Plasma Transthyretin Levels and Risk of Type 2 Diabetes Mellitus and Impaired Glucose Regulation in a Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of T2DM and IGR
2.3. Body Composition and Blood Parameters
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Wang, T.; Lu, J.; Shi, L.; Chen, G.; Xu, M.; Xu, Y.; Su, Q.; Mu, Y.; Chen, L.; Hu, R.; et al. Association of insulin resistance and β-cell dysfunction with incident diabetes among adults in China: A nationwide, population-based, prospective cohort study. Lancet Diabetes Endocrinol. 2020, 8, 115–124. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas. Available online: https://diabetesatlas.org/ (accessed on 1 April 2022).
- Blake, C.C.; Geisow, M.J.; Swan, I.D.; Rerat, C.; Rerat, B. Strjcture of human plasma prealbumin at 2.5 A resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. J. Mol. Biol. 1974, 88, 1–12. [Google Scholar] [CrossRef]
- Ingenbleek, Y.; Young, V. Transthyretin (prealbumin) in health and disease: Nutritional implications. Annu. Rev. Nutr. 1994, 14, 495–533. [Google Scholar] [CrossRef] [PubMed]
- Bianconcini, A.; Lupo, A.; Capone, S.; Quadro, L.; Monti, M.; Zurlo, D.; Fucci, A.; Sabatino, L.; Brunetti, A.; Chiefari, E.; et al. Transcriptional activity of the murine retinol-binding protein gene is regulated by a multiprotein complex containing HMGA1, p54 nrb/NonO, protein-associated splicing factor (PSF) and steroidogenic factor 1 (SF1)/liver receptor homologue 1 (LRH-1). Int. J. Biochem. Cell Biol. 2009, 41, 2189–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, S.J. Cell and molecular biology of transthyretin and thyroid hormones. Int. Rev. Cytol. 2007, 258, 137–193. [Google Scholar]
- Vieira, M.; Saraiva, M.J. Transthyretin: A multifaceted protein. Biomol. Concepts 2014, 5, 45–54. [Google Scholar] [CrossRef]
- Dellière, S.; Pouga, L.; Neveux, N.; Hernvann, A.; De Bandt, J.P.; Cynober, L. Assessment of transthyretin cut-off values for a better screening of malnutrition: Retrospective determination and prospective validation. Clin. Nutr. 2021, 40, 907–911. [Google Scholar] [CrossRef]
- Keller, U. Nutritional Laboratory Markers in Malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef] [Green Version]
- Westermark, G.T.; Westermark, P. Transthyretin and amyloid in the islets of Langerhans in type-2 diabetes. Exp. Diabetes Res. 2008, 2008, 429274. [Google Scholar] [CrossRef] [Green Version]
- Refai, E.; Dekki, N.; Yang, S.N.; Imreh, G.; Cabrera, O.; Yu, L.; Yang, G.; Norgren, S.; Rössner, S.M.; Inverardi, L.; et al. Transthyretin constitutes a functional component in pancreatic beta-cell stimulus-secretion coupling. Proc. Natl. Acad. Sci. USA 2005, 102, 17020–17025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Jono, H.; Misumi, Y.; Senokuchi, T.; Guo, J.; Ueda, M.; Shinriki, S.; Tasaki, M.; Shono, M.; Obayashi, K.; et al. Novel function of transthyretin in pancreatic alpha cells. FEBS Lett. 2012, 586, 4215–4222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekki, N.; Refai, E.; Holmberg, R.; Köhler, M.; Jörnvall, H.; Berggren, P.O.; Juntti-Berggren, L. Transthyretin binds to glucose-regulated proteins and is subjected to endocytosis by the pancreatic β-cell. Cell Mol. Life Sci. 2012, 69, 1733–1743. [Google Scholar] [CrossRef] [PubMed]
- Zemany, L.; Bhanot, S.; Peroni, O.D.; Murray, S.F.; Moraes-Vieira, P.M.; Castoldi, A.; Manchem, P.; Guo, S.; Monia, B.P.; Kahn, B.B. Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice. Diabetes 2015, 64, 1603–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mody, N.; Graham, T.E.; Tsuji, Y.; Yang, Q.; Kahn, B.B. Decreased clearance of serum retinol-binding protein and elevated levels of transthyretin in insulin-resistant ob/ob mice. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E785–E793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, G.K.; Balasubramanyam, J.; Balakumar, M.; Deepa, M.; Anjana, R.M.; Abhijit, S.; Kaviya, A.; Velmurugan, K.; Miranda, P.; Balasubramanyam, M.; et al. Altered circulating levels of retinol binding protein 4 and transthyretin in relation to insulin resistance, obesity, and glucose intolerance in Asian Indians. Endocr. Pract. 2015, 21, 861–869. [Google Scholar] [CrossRef]
- Frey, S.K.; Spranger, J.; Henze, A.; Pfeiffer, A.F.H.; Schweigert, F.J.; Raila, J. Factors that influence retinol-binding protein 4-transthyretin interaction are not altered in overweight subjects and overweight subjects with type 2 diabetes mellitus. Metabolism 2009, 58, 1386–1392. [Google Scholar] [CrossRef]
- Karlsson, E.; Shaat, N.; Groop, L. Can complement factors 5 and 8 and transthyretin be used as biomarkers for MODY 1 (HNF4A-MODY) and MODY 3 (HNF1A-MODY)? Diabet. Med. 2008, 25, 788–791. [Google Scholar] [CrossRef]
- Sundsten, T.; Ostenson, C.G.; Bergsten, P. Serum protein patterns in newly diagnosed type 2 diabetes mellitus--influence of diabetic environment and family history of diabetes. Diabetes Metab. Res. Rev. 2008, 24, 148–154. [Google Scholar] [CrossRef]
- Chen, Y. The Association between Prealbumin and Metabolic Diseases in a Population-Based Study; Shanghai Jiao Tong University School of Medicine: Shanghai, China, 2013; pp. 1–82. [Google Scholar]
- Klöting, N.; Graham, T.E.; Berndt, J.; Kralisch, S.; Kovacs, P.; Wason, C.J.; Fasshauer, M.; Schön, M.R.; Stumvoll, M.; Blüher, M.; et al. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab. 2007, 6, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Dincer, A.; Onal, S.; Timur, S.; Zeytunluoglu, A.; Duman, E.; Zihnioglu, F. Differentially displayed proteins as a tool for the development of type 2 diabetes. Ann. Clin. Biochem. 2009, 46, 306–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Jin, X.; Shan, Z.; Li, S.; Yin, J.; Sun, T.; Luo, C.; Yang, W.; Yao, P.; Yu, K.; et al. Inverse Association of Plasma Chromium Levels with Newly Diagnosed Type 2 Diabetes: A Case-Control Study. Nutrients 2017, 9, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, C.; Liu, H.; Wang, X.; Xia, L.; Huang, H.; Peng, X.; Xia, C.; Liu, L. The associations between individual plasma SFAs, serine palmitoyl-transferase long-chain base subunit 3 gene rs680379 polymorphism, and type 2 diabetes among Chinese adults. Am. J. Clin. Nutr. 2021, 114, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Song, F.; Jia, W.; Yao, Y.; Hu, Y.; Lei, L.; Lin, J.; Sun, X.; Liu, L. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type 2 diabetes. Clin. Sci. 2007, 112, 599–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintela, T.; Gonçalves, I.; Baltazar, G.; Alves, C.H.; Saraiva, M.J.; Santos, C.R.A. 17beta-estradiol induces transthyretin expression in murine choroid plexus via an oestrogen receptor dependent pathway. Cell Mol. Neurobiol. 2009, 29, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Quintela, T.; Alves, C.H.; Gonçalves, I.; Baltazar, G.; Saraiva, M.J.; Santos, C.R.A. 5Alpha-dihydrotestosterone up-regulates transthyretin levels in mice and rat choroid plexus via an androgen receptor independent pathway. Brain Res. 2008, 1229, 18–26. [Google Scholar] [CrossRef]
- Gonçalves, I.; Alves, C.H.; Quintela, T.; Baltazar, G.; Socorro, S.; Saraiva, M.J.; Abreu, R.; Santos, C.R. Transthyretin is up-regulated by sex hormones in mice liver. Mol. Cell Biochem. 2008, 317, 137–142. [Google Scholar] [CrossRef]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef]
- Graham, T.E.; Yang, Q.; Blüher, M.; Hammarstedt, A.; Ciaraldi, T.P.; Henry, R.R.; Wason, C.J.; Oberbach, A.; Jansson, P.A.; Smith, U. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N. Engl. J. Med. 2006, 354, 2552–2563. [Google Scholar] [CrossRef]
- Broch, M.; Vendrell, J.; Ricart, W.; Richart, C.; Fernández-Real, J.M. Circulating retinol-binding protein-4, insulin sensitivity, insulin secretion, and insulin disposition index in obese and nonobese subjects. Diabetes Care 2007, 30, 1802–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meisinger, C.; Rückert, I.M.; Rathmann, W.; Döring, A.; Thorand, B.; Huth, C.; Kowall, B.; Koenig, W. Retinol-binding protein 4 is associated with prediabetes in adults from the general population: The Cooperative Health Research in the Region of Augsburg (KORA) F4 Study. Diabetes Care 2011, 34, 1648–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Yin, S.; Lin, D.; Liu, Y.; Chen, N.; Bai, X.; Ke, Q.; Shen, J.; You, L.; Lin, X.; et al. Association of Serum Retinol-Binding Protein 4 Levels and the Risk of Incident Type 2 Diabetes in Subjects With Prediabetes. Diabetes Care 2019, 42, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Chiefari, E.; Paonessa, F.; Iiritano, S.; Le Pera, I.; Palmieri, D.; Brunetti, G.; Lupo, A.; Colantuoni, V.; Foti, D.; Gulletta, E.; et al. The cAMP-HMGA1-RBP4 system: A novel biochemical pathway for modulating glucose homeostasis. BMC Biol. 2009, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | NGT (n = 1244) | T2DM (n = 1244) | IGR (n = 837) | p Value | |
---|---|---|---|---|---|
T2DM vs. NGT | IGR vs. NGT | ||||
Age (y) | 50.88 (10.59) | 51.08 (10.59) | 51.45 (11.15) | 0.640 | 0.237 |
Male, N (%) | 728 (58.52%) | 728 (58.52%) | 503 (60.10%) | 1 | 0.474 |
BMI (kg/m2) | 23.59 (3.02) | 25.30 (3.46) | 24.94 (3.36) | <0.001 | <0.001 |
Waist circumference (cm) | 83.01 (9.14) | 86.96 (10.69) | 85.79 (9.95) | <0.001 | <0.001 |
FPG (mmol/L) | 5.57 (5.28–5.83) | 8.08 (7.15–10.70) | 6.29 (6.10–6.58) | <0.001 | <0.001 |
FPI (μU/mL) | 7.43 (5.08–11.08) | 10.17 (6.87–15.23) | 9.62 (6.52–13.94) | <0.001 | <0.001 |
OGTT2h (mmol/L) | 6.59 (5.79–7.33) | 16.03 (12.81–20.37) | 8.61 (7.49–9.66) | <0.001 | <0.001 |
HOMA-IR | 1.82 (1.25–2.72) | 4.10 (2.61–6.15) | 2.69 (1.81–3.87) | <0.001 | <0.001 |
HOMA-β | 74.19 (51.00–109.61) | 43.75 (24.38–70.34) | 68.91 (47.98–103.86) | <0.001 | 0.017 |
TG (mmol/L) | 1.41 (1.06–1.77) | 1.60 (0.96–2.72) | 1.46 (0.95–2.34) | <0.001 | 0.037 |
TC (mmol/L) | 4.36 (3.84–4.91) | 4.87 (3.86–5.91) | 4.68 (3.84–5.46) | <0.001 | <0.001 |
HDL-C (mmol/L) | 1.35 (1.21–1.51) | 1.14 (0.87–1.49) | 1.28 (0.99–1.56) | <0.001 | <0.001 |
LDL-C (mmol/L) | 2.18 (1.62–2.93) | 2.87 (1.97–3.83) | 2.72 (1.84–3.44) | <0.001 | <0.001 |
History of hypertension, N (%) | 237 (19.05%) | 435 (34.97%) | 266 (31.78%) | <0.001 | <0.001 |
History of hyperlipidemia, N (%) | 244 (19.61%) | 511 (41.08%) | 280 (33.45%) | <0.001 | <0.001 |
Current smoker, N (%) | 406 (33.49%) | 322 (25.88%) | 213 (25.45%) | <0.001 | <0.001 |
Current drinker, N (%) | 348 (27.97%) | 323 (25.96%) | 236 (28.20%) | 0.259 | 0.912 |
Family history of diabetes, N (%) | 116 (9.32%) | 327 (26.29%) | 154 (18.40%) | <0.001 | <0.001 |
Physical activity (at least once/week), N (%) | 516 (41.48%) | 443 (35.61%) | 321 (38.35%) | 0.003 | 0.154 |
Plasma total protein (g/L) | 74.05 (7.97) | 73.70 (7.05) | 74.13 (8.64) | 0.272 | 0.816 |
Plasma albumin (g/L) | 47.74 (5.80) | 46.52 (5.09) | 47.18 (6.04) | <0.001 | 0.100 |
Plasma transthyretin (mg/L) | 229.01 (53.69) | 246.97 (64.77) | 246.50 (63.01) | <0.001 | <0.001 |
Groups | Quartile of Plasma Transthyretin Concentrations (mg/L) | p for Trend | |||
---|---|---|---|---|---|
Q1 (Referent) | Q2 | Q3 | Q4 | ||
<189.71 | 189.71–224.44 | 224.44–264.11 | ≥264.11 | ||
T2DM vs. NGT | |||||
Cases/control subjects, n | 238/311 | 243/311 | 281/311 | 482/311 | |
Crude OR (95% CI) | 1 | 1.03 (0.81, 1.31) | 1.24 (0.98, 1.57) | 2.23 (1.76, 2.82) | <0.001 |
Adjusted OR1 (95% CI) | 1 | 1.02 (0.77, 1.33) | 1.23 (0.94, 1.61) | 2.05 (1.58, 2.68) | <0.001 |
Adjusted OR2 (95% CI) | 1 | 0.95 (0.72, 1.26) | 1.10 (0.83, 1.46) | 1.89 (1.43, 2.50) | <0.001 |
Adjusted OR3 (95% CI) | 1 | 1.02 (0.76, 1.36) | 1.24 (0.93, 1.66) | 2.22 (1.66, 2.98) | <0.001 |
IGR vs. NGT | |||||
Cases/control subjects, n | 160/311 | 182/311 | 175/311 | 320/311 | |
Crude OR (95% CI) | 1 | 1.14 (0.87, 1.48) | 1.09 (0.84, 1.43) | 2.00 (1.56, 2.56) | <0.001 |
Adjusted OR1 (95% CI) | 1 | 1.14 (0.87, 1.50) | 1.13 (0.85, 1.49) | 2.16 (1.65, 2.84) | <0.001 |
Adjusted OR2 (95% CI) | 1 | 1.14 (0.87, 1.51) | 1.09 (0.82, 1.45) | 2.11 (1.60, 2.79) | <0.001 |
Adjusted OR3 (95% CI) | 1 | 1.19 (0.90, 1.57) | 1.15 (0.86, 1.54) | 2.29 (1.72, 3.05) | <0.001 |
(T2DM&IGR) vs. NGT | |||||
Cases/control subjects, n | 398/311 | 425/311 | 456/311 | 802/311 | |
Crude OR (95% CI) | 1 | 1.07 (0.87, 1.32) | 1.15 (0.93, 1.41) | 2.02 (1.65, 2.46) | <0.001 |
Adjusted OR1 (95% CI) | 1 | 1.08 (0.87, 1.34) | 1.19 (0.95, 1.48) | 2.12 (1.71, 2.64) | <0.001 |
Adjusted OR2 (95% CI) | 1 | 1.06 (0.85, 1.33) | 1.13 (0.90, 1.41) | 2.04 (1.63, 2.55) | <0.001 |
Adjusted OR3 (95% CI) | 1 | 1.14 (0.91, 1.43) | 1.26 (1.00, 1.59) | 2.36 (1.87, 2.97) | <0.001 |
T2DM vs. (IGR&NGT) | |||||
Cases/control subjects, n | 238/471 | 243/493 | 281/486 | 482/631 | |
Crude OR (95% CI) | 1 | 0.98 (0.78, 1.21) | 1.14 (0.92, 1.42) | 1.51 (1.24, 1.84) | <0.001 |
Adjusted OR1 (95% CI) | 1 | 0.98 (0.78, 1.23) | 1.18 (0.94, 1.48) | 1.54 (1.25, 1.91) | <0.001 |
Adjusted OR2 (95% CI) | 1 | 0.97 (0.77, 1.22) | 1.13 (0.90, 1.42) | 1.48 (1.19, 1.83) | <0.001 |
Adjusted OR3 (95% CI) | 1 | 1.04 (0.83, 1.31) | 1.27 (1.01, 1.61) | 1.72 (1.37, 2.14) | <0.001 |
Groups | Quartile of Plasma Transthyretin Concentrations (mg/L) | p for Trend | p for Interaction | |||
---|---|---|---|---|---|---|
Q1 (Referent) | Q2 | Q3 | Q4 | |||
<189.71 | 189.71–224.44 | 224.44–264.11 | ≥264.11 | |||
Sex | 0.022 | |||||
Female (1032) | 1 | 1.20 (0.84, 1.73) | 2.13 (1.43, 3.16) | 3.43 (2.25, 5.22) | <0.001 | |
Male (1456) | 1 | 0.98 (0.65, 1.46) | 0.98 (0.66, 1.44) | 1.88 (1.29, 2.74) | 0.001 | |
Age | 0.653 | |||||
< 60 y (1835) | 1 | 1.03 (0.75, 1.42) | 1.28 (0.92, 1.77) | 2.22 (1.61, 3.06) | <0.001 | |
≥ 60 y (653) | 1 | 1.29 (0.78, 2.12) | 1.69 (1.03, 2.80) | 3.54 (2.05, 6.13) | <0.001 | |
BMI | 0.023 | |||||
< 24 (1163) | 1 | 1.00 (0.68, 1.45) | 1.87 (1.28, 2.73) | 2.57 (1.76, 3.76) | <0.001 | |
≥ 24 (1325) | 1 | 1.30 (0.88, 1.90) | 1.13 (0.77, 1.67) | 2.63 (1.79, 3.97) | <0.001 | |
Family historyof diabetes | 0.459 | |||||
No (2045) | 1 | 1.12 (0.84, 1.49) | 1.38 (1.03, 1.85) | 2.64 (1.97, 3.54) | <0.001 | |
Yes (443) | 1 | 1.29 (0.65, 2.54) | 1.83 (0.88, 3.78) | 2.12 (1.07, 4.18) | 0.026 | |
Smoking status | 0.007 | |||||
No (1760) | 1 | 1.25 (0.92, 1.68) | 1.67 (1.22, 2.28) | 3.35 (2.44, 4.61) | <0.001 | |
Yes (728) | 1 | 0.79 (0.44, 1.41) | 0.83 (0.47, 1.42) | 1.26 (0.74, 2.15) | 0.091 | |
Drinking status | 0.024 | |||||
No (1817) | 1 | 1.26 (0.94, 1.68) | 1.73 (1.27, 2.35) | 3.50 (2.55, 4.81) | <0.001 | |
Yes (671) | 1 | 0.68 (0.35, 1.32) | 0.64 (0.35, 1.18) | 1.00 (0.56, 1.76) | 0.295 | |
History of hypertension | 0.270 | |||||
No (1816) | 1 | 1.03 (0.76, 1.39) | 1.35 (0.98, 1.84) | 2.32 (1.71, 3.16) | <0.001 | |
Yes (672) | 1 | 1.74 (0.98, 3.10) | 1.94 (1.12, 3.36) | 3.64 (2.07, 6.40) | <0.001 | |
History of hyperlipidemia | 0.766 | |||||
No (1733) | 1 | 1.08 (0.80, 1.46) | 1.38 (1.01, 1.88) | 2.57 (1.88, 3.50) | <0.001 | |
Yes (755) | 1 | 1.45 (0.82, 2.57) | 1.93 (1.09, 3.44) | 2.78 (1.59, 4.84) | <0.001 | |
Physical activity | 0.735 | |||||
No (1529) | 1 | 1.08 (0.76, 1.52) | 1.34 (0.95, 1.88) | 2.46 (1.74, 3.49) | <0.001 | |
Yes (959) | 1 | 1.27 (0.83, 1.93) | 1.63 (1.05, 2.53) | 2.81 (1.83, 4.32) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Guo, Q.; Wang, X.; Wang, Q.; Chen, L.; Sun, T.; Li, P.; Shan, Z.; Liu, L.; Gao, C.; et al. Plasma Transthyretin Levels and Risk of Type 2 Diabetes Mellitus and Impaired Glucose Regulation in a Chinese Population. Nutrients 2022, 14, 2953. https://doi.org/10.3390/nu14142953
Hu X, Guo Q, Wang X, Wang Q, Chen L, Sun T, Li P, Shan Z, Liu L, Gao C, et al. Plasma Transthyretin Levels and Risk of Type 2 Diabetes Mellitus and Impaired Glucose Regulation in a Chinese Population. Nutrients. 2022; 14(14):2953. https://doi.org/10.3390/nu14142953
Chicago/Turabian StyleHu, Xiaoli, Qianqian Guo, Xiaoqian Wang, Qiang Wang, Liangkai Chen, Taoping Sun, Peiyun Li, Zhilei Shan, Liegang Liu, Chao Gao, and et al. 2022. "Plasma Transthyretin Levels and Risk of Type 2 Diabetes Mellitus and Impaired Glucose Regulation in a Chinese Population" Nutrients 14, no. 14: 2953. https://doi.org/10.3390/nu14142953