Dietary Essential Amino Acid Intake Is Associated with High Muscle Strength in Korean Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographic and Lifestyle Information
2.3. Dietary Amino Acid and Total EAAS Calculation
2.4. Definition of High Muscle Strength
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Statistics Korea. 2020 Senior Statistics. Available online: http://kostat.go.kr/portal/korea/kor_nw/1/1/index.board?bmode=read&aSeq=385322 (accessed on 15 March 2021).
- Lee, M.R.; Jung, S.M.; Kim, H.S.; Kim, Y.B. Association of muscle strength with cardiovascular risk in Korean adults: Findings from the Korea National Health and Nutrition Examination Survey (KNHANES) VI to VII (2014-2016). Medicine 2018, 97, e13240. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Lim, J.; Park, H.S. Relationship between low handgrip strength and quality of life in Korean men and women. Qual. Life Res. 2018, 27, 2571–2580. [Google Scholar] [CrossRef]
- Olaniyan, E.T.; O’Halloran, F. Dietary protein considerations for muscle protein synthesis and muscle mass preservation in older adults. Nutr. Res. Rev. 2021, 34, 147–157. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare. The Status of Nutrient Consumption in Korea through the Nutrient Consumption Standards. Available online: https://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&page=1&CONT_SEQ=362381 (accessed on 28 March 2021).
- The Korean Nutrition Society. 2020 Dietary Reference Intakes for Korean: Energy and Macronutrients. Available online: http://www.kns.or.kr/FileRoom/FileRoom_view.asp?mode=mod&restring=%252FFileRoom%252FFileRoom.asp%253Fxsearch%253D0%253D%253Dxrow%253D10%253D%253DBoardID%253DKdr%253D%253Dpage%253D1&idx=108&page=1&BoardID=Kdr&xsearch=1&cn_search= (accessed on 16 March 2021).
- Ferrando, A.A.; Tipton, K.D.; Wolfe, R.R. Essential Amino Acids for Muscle Protein Accretion. Strength Cond. J. 2010, 32, 87–92. [Google Scholar] [CrossRef]
- Volpi, E.; Kobayashi, H.; Sheffield-Moore, M.; Mittendorfer, B.; Wolfe, R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003, 78, 250–258. [Google Scholar] [CrossRef]
- Negro, M.; Perna, S.; Spadaccini, D.; Castelli, L.; Calanni, L.; Barbero, M.; Cescon, C.; Rondanelli, M.; D’Antona, G. Effects of 12 Weeks of Essential Amino Acids (EAA)-Based Multi-Ingredient Nutritional Supplementation on Muscle Mass, Muscle Strength, Muscle Power and Fatigue in Healthy Elderly Subjects: A Randomized Controlled Double-Blind Study. J. Nutr. Health Aging 2019, 23, 414–424. [Google Scholar] [CrossRef]
- Markofski, M.M.; Jennings, K.; Timmerman, K.L.; Dickinson, J.M.; Fry, C.S.; Borack, M.S.; Reidy, P.T.; Deer, R.R.; Randolph, A.; Rasmussen, B.B.; et al. Effect of Aerobic Exercise Training and Essential Amino Acid Supplementation for 24 Weeks on Physical Function, Body Composition, and Muscle Metabolism in Healthy, Independent Older Adults: A Randomized Clinical Trial. J. Gerontol. Ser. A 2019, 74, 1598–1604. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef]
- Yoshii, N.; Sato, K.; Ogasawara, R.; Kurihara, T.; Hamaoka, T.; Fujita, S. Relationship between Dietary Protein or Essential Amino Acid Intake and Training-Induced Muscle Hypertrophy among Older Individuals. J. Nutr. Sci. Vitaminol. 2017, 63, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S. High protein intake is associated with low prevalence of frailty among old Japanese women: A multicenter cross-sectional study. Nutr. J. 2013, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Korea Centers for Disease Control and Prevention. The seventh Korea National Health and Nutrition Examination Survey (KNHANES Ⅶ-3). 2018. Available online: https://knhanes.cdc.go.kr/knhanes/sub03/sub03_02_05.do (accessed on 25 February 2021).
- Chae, M.; Park, H.; Park, K. Estimation of Dietary Amino Acid Intake and Independent Correlates of Skeletal Muscle Mass Index among Korean Adults. Nutrients 2020, 12, 1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korea Centers for Disease Control and Prevention. Guidelines for Health Examination (2016–2018). Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_02_02.do?classType=4 (accessed on 29 March 2021).
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef] [PubMed]
- Beasley, J.M.; LaCroix, A.Z.; Neuhouser, M.L.; Huang, Y.; Tinker, L.; Woods, N.; Michael, Y.; Curb, J.D.; Prentice, R.L. Protein intake and incident frailty in the Women’s Health Initiative observational study. J. Am. Geriatr. Soc. 2010, 58, 1063–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gedmantaite, A.; Celis-Morales, C.A.; Ho, F.; Pell, J.P.; Ratkevicius, A.; Gray, S.R. Associations between diet and handgrip strength: A cross-sectional study from UK Biobank. Mech. Ageing Dev. 2020, 189, 111269. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Rasmussen, B.B. Dietary protein recommendations and the prevention of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 86–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.; Lee, J.; Kwon, Y. Difference of Low Skeletal Muscle Index According to Recommended Protein Intake in Korean. Korean J. Fam. Pract. 2019, 9, 539–545. [Google Scholar] [CrossRef]
- Kim, I.Y.; Deutz, N.E.P.; Wolfe, R.R. Update on maximal anabolic response to dietary protein. Clin. Nutr. 2018, 37, 411–418. [Google Scholar] [CrossRef]
- The Korean Nutrition Society. Dietary Reference Intakes for Koreans. Available online: http://www.kns.or.kr/FileRoom/FileRoom_view.asp?idx=108&BoardID=Kdr (accessed on 2 September 2021).
- Jang, W.; Ryu, H. Association of Low Hand Grip Strength with Protein Intake in Korean Female Elderly: Based on the Seventh Korea National Health and Nutrition Examination Survey (KNHANES VII), 2016-2018. Korean J. Community Nutr. 2020, 25, 226–235. [Google Scholar] [CrossRef]
- Kobayashi, H. Amino Acid Nutrition in the Prevention and Treatment of Sarcopenia. Yakugaku Zasshi J. Pharm. Soc. Jpn. 2018, 138, 1277–1283. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, R.R.; Miller, S.L.; Miller, K.B. Optimal protein intake in the elderly. Clin. Nutr. 2008, 27, 675–684. [Google Scholar] [CrossRef]
- Drummond, M.J.; Dickinson, J.M.; Fry, C.S.; Walker, D.K.; Gundermann, D.M.; Reidy, P.T.; Timmerman, K.L.; Markofski, M.M.; Paddon-Jones, D.; Rasmussen, B.B.; et al. Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1113–E1122. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Volpi, E. Amino acids and muscle loss with aging. J. Nutr. 2006, 136, 277s–280s. [Google Scholar] [CrossRef] [PubMed]
- Kamei, Y.; Hatazawa, Y.; Uchitomi, R.; Yoshimura, R.; Miura, S. Regulation of Skeletal Muscle Function by Amino Acids. Nutrients 2020, 12, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Chae, M.; Park, H.; Park, K. Higher Branched-Chain Amino Acid Intake Is Associated with Handgrip Strength among Korean Older Adults. Nutrients 2021, 13, 1522. [Google Scholar] [CrossRef] [PubMed]
- Pasiakos, S.M.; McClung, J.P. Supplemental dietary leucine and the skeletal muscle anabolic response to essential amino acids. Nutr. Rev. 2011, 69, 550–557. [Google Scholar] [CrossRef]
- Canfield, C.-A.; Bradshaw, P.C. Amino acids in the regulation of aging and aging-related diseases. Transl. Med. 2019, 3, 70–89. [Google Scholar] [CrossRef]
- Park, B. Amino Acid Imbalance-Biochemical Mechanism and Nutritional Aspects. Asian-Aust. J. Anim. Sci. 2006, 19, 1361–1368. [Google Scholar] [CrossRef]
- Jonker, R.; Engelen, M.P.; Deutz, N.E. Role of specific dietary amino acids in clinical conditions. Br. J. Nutr. 2012, 108 (Suppl. S2), S139–S148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ispoglou, T.; Witard, O.C.; Duckworth, L.C.; Lees, M.J. The efficacy of essential amino acid supplementation for augmenting dietary protein intake in older adults: Implications for skeletal muscle mass, strength and function. Proc. Nutr. Soc. 2021, 80, 230–242. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids. In StatPearls; StatPearls Publishing Copyright © 2021; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2021. [Google Scholar]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- The Korea Health Industry Development Institute (KHIDI). Main Food Sources According to the Nutrients. Available online: https://www.khidi.or.kr/kps/dhraStat/result7?menuId=MENU01659&gubun=age1&year=2018 (accessed on 15 August 2021).
- Kwon, Y.S.; Yang, Y.Y.; Park, Y.; Park, Y.K. Dietary Assessment and Factors According to Fruits and Vegetables Intake in Korean Elderly People: Analysis of Data from the Korea National Health and Nutrition Examination Survey, 2013–2018. Nutrients 2020, 12, 3492. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.; Ryu, H. Socio-Economic Factors are Associated with Risk of Inadequate Protein Intake among Korean Elderly: Based on the Seventh Korean National Health and Nutrition Examination Survey (KNHANES Ⅶ), 2016–2018. Korean J. Community Living Sci. 2020, 31, 215–228. [Google Scholar] [CrossRef]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho-Junior, H.J.; Calvani, R.; Gonçalves, I.O.; Rodrigues, B.; Picca, A.; Landi, F.; Bernabei, R.; Uchida, M.C.; Marzetti, E. High relative consumption of vegetable protein is associated with faster walking speed in well-functioning older adults. Aging Clin. Exp. Res. 2019, 31, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Górska-Warsewicz, H.; Laskowski, W. Food Products as Sources of Protein and Amino Acids-The Case of Poland. Nutrients 2018, 10, 1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef]
- McDonough, F.E.; Bodwell, C.E.; Staples, R.S.; Wells, P.A. Rat bioassays for methionine availability in 16 food sources. Plant Foods Hum. Nutr. 1989, 39, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E.; Bertolo, R.F.P.; Brunton, J.A. Methionine: A metabolically unique amino acid. Livest. Sci. 2007, 112, 2–7. [Google Scholar] [CrossRef]
- Tipton, K.D.; Ferrando, A.A.; Phillips, S.M.; Doyle, D., Jr.; Wolfe, R.R. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am. J. Physiol. 1999, 276, E628–E634. [Google Scholar] [CrossRef]
Total EAAS | p1 | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
n = 1492 | n = 1493 | n = 1493 | n = 1493 | ||
Score, median (range) | 5.62 (0.83–6.89) | 7.61 (6.90–7.96) | 8.32 (7.96–8.70) | 8.99 (8.70–9.00) | |
Age (years) | 73.90 ± 0.13 | 73.10 ± 0.13 | 72.35 ± 0.13 | 71.62 ± 0.13 | <0.001 |
Sex | <0.001 | ||||
Men | 585 (39.21) | 627 (42.00) | 684 (45.81) | 674 (45.14) | |
Women | 907 (60.79) | 866 (58.00) | 809 (54.19) | 819 (54.86) | |
Household income | <0.001 | ||||
Low | 889 (59.99) | 750 (50.51) | 661 (44.48) | 509 (34.35) | |
Mid-low | 345 (23.28) | 440 (29.63) | 424 (28.53) | 433 (29.22) | |
Mid-high | 169 (11.40) | 163 (10.98) | 237 (15.95) | 304 (20.51) | |
High | 79 (5.33) | 132 (8.89) | 164 (11.04) | 236 (15.92) | |
Alcohol consumption | <0.001 | ||||
Drinkers | 592 (41.96) | 746 (51.59) | 810 (55.75) | 851 (58.49) | |
Non-drinkers | 819 (58.04) | 700 (48.41) | 643 (44.25) | 604 (41.51) | |
Smoking status | 0.04 | ||||
Smokers | 160 (11.35) | 135 (9.37) | 129 (8.90) | 121 (8.32) | |
Nonsmokers | 1250 (88.65) | 1306 (90.63) | 1321 (91.10) | 1333 (91.68) | |
Body mass index (kg/m2) | 23.95 ± 0.082 | 24.12 ± 0.082 | 23.92 ± 0.082 | 24.21 ± 0.082 | 0.12 |
Physical activity 2 | <0.001 | ||||
Low | 516 (39.30) | 445 (32.58) | 421 (30.46) | 329 (23.45) | |
Mid | 451 (34.35) | 479 (35.07) | 479 (34.66) | 523 (37.28) | |
High | 346 (26.35) | 442 (32.36) | 482 (34.88) | 551 (39.27) | |
Dietary intake | |||||
Total energy (kcal/day) | 1124.11 ± 13.46 | 1499.31 ± 13.46 | 1747.98 ± 13.46 | 2286.87 ± 13.46 | <0.001 |
Carbohydrate (g/day) | 213.85 ± 2.62 | 276.05 ± 2.61 | 304.54 ± 2.61 | 363.90 ± 2.61 | <0.001 |
Fat (g/day) | 11.79 ± 0.43 | 19.00 ± 0.43 | 28.21 ± 0.43 | 46.57 ± 0.43 | <0.001 |
Protein (g/day) | 30.90 ± 0.51 | 44.96 ± 0.51 | 56.96 ± 0.51 | 85.37 ± 0.51 | <0.001 |
Protein/body weight (g/kg) | 0.54 ± 0.01 | 0.76 ± 0.01 | 0.96 ± 0.01 | 1.41 ± 0.01 | <0.001 |
Individual EAAS 3 | |||||
Leucine | 0.66 ± 0.002 | 0.96 ± 0.002 | 0.99 ± 0.002 | 0.98 ± 0.003 | <0.001 |
Isoleucine | 0.75 ± 0.003 | 1.00 ± 0.002 | 0.99 ± 0.002 | 0.98 ± 0.003 | <0.001 |
Valine | 0.79 ± 0.003 | 1.00 ± 0.002 | 0.99 ± 0.002 | 0.98 ± 0.003 | <0.001 |
Lysine | 0.34 ± 0.003 | 0.59 ± 0.002 | 0.87 ± 0.002 | 1.00 ± 0.003 | <0.001 |
Histidine | 0.65 ± 0.003 | 0.96 ± 0.002 | 0.99 ± 0.002 | 0.98 ± 0.003 | <0.001 |
Threonine | 0.71 ± 0.003 | 0.99 ± 0.002 | 0.99 ± 0.002 | 0.98 ± 0.003 | <0.001 |
Methionine | 0.32 ± 0.002 | 0.51 ± 0.002 | 0.74 ± 0.002 | 0.97 ± 0.003 | <0.001 |
Phenylalanine | 0.39 ± 0.002 | 0.56 ± 0.002 | 0.71 ± 0.002 | 0.90 ± 0.002 | <0.001 |
Tryptophan | 0.89 ± 0.002 | 1.00 ± 0.002 | 0.99 ± 0.002 | 0.98 ± 0.003 | <0.001 |
Dietary supplement use | <0.001 | ||||
Yes | 602 (40.35) | 740 (49.56) | 804 (53.89) | 859 (57.54) | |
No | 890 (59.65) | 753 (50.44) | 688 (46.11) | 634 (42.46) | |
Handgrip strength (kg) | 21.87 ± 0.22 | 23.35 ± 0.22 | 24.66 ± 0.22 | 25.07 ± 0.22 | <0.001 |
Total EAAS | p for Trend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
n = 1492 | n = 1493 | n = 1493 | n = 1493 | ||
Score, median | 5.62 | 7.61 | 8.32 | 8.99 | |
Case (%) | 735 (49.26) | 861 (57.67) | 944 (63.23) | 1014 (67.92) | |
Model 1 | 1 | 1.34 (1.13–1.60) | 1.80 (1.52–2.13) | 2.17 (1.83–2.57) | <0.001 |
Model 2 | 1 | 1.15 (0.95–1.39) | 1.37 (1.14–1.64) | 1.57 (1.30–1.90) | <0.001 |
Model 3 | 1 | 1.14 (0.93–1.40) | 1.36 (1.10–1.69) | 1.38 (1.07–1.79) | 0.005 |
Total EAAS | p | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
n = 1492 | n = 1493 | n = 1493 | n = 1493 | ||
RNI (%) | |||||
Leucine | 63.79 ± 0.90 | 102.09 ± 0.90 | 137.73 ± 0.90 | 220.35 ± 0.90 | <0.001 |
Isoleucine | 73.48 ± 1.13 | 119.85 ± 1.13 | 164.83 ± 1.13 | 269.25 ± 1.13 | <0.001 |
Valine | 78.50 ± 1.03 | 123.10 ± 1.03 | 164.12 ± 1.03 | 255.77 ± 1.03 | <0.001 |
Lysine | 33.81 ± 0.84 | 58.84 ± 0.84 | 89.22 ± 0.84 | 157.74 ± 0.84 | <0.001 |
Histidine | 64.13 ± 1.19 | 105.14 ± 1.19 | 146.57 ± 1.19 | 246.01 ± 1.19 | <0.001 |
Threonine | 69.68 ± 1.11 | 112.98 ± 1.11 | 156.96 ± 1.11 | 257.11 ± 1.11 | <0.001 |
Methionine | 30.92 ± 0.63 | 51.37 ± 0.63 | 74.74 ± 0.63 | 128.54 ± 0.63 | <0.001 |
Phenylalanine | 34.64 ± 0.45 | 54.51 ± 0.45 | 71.63 ± 0.45 | 111.60 ± 0.45 | <0.001 |
Tryptophan | 99.30 ± 1.78 | 154.69 ± 1.78 | 204.29 ± 1.78 | 322.84 ± 1.78 | <0.001 |
Food Group | Total EAA Intake (g) | p for Trend | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Animal source 1 | |||||
n | 1426 | 1426 | 1427 | 1426 | |
Case (%) | 730 (21.13) | 846 (24.49) | 891 (25.79) | 988 (28.60) | |
Intake, median (g/day) | 0.4 | 3.3 | 6.8 | 14.2 | |
Model 1 | 1 | 1.34 (1.13–1.58) | 1.53 (1.29–1.82) | 2.16 (1.81–2.59) | <0.001 |
Model 2 | 1 | 1.13 (0.93–1.38) | 1.10 (0.91–1.32) | 1.39 (1.14–1.69) | 0.002 |
Model 3 | 1 | 1.12 (0.91–1.37) | 1.07 (0.88–1.30) | 1.27 (1.02–1.58) | 0.046 |
Non-animal source 2 | |||||
n | 1492 | 1493 | 1493 | 1493 | |
Case (%) | 738 (20.77) | 877 (24.68) | 915 (25.75) | 1024 (28.81) | |
Intake, median (g/day) | 6.0 | 8.8 | 11.7 | 17.0 | |
Model 1 | 1 | 1.29 (1.10–1.52) | 1.57 (1.32–1.88) | 2.16 (1.82–2.56) | <0.001 |
Model 2 | 1 | 1.17 (0.97–1.40) | 1.14 (0.93–1.40) | 1.46 (1.20–1.77) | <0.001 |
Model 3 | 1 | 1.13 (0.93–1.39) | 1.03 (0.82–1.30) | 1.18 (0.91–1.54) | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, J.; Park, H.; Park, K. Dietary Essential Amino Acid Intake Is Associated with High Muscle Strength in Korean Older Adults. Nutrients 2022, 14, 3104. https://doi.org/10.3390/nu14153104
Im J, Park H, Park K. Dietary Essential Amino Acid Intake Is Associated with High Muscle Strength in Korean Older Adults. Nutrients. 2022; 14(15):3104. https://doi.org/10.3390/nu14153104
Chicago/Turabian StyleIm, Jihyun, Hyoungsu Park, and Kyong Park. 2022. "Dietary Essential Amino Acid Intake Is Associated with High Muscle Strength in Korean Older Adults" Nutrients 14, no. 15: 3104. https://doi.org/10.3390/nu14153104
APA StyleIm, J., Park, H., & Park, K. (2022). Dietary Essential Amino Acid Intake Is Associated with High Muscle Strength in Korean Older Adults. Nutrients, 14(15), 3104. https://doi.org/10.3390/nu14153104