Thyroid Dysfunction and the Effect of Iodine-Deficient Parenteral Nutrition in Very Low Birth Weight Infants: A Nationwide Analysis of a Korean Neonatal Network Database
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition
2.3. Statistical Analysis
3. Results
3.1. Comparisons of Clinical Factors According to Thyroid Dysfunction Requiring L-thyroxine
3.2. Risk Factors of Thyroid Dysfunction Requiring L-thyroxine
3.3. Long-Term Outcomes of Thyroid Dysfunction Requiring L-thyroxine
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Do, H.-J.; Cho, J.Y.; Yeom, J.S.; Park, J.S.; Seo, J.-H.; Lim, J.Y.; Park, C.-H.; Woo, H.-O.; Youn, H.-S. Levothyroxine Sodium Administration and Late Circulatory Collapse in Premature Infants with Thyroid Dysfunction. Perinatology 2019, 30, 160–170. [Google Scholar] [CrossRef][Green Version]
- Lee, J.H.; Kim, S.W.; Jeon, G.W.; Sin, J.B. Thyroid dysfunction in very low birth weight preterm infants. Korean J. Pediatr. 2015, 58, 224–229. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Korkmaz, G.; Ozcetin, M.; Cag, Y.; Yukselmis, U.; Ongel, V.; Isik, O. Thyroid function in healthy and unhealthy preterm newborns. Afr. Health Sci. 2018, 18, 378–383. [Google Scholar] [CrossRef] [PubMed]
- LaFranchi, S.H. Thyroid Function in Preterm/Low Birth Weight Infants: Impact on Diagnosis and Management of Thyroid Dysfunction. Front. Endocrinol. 2021, 12, 666207. [Google Scholar] [CrossRef] [PubMed]
- Ares, S.; Quero, J.; de Escobar, G.M. Iodine balance, iatrogenic excess, and thyroid dysfunction in premature newborns. Semin. Perinatol. 2008, 32, 407–412. [Google Scholar] [CrossRef]
- Kaluarachchi, D.C.; Colaizy, T.T.; Pesce, L.M.; Tansey, M.; Klein, J.M. Congenital hypothyroidism with delayed thyroid-stimulating hormone elevation in premature infants born at less than 30 weeks gestation. J. Perinatol. 2017, 37, 277–282. [Google Scholar] [CrossRef]
- La Gamma, E.F.; Korzeniewski, S.J.; Ballabh, P.; Paneth, N. Transient hypothyroxinemia of prematurity. Neoreviews 2016, 17, e394–e402. [Google Scholar] [CrossRef]
- Kim, H.-R.; Jung, Y.H.; Choi, C.W.; Chung, H.R.; Kang, M.-J.; Kim, B.I. Thyroid dysfunction in preterm infants born before 32 gestational weeks. BMC Pediatrics 2019, 19, 391. [Google Scholar] [CrossRef]
- Domellof, M.; Szitanyi, P.; Simchowitz, V.; Franz, A.; Mimouni, F.; the ESPGHAN/ESPEN/ESPR/CSPEN Working Group on Pediatric Parenteral Nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Iron and trace minerals. Clin. Nutr. 2018, 37, 2354–2359. [Google Scholar] [CrossRef]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellof, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Ares, S.; Escobar-Morreale, H.F.; Quero, J.; Duran, S.; Presas, M.J.; Herruzo, R.; Morreale de Escobar, G. Neonatal hypothyroxinemia: Effects of iodine intake and premature birth. J. Clin. Endocrinol. Metab. 1997, 82, 1704–1712. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Thaker, V.V.; Galler, M.F.; Marshall, A.C.; Almodovar, M.C.; Hsu, H.W.; Addis, C.J.; Feldman, H.A.; Brown, R.S.; Levine, B.S. Hypothyroidism in Infants With Congenital Heart Disease Exposed to Excess Iodine. J. Endocr. Soc. 2017, 1, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R. Drugs that suppress TSH or cause central hypothyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Bolisetty, S.; Osborn, D.; Schindler, T.; Sinn, J.; Deshpande, G.; Wong, C.S.; Jacobs, S.E.; Phad, N.; Pharande, P.; Tobiansky, R.; et al. Standardised neonatal parenteral nutrition formulations—Australasian neonatal parenteral nutrition consensus update 2017. BMC Pediatr. 2020, 20, 59. [Google Scholar] [CrossRef]
- Kanike, N.; Groh-Wargo, S.; Thomas, M.; Chien, E.K.; Mhanna, M.; Kumar, D.; Worley, S.; Singh, R.J.; Shekhawat, P.S. Risk of Iodine Deficiency in Extremely Low Gestational Age Newborns on Parenteral Nutrition. Nutrients 2020, 12, 1636. [Google Scholar] [CrossRef]
- Cicalese, M.P.; Bruzzese, E.; Guarino, A.; Spagnuolo, M.I. Requesting iodine supplementation in children on parenteral nutrition. Clin. Nutr. 2009, 28, 256–259. [Google Scholar] [CrossRef]
- Belfort, M.B.; Pearce, E.N.; Braverman, L.E.; He, X.; Brown, R.S. Low iodine content in the diets of hospitalized preterm infants. J. Clin. Endocrinol. Metab. 2012, 97, E632–E636. [Google Scholar] [CrossRef]
- Chung, H.R.; Shin, C.H.; Yang, S.W.; Choi, C.W.; Kim, B.I. Subclinical hypothyroidism in Korean preterm infants associated with high levels of iodine in breast milk. J. Clin. Endocrinol. Metab. 2009, 94, 4444–4447. [Google Scholar] [CrossRef]
- Ibrahim, M.; de Escobar, G.M.; Visser, T.J.; Duran, S.; van Toor, H.; Strachan, J.; Williams, F.L.; Hume, R. Iodine deficiency associated with parenteral nutrition in extreme preterm infants. Arch. Dis. Child. Fetal. Neonatal. Ed. 2003, 88, F56–F57. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Kim, C.Y.; Jung, E.; Lee, B.S.; Kim, K.S.; Kim, E.A. Validity of the Korean Developmental Screening Test for very-low-birth-weight infants. Korean J. Pediatr. 2019, 62, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Squires, J.; Bricker, D.; Potter, L. Revision of a parent-completed development screening tool: Ages and Stages Questionnaires. J. Pediatr. Psychol. 1997, 22, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, Y.; Nzegwu, N.; Harrington, J.; Ehrenkranz, R.A.; Hafler, J.P. Identifying Barriers to Initiating Minimal Enteral Feedings in Very Low-Birth-Weight Infants: A Mixed Methods Approach. Am. J. Perinatol. 2016, 33, 47–56. [Google Scholar]
- Di Dalmazi, G.; Carlucci, M.A.; Semeraro, D.; Giuliani, C.; Napolitano, G.; Caturegli, P.; Bucci, I. A Detailed Analysis of the Factors Influencing Neonatal TSH: Results From a 6-Year Congenital Hypothyroidism Screening Program. Fron. Endocrinol. 2020, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.H.; Thomas, P.; Peabody, J. Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics 2003, 111, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Tamanna, M.; Marlow, N. Using the Bayley-III to assess neurodevelopmental delay: Which cut-off should be used? Pediatr. Res. 2014, 75, 670–674. [Google Scholar] [CrossRef]
- Chung, H.J.; Yang, D.; Kim, G.H.; Kim, S.K.; Kim, S.W.; Kim, Y.K.; Kim, Y.A.; Kim, J.S.; Kim, J.K.; Kim, C.; et al. Development of the Korean Developmental Screening Test for Infants and Children (K-DST). Clin. Exp. Pediatr. 2020, 63, 438–446. [Google Scholar] [CrossRef]
- Chunhua, L.; Kaiyan, W.; Jizhong, G.; Jiru, C.; Mei, C.; Zhexi, X.; Pu, C.; Beiyan, W.; Niyang, L. Small for gestational age is a risk factor for thyroid dysfunction in preterm newborns. BMC Pediatrics 2020, 20, 179. [Google Scholar]
- Bosch-Gimenez, V.M.; Palazon-Bru, A.; Blasco-Barbero, A.; Juste-Ruiz, M.; Rizo-Baeza, M.M.; Cortes-Castell, E. Multivariate Analysis of Thyrotropin in Preterm Newborns Based on Adequacy of Weight for Gestational Age. Thyroid 2017, 27, 120–124. [Google Scholar] [CrossRef]
- Amnon, Z.; Arie, Y.; Shlomo, A. Neonatal hyperthyrotropinemia is associated with low birth weight: A twin study. Eur. J. Endocrinol. 2013, 168, 263–269. [Google Scholar]
- Jeong, M.H.; Lee, N.; Bae, M.H.; Han, Y.M.; Park, K.H.; Byun, S.Y. Risk Factors for Delayed Hyperthyrotropinemia in Late Preterm Infants. Neonatal. Med. 2019, 26, 204–212. [Google Scholar] [CrossRef]
- Cho, Y.Y.; Kim, H.J.; Oh, S.Y.; Choi, S.J.; Lee, S.Y.; Joung, J.Y.; Jeong, D.J.; Sohn, S.Y.; Chung, J.H.; Roh, C.R.; et al. Iodine status in healthy pregnant women in Korea: A first report. Eur. J. Nutr. 2016, 55, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.R.; Shin, C.H.; Yang, S.W.; Choi, C.W.; Kim, B.I.; Kim, E.K.; Kim, H.S.; Choi, J.H. High incidence of thyroid dysfunction in preterm infants. J. Korean Med. Sci. 2009, 24, 627–631. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Silva, S.A.B.; Chagas, A.J.; Goulart, E.M.A.; Silva, G.A.B.; Marcal, L.V.; Gomes, M.N.A.; Alves, V.M.D. Screening for Congenital Hypothyroidism in Extreme Premature and/or Very Low Birth Weight Newborns: The Importance of a Specific Protocol. J. Pediatric Endocrinol. Metab. 2010, 23, 45–52. [Google Scholar]

| Clinical Characteristics | Total (N = 5635) | LT4 (+) (N = 490) | LT4 (−) (N = 5145) | p | Odds Ratio | 95% CI | *p | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N, Mean | %, SD | N, Mean | %, SD | N, Mean | %, SD | Lower | Upper | |||||
| Demographic Factor | ||||||||||||
| Gestational age (weeks) | 28.63 | 2.24 | 28.09 | 2.45 | 28.68 | 2.21 | <0.001 | 1.124 | 1.079 | 1.171 | <0.001 | |
| Birth weight (g) | 1091.0 | 261.3 | 955.0 | 275.2 | 1103.9 | 256.2 | <0.001 | 1.000 | 1.000 | 1.000 | <0.001 | |
| Small for gestational age | 710 | 12.6 | 110 | 22.4 | 600 | 11.7 | <0.001 | 2.193 | 1.745 | 2.756 | <0.001 | |
| Male | 2837 | 50.3 | 234 | 47.8 | 2603 | 50.6 | 0.237 | |||||
| Vaginal delivery | 1207 | 21.4 | 115 | 23.5 | 1092 | 21.2 | 0.249 | |||||
| 5′ Apgar score (0–3) | 269 | 4.8 | 32 | 6.6 | 237 | 4.6 | 0.016 | 1.555 | 1.055 | 2.290 | 0.026 | |
| In vitro fertilization | 1371 | 24.3 | 132 | 26.9 | 1239 | 24.1 | 0.168 | |||||
| Multigestation | 2021 | 35.7 | 202 | 41.2 | 1809 | 35.2 | 0.009 | 1.293 | 1.071 | 1.562 | 0.008 | |
| maternal DM | 549 | 9.7 | 36 | 7.3 | 513 | 10.0 | 0.066 | |||||
| Maternal HTN | 1189 | 21.1 | 102 | 20.8 | 1087 | 21.1 | 0.908 | |||||
| Chorioamnionitis | 1812 | 37.8 | 161 | 38.1 | 1651 | 37.8 | 0.916 | |||||
| PROM | 2090 | 37.3 | 160 | 33.1 | 1930 | 37.7 | 0.049 | 0.819 | 0.672 | 0.998 | 0.047 | |
| Prenatal steroid | 4744 | 85.4 | 423 | 87.4 | 4321 | 85.2 | 0.201 | |||||
| Outborn | 173 | 3.1 | 22 | 4.5 | 151 | 2.9 | 0.073 | |||||
| Neonatal Morbidities and Related Treatment | ||||||||||||
| Respiratory | RDS | 4644 | 82.4 | 404 | 82.4 | 4240 | 82.4 | 1.00 | ||||
| PPHN | 291 | 5.2 | 52 | 10.6 | 239 | 4.6 | <0.001 | 2.437 | 1.778 | 3.341 | <0.001 | |
| BPD | 1809 | 32.2 | 213 | 43.7 | 1596 | 31.1 | <0.001 | 1.732 | 1.427 | 2.081 | <0.001 | |
| Cardiovascular | Drugs for PDA | 1960 | 48.5 | 208 | 58.6 | 1752 | 47.5 | <0.001 | 1.564 | 1.254 | 1.950 | <0.001 |
| Hypotension | 1076 | 19.1 | 140 | 28.6 | 936 | 18.2 | <0.001 | 1.799 | 1.460 | 2.215 | <0.001 | |
| Neurologic | Seizure | 310 | 5.5 | 55 | 11.2 | 255 | 5.0 | <0.001 | 2.425 | 1.783 | 3.279 | <0.001 |
| IVH ≥ 3 | 336 | 6.0 | 34 | 6.9 | 302 | 5.9 | 0.319 | |||||
| PVL | 410 | 7.3 | 44 | 9.0 | 366 | 7.1 | 0.145 | |||||
| Gastrointestinal/Nutritional | NEC ≥ st2 | 291 | 5.2 | 32 | 6.5 | 259 | 5.0 | 0.164 | 1.318 | 0.902 | 1.926 | 0.154 |
| PN ≥4 weeks | 2160 | 38.3 | 220 | 44.9 | 1940 | 37.7 | 0.002 | 1.346 | 1.117 | 1.622 | 0.002 | |
| Others | Sepsis | 1179 | 20.9 | 133 | 27.1 | 1046 | 20.3 | 0.004 | 1.460 | 1.183 | 1.801 | <0.001 |
| Operation | 1144 | 20.3 | 153 | 31.2 | 991 | 19.3 | <0.001 | 1.903 | 1.553 | 2.332 | <0.001 | |
| RBC transfusion | 3845 | 68.2 | 379 | 77.3 | 3466 | 67.4 | <0.001 | 1.654 | 1.328 | 2.060 | <0.001 | |
| Outcomes at Discharge and 2–3 Years of Age | ||||||||||||
| Discharge (EUGR) | Hospital stays (day) | 75.5 | 37.1 | 90.8 | 48.5 | 74.3 | 35.6 | <0.001 | 1.009 | 1.007 | 1.011 | <0.001 |
| Weight (n = 5635) | 3190 | 56.6 | 351 | 71.6 | 2839 | 55.2 | <0.001 | 2.051 | 1.673 | 2.515 | <0.001 | |
| Length (n = 5205) | 3393 | 65.2 | 363 | 78.6 | 3030 | 63.9 | <0.001 | 2.073 | 1.647 | 2.609 | <0.001 | |
| HC (n = 5360) | 2351 | 43.9 | 289 | 61.8 | 2062 | 42.2 | <0.001 | 2.216 | 1.824 | 2.693 | <0.001 | |
| FU1 or FU2 (GR < 5 p) | Weight (n = 5251) | 840 | 16.0 | 146 | 30.5 | 694 | 14.5 | <0.001 | 2.575 | 2.086 | 3.178 | <0.001 |
| Height (n = 4904) | 894 | 18.2 | 138 | 29.7 | 756 | 17.0 | <0.001 | 2.055 | 1.660 | 2.565 | <0.001 | |
| HC (n = 4164) | 643 | 15.5 | 107 | 27.0 | 536 | 14.3 | <0.001 | 2.219 | 1.746 | 2.821 | <0.001 | |
| AED (n= 5093) | 69 | 1.2 | 11 | 2.3 | 58 | 1.1 | 0.047 | 2.032 | 1.059 | 3.898 | 0.033 | |
| FU1 or FU2 (Developmental delay) | Cerebral palsy (n = 4987) | 345 | 6.3 | 46 | 9.6 | 299 | 6.0 | 0.004 | 1.658 | 1.197 | 2.296 | 0.002 |
| Cognitive delay (n = 3946) | 1165 | 29.5 | 140 | 36.9 | 1025 | 28.7 | 0.001 | 1.453 | 1.165 | 1.812 | 0.001 | |
| Risk Factors | Odds Ratio | 95% CI | p | |
|---|---|---|---|---|
| Lower | Upper | |||
| SGA | 2.987 | 2.215 | 4.028 | <0.001 |
| Seizure | 1.787 | 1.229 | 2.598 | 0.002 |
| RBC transfusion | 1.530 | 1.072 | 2.184 | 0.019 |
| PPHN | 1.501 | 1.020 | 2.210 | 0.039 |
| Multigestation | 1.428 | 1.133 | 1.798 | 0.003 |
| Drugs for PDA closure | 1.348 | 1.066 | 1.705 | 0.013 |
| hypotension | 1.315 | 1.010 | 1.713 | 0.042 |
| PN ≥ 4 weeks | 0.791 | 0.608 | 1.028 | 0.080 |
| GA, per-week decrease | 1.125 | 1.057 | 1.197 | <0.001 |
| Outcomes | Odds Ratio | 95% CI | p | ||
|---|---|---|---|---|---|
| Lower | Upper | ||||
| Growth retardation | Weight | 1.918 | 1.455 | 2.528 | <0.001 |
| Height | 1.464 | 1.108 | 1.934 | 0.007 | |
| Head circumference | 1.636 | 1.191 | 2.246 | 0.002 | |
| Development | Cerebral palsy | 1.095 | 0.714 | 1.679 | 0.676 |
| Cognitive delay | 1.162 | 0.875 | 1.543 | 0.299 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.; Park, J.; Yeom, J.; Jun, J.; Park, J.; Park, E.; Seo, J.-H.; Lim, J.; Park, C.-H.; Woo, H.-O. Thyroid Dysfunction and the Effect of Iodine-Deficient Parenteral Nutrition in Very Low Birth Weight Infants: A Nationwide Analysis of a Korean Neonatal Network Database. Nutrients 2022, 14, 3043. https://doi.org/10.3390/nu14153043
Cho J, Park J, Yeom J, Jun J, Park J, Park E, Seo J-H, Lim J, Park C-H, Woo H-O. Thyroid Dysfunction and the Effect of Iodine-Deficient Parenteral Nutrition in Very Low Birth Weight Infants: A Nationwide Analysis of a Korean Neonatal Network Database. Nutrients. 2022; 14(15):3043. https://doi.org/10.3390/nu14153043
Chicago/Turabian StyleCho, JaeYoung, JeongHoon Park, JungSook Yeom, JinSu Jun, JiSook Park, EunSil Park, Ji-Hyun Seo, JaeYoung Lim, Chan-Hoo Park, and Hyang-Ok Woo. 2022. "Thyroid Dysfunction and the Effect of Iodine-Deficient Parenteral Nutrition in Very Low Birth Weight Infants: A Nationwide Analysis of a Korean Neonatal Network Database" Nutrients 14, no. 15: 3043. https://doi.org/10.3390/nu14153043
APA StyleCho, J., Park, J., Yeom, J., Jun, J., Park, J., Park, E., Seo, J.-H., Lim, J., Park, C.-H., & Woo, H.-O. (2022). Thyroid Dysfunction and the Effect of Iodine-Deficient Parenteral Nutrition in Very Low Birth Weight Infants: A Nationwide Analysis of a Korean Neonatal Network Database. Nutrients, 14(15), 3043. https://doi.org/10.3390/nu14153043

