyte PUFA levels were higher (p < 0.01) in PE women. Vitamin D levels were negatively associated with maternal systolic and diastolic blood pressure (p < 0.01 for both). Vitamin D levels were positively associated with PUFA (p < 0.01) and negatively associated with SFA (p < 0.05), MUFA (p < 0.01). | 2++ | B | 8 |
Rohr Thomsen et al., 2020 [59] | Denmark, 1989–2010 | Cohort; observational | Aarhus Birth Cohort at the Department of Gynecology and Obstetrics, Aarhus University Hospital | n = 50,665 (cohort) | GH and PE | Seasonal variation was found for GH (p = 0.01), PE (p = 0.001), and early-onset PE (p = 0.014). Increased risk was observed when conceiving during spring and early summer, peaking in midsummer, and decreasing steadily during late summer and fall to reach the nadir by winter. | 2++ | B | 8 |
Osman et al., 2020 [60] | Egypt, 2019 | Case-control; observational | — | n = 200 (PE) n = 100 (eclampsia) n = 200 (NC) | Eclampsia and PE | Mean vitamin D level was lower in the PE group (14.8 ± 5.4 ng/mL) and the eclampsia group (10.5 ± 1.6 ng/mL) than in the pregnant controls (19.5 ± 6.5 ng/mL) (p = 0.002). The difference was significant only between the eclampsia group and the pregnant controls (p = 0.02). All eclampsia cases had vitamin D insufficiency, compared with 17.5% of the PE group and 39.5% of the controls. Deficiency of vitamin D (<12 ng/mL) was 47.5% in the PE group, 80% in the eclampsia group, and 10.5% in the control group (p = 0.04). | 2++ | B | 8 |
Nandi et al., 2020 [61] | India | Cross-sectional | Department of Obstetrics and Gynecology, Bharati Medical College and Hospital | n = 50 (PE) n = 69 (NC) | PE | Vitamin D deficiency increases oxidative stress through alterations in one-carbon metabolism, which can result in an imbalance in LCPUFA metabolites and contribute to placental inflammation and endothelial dysfunction in PE. | 2+ | C | 8 |
Schoenmakers et al., 2020 [62] | Sweden, 2013–2014 | Nested case-control; retrospective | Antenatal care units and medical records | n = 1827 (cohort) n = 30 (normocalcemic) | Hypercalcemia crisis | Hypercalcemic women had a relatively high serum 1,25(OH)2D concentration despite appropriately suppressed PTH, which is suggestive of abnormal gestational adaptations. The prevalence of gestational hypercalcemia was 1.7% in the third trimester. Primary hyperparathyroidism and vitamin D toxicity were not found as main causes of hypercalcemia. | 2+ | C | 8 |
Olmos-Ortiz et al., 2021 [63] | Mexico | Cross-sectional | Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán | n = 48 (UTI) n = 44 (normal pregnancy) | UTIs and GH | Vitamin D deficiency might predispose women to maternal cardiovascular risk and perinatal infections, especially in male-carrying pregnancies, probably owing to lower placental CYP27B1 and cathelicidin expression. Strong negative correlations were found between calcitriol and maternal systolic and diastolic blood pressure in the UTI cohort (p < 0.002). Cathelicidin gene expression was positively correlated with gestational age in the UTI cohort and with newborn anthropometric parameters. | 2+ | C | 8 |
Author | Factor | Vitamin D Analysis Time | Assay Method | Cutoff Values, nmol/L in Blood Sample | 25(OH)D Measured or Vitamin D Supplementation Studied | Maternal Age |
---|---|---|---|---|---|---|
Rezende et al., 2012 [61] | VDR polymorphisms with PE or GH | — | Genotypes for FokI, ApaI, and BsmI determined by RFLP | — | Serum sample | 27–28 |
Lechtermann et al., 2014 [59] | Season on maternal vitamin D status and placental vitamin D metabolism | — | ELISA; 25(OH)D ELISA (Immunodiagnostik, Bensheim, Germany) | 50 | Serum sample | 31–32 |
Achkar et al., 2015 [60] | PE and vitamin D status | 20 weeks | Automated chemiluminescence immunoassay (DiaSorin Liaison, Stillwater, MN, USA) | 75 | Serum sample | 25–>35 |
Lawal et al., 2016 [58] | Vitamin D status and GDM | — | Cobas e411 (Roche Diagnostics, GmbH) analyzer | 75 | Serum sample | 31.73 |
Mirzakhani et al., 2016 [55] | PE and vitamin D supplementation | Initiated between 10–18 weeks | Supplementation vitamin D study (4400 vs. 400 IU/day) | 75 | Supplementation comparison | 18–39 |
Brodowski et al., 2017 [57] | Vitamin D status and its relationship with postpartum AL | Either 6 or 12 months postpartum | Highly selective liquid chromatography–tandem mass spectrometry using Zrt laboratory methods | 50 | Serum sample | 27.8 |
Accortt et al., 2017 [56] | PE and 1,25(OH)2 vitamin D3 | Delivery | LIAISON 25(OH) Vitamin D3 TOTAL Assay (DiaSorin, USA) | 50 | Maternal and cord serum sample | 32.2 |
Singla et al., 2019 [52] | PE | — | Immune fluorescence assay test using a vitamin D kit on a Tosho AIA 360 fully automatic hormone analyzer | 50 | Serum sample | 20–40 |
Nandi et al., 2020 [51] | Maternal and cord serum vitamin D levels in women with PE | Delivery | EIA method using an AC-57SF1, 25-Hydroxy Vitamin D EIA kit (AC-57SF1, IDS, Boldon, UK) | 75 | Maternal and cord serum sample | 18–35 |
Rohr Thomsen et al., 2020 [54] | hypertensive disorders and PE | — | No direct measurements | — | Serum sample | <20–>35 |
Osman et al., 2020 [62] | Hypertensive disorders of pregnancy | — | 25(OH)D3/D2 Orgentec Diagnostika ELISA Kit GmbH | 50 | Serum sample | 20–35 |
Nandi et al., 2020 [53] | Maternal and cord serum vitamin D levels in women with PE | Delivery | ELISA Serum TXB2 levels (Cayman Chemicals, item No. 501020; Ann Arbor, MI, USA) | — | Maternal and cord serum sample | 18–35 |
Schoenmakers et al., 2020 [63] | Gestational hypercalcemia | Pregnant women in trimester 1 (before gestational week 16) and in trimester 3 (after gestational week 31). | ELISA Free vitamin D (DIASource Immunoassays, Louvain-la Neuve, Belgium) | 30–50 | Serum sample | 33.2 |
Olmos-Ortiz et al., 2021 [64] | Vitamin D3 (calcitriol active metabolite) involved in UTI | Delivery | Quantitative chemiluminescent immunoassay in the LIAISON platform | 50 | Serum sample | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Varela, M.M.; Uçar, N.; Peraita-Costa, I.; Huertas, M.F.; Soriano, J.M.; Llopis-Morales, A.; Grant, W.B. Vitamin D-Related Risk Factors for Maternal Morbidity during Pregnancy: A Systematic Review. Nutrients 2022, 14, 3166. https://doi.org/10.3390/nu14153166
Suárez-Varela MM, Uçar N, Peraita-Costa I, Huertas MF, Soriano JM, Llopis-Morales A, Grant WB. Vitamin D-Related Risk Factors for Maternal Morbidity during Pregnancy: A Systematic Review. Nutrients. 2022; 14(15):3166. https://doi.org/10.3390/nu14153166
Chicago/Turabian StyleSuárez-Varela, Maria Morales, Nazlı Uçar, Isabel Peraita-Costa, María Flores Huertas, Jose Miguel Soriano, Agustin Llopis-Morales, and William B. Grant. 2022. "Vitamin D-Related Risk Factors for Maternal Morbidity during Pregnancy: A Systematic Review" Nutrients 14, no. 15: 3166. https://doi.org/10.3390/nu14153166
APA StyleSuárez-Varela, M. M., Uçar, N., Peraita-Costa, I., Huertas, M. F., Soriano, J. M., Llopis-Morales, A., & Grant, W. B. (2022). Vitamin D-Related Risk Factors for Maternal Morbidity during Pregnancy: A Systematic Review. Nutrients, 14(15), 3166. https://doi.org/10.3390/nu14153166