Weight Loss Management and Lifestyle Changes during COVID-19 Lockdown: A Matched Italian Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Participants
2.2. Variables and Measurements
- -
- The Yale Food Addiction Scale (YFAS) [20], a validated measure of addictive-like eating behavior based upon the diagnostic criteria for substance dependence, that investigates the addiction in relation to some high-fat and high-carbohydrate foods that leads to clinically significant impairment or distress on several areas of functioning; it has two scoring options: (a) a continuous score—symptom count—indicating the number of symptoms of food addiction symptoms that have been met and (b) a diagnostic score that provides a diagnosis of food dependence when the subject presents at least three symptoms and reports clinically significant impairment and/or distress.
- -
2.3. Nutritional Intervention
2.4. Statistical Methods
3. Results
3.1. Participants and Descriptive Data
3.2. Outcome Data, Main Results, and Other Analyses
3.2.1. Primary Outcome
3.2.2. Secondary Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuccotti, G.V.; Bertoli, S.; Foppiani, A.; Verduci, E.; Battezzati, A. COD19 and COD20: An Italian Experience of Active Home Surveillance in COVID-19 Patients. Int. J. Environ. Res. Public Health 2020, 17, 6699. [Google Scholar] [CrossRef] [PubMed]
- Maffoni, S.; Brazzo, S.; De Giuseppe, R.; Biino, G.; Vietti, I.; Pallavicini, C.; Cena, H. Lifestyle Changes and Body Mass Index during COVID-19 Pandemic Lockdown: An Italian Online-Survey. Nutrients 2021, 13, 1117. [Google Scholar] [CrossRef] [PubMed]
- Mascherini, G.; Catelan, D.; Pellegrini-Giampietro, D.E.; Petri, C.; Scaletti, C.; Gulisano, M. Changes in Physical Activity Levels, Eating Habits and Psychological Well-Being during the Italian COVID-19 Pandemic Lockdown: Impact of Socio-Demographic Factors on the Florentine Academic Population. PLoS ONE 2021, 16, e0252395. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; et al. Eating Habits and Lifestyle Changes during COVID-19 Lockdown: An Italian Survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Izzo, L.; Santonastaso, A.; Cotticelli, G.; Federico, A.; Pacifico, S.; Castaldo, L.; Colao, A.; Ritieni, A. An Italian Survey on Dietary Habits and Changes during the COVID-19 Lockdown. Nutrients 2021, 13, 1197. [Google Scholar] [CrossRef] [PubMed]
- Blume, C.; Schmidt, M.H.; Cajochen, C. Effects of the COVID-19 Lockdown on Human Sleep and Rest-Activity Rhythms. Curr. Biol. 2020, 30, R795–R797. [Google Scholar] [CrossRef]
- Lee, H.-J. Human Circadian Rhythm and Social Distancing in the COVID-19 Crisis. Chronobiol. Med. 2020, 2, 45–46. [Google Scholar] [CrossRef]
- De Amicis, R.; Cancello, R.; Capodaglio, P.; Gobbi, M.; Brunani, A.; Gilardini, L.; Castenuovo, G.; Molinari, E.; Barbieri, V.; Mambrini, S.P.; et al. Patients with Severe Obesity during the COVID-19 Pandemic: How to Maintain an Adequate Multidisciplinary Nutritional Rehabilitation Program? Obes. Facts 2021, 14, 205–213. [Google Scholar] [CrossRef]
- Rafailia, D.; Barazzoni, R.; Bischoff, S.C.; Breda, J. Impact of the First COVID-19 Lockdown on Body Weight: A Combined Systematic Review and a Meta-Analysis. Clin Nutr. 2021. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Moverley Smith, J.E. “Covibesity,” a New Pandemic. Obes. Med. 2020, 19, 100282. [Google Scholar] [CrossRef]
- Hussain, A.; Mahawar, K.; Xia, Z.; Yang, W.; EL-Hasani, S. Obesity and Mortality of COVID-19. Meta-Analysis. Obes. Res. Clin. Pract. 2020, 14, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Durnin, J.V.G.A.; Womersley, J. Body Fat Assessed from Total Body Density and Its Estimation from Skinfold Thickness: Measurements on 481 Men and Women Aged from 16 to 72 Years. Br. J. Nutr. 1973, 32, 77–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siri, W.E. Body Composition from Fluid Spaces and Density: Analysis of Methods. 1961. Nutrition 1993, 9, 480–491; Discussion 480, 492. [Google Scholar] [PubMed]
- Ferrannini, E. The Theoretical Bases of Indirect Calorimetry: A Review. Metabolism 1988, 37, 287–301. [Google Scholar] [CrossRef]
- Delsoglio, M.; Dupertuis, Y.M.; Oshima, T.; van der Plas, M.; Pichard, C. Evaluation of the Accuracy and Precision of a New Generation Indirect Calorimeter in Canopy Dilution Mode. Clin. Nutr. 2020, 39, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- de Weir, J.B.V. New Methods for Calculating Metabolic Rate with Special Reference to Protein Metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED Trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [Green Version]
- Gearhardt, A.N.; Corbin, W.R.; Brownell, K.D. Development of the Yale Food Addiction Scale Version 2.0. Psychol. Addict. Behav. 2016, 30, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Gormally, J.; Black, S.; Daston, S.; Rardin, D. The Assessment of Binge Eating Severity among Obese Persons. Addict. Behav. 1982, 7, 47–55. [Google Scholar] [CrossRef]
- Marcus, M.D.; Wing, R.R.; Hopkins, J. Obese Binge Eaters: Affect, Cognitions, and Response to Behavioral Weight Control. J. Consult. Clin. Psychol. 1988, 56, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Bedogni, G.; Ponissi, V.; Battezzati, A.; Beggio, V.; Magni, P.; Ruscica, M.; Bertoli, S. Contribution of Binge Eating Behaviour to Cardiometabolic Risk Factors in Subjects Starting a Weight Loss or Maintenance Programme. Br. J. Nutr. 2016, 116, 1984–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adan, A.; Almirall, H. Horne & Östberg Morningness-Eveningness Questionnaire: A Reduced Scale. Pers. Individ. Dif. 1991, 12, 241–253. [Google Scholar]
- Bertoli, S.; Spadafranca, A.; Bes-Rastrollo, M.; Martinez-Gonzalez, M.A.; Ponissi, V.; Beggio, V.; Leone, A.; Battezzati, A. Adherence to the Mediterranean Diet Is Inversely Related to Binge Eating Disorder in Patients Seeking a Weight Loss Program. Clin. Nutr. 2015, 34, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Sala, M.; Vanzhula, I.; Roos, C.R.; Levinson, C.A. Mindfulness and Eating Disorders: A Network Analysis. Behav. Ther. 2022, 53, 224–239. [Google Scholar] [CrossRef]
- Kaya Cebioğlu, İ.; Dumlu Bilgin, G.; Kavsara, H.K.; Gül Koyuncu, A.; Sarioğlu, A.; Aydin, S.; Keküllüoğlu, M. Food Addiction among University Students: The Effect of Mindful Eating. Appetite 2022, 177, 106133. [Google Scholar] [CrossRef]
- Sala, L.; Gorwood, P.; Vindreau, C.; Duriez, P. Mindfulness-Based Cognitive Therapy Added to Usual Care Improves Eating Behaviors in Patients with Bulimia Nervosa and Binge Eating Disorder by Decreasing the Cognitive Load of Words Related to Body Shape, Weight, and Food. Eur. Psychiatry 2021, 64, e67. [Google Scholar] [CrossRef]
- Mazri, F.H.; Manaf, Z.A.; Shahar, S.; Mat Ludin, A.F. The Association between Chronotype and Dietary Pattern among Adults: A Scoping Review. Int. J. Environ. Res. Public Health 2019, 17, 68. [Google Scholar] [CrossRef] [Green Version]
- Heinberg, L.J.; Steffen, K. Social Isolation and Loneliness During the COVID-19 Pandemic: Impact on Weight. Curr. Obes. Rep. 2021, 10, 365–370. [Google Scholar] [CrossRef]
- Leone, M.J.; Sigman, M.; Golombek, D.A. Effects of Lockdown on Human Sleep and Chronotype during the COVID-19 Pandemic. Curr. Biol. 2020, 30, R930–R931. [Google Scholar] [CrossRef]
- De Amicis, R.; Galasso, L.; Leone, A.; Vignati, L.; De Carlo, G.; Foppiani, A.; Montaruli, A.; Roveda, E.; Cè, E.; Esposito, F.; et al. Is Abdominal Fat Distribution Associated with Chronotype in Adults Independently of Lifestyle Factors? Nutrients 2020, 12, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social Jetlag: Misalignment of Biological and Social Time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Varkevisser, R.D.M.; van Stralen, M.M.; Kroeze, W.; Ket, J.C.F.; Steenhuis, I.H.M. Determinants of Weight Loss Maintenance: A Systematic Review. Obes. Treat. Weight Manag. 2019, 20, 171–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ufholz, K.; Bhargava, D. A Review of Telemedicine Interventions for Weight Loss. Curr. Cardiovasc. Risk Rep. 2021, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Sadílková, A.; Čmerdová, K.; Hásková, A. Role of Dietitian in Obese Patients Care. Cas. Lek. Cesk. 2020, 159, 131–135. [Google Scholar] [PubMed]
Characteristics | N | Confined, N = 61 1,2 | Not Confined, N = 402 1,2 | SMD across Imputations 3 |
---|---|---|---|---|
Age (years) | 463 | 52 (43, 58) | 53 (48, 58) | −0.03 (−0.03, −0.02) |
Sex | 463 | 0 (0, 0) | ||
Female | 46 (75%) | 340 (85%) | ||
Male | 15 (25%) | 62 (15%) | ||
Education | 463 | |||
Primary | 0 (0%) | 6 (1.5%) | ||
Lower secondary | 1 (1.6%) | 29 (7.2%) | ||
Upper secondary | 29 (48%) | 190 (47%) | ||
Tertiary | 1 (1.6%) | 12 (3.0%) | ||
Bachelor | 29 (48%) | 157 (39%) | ||
Other | 1 (1.6%) | 8 (2.0%) | ||
Occupation | 463 | |||
Unemployed | 1 (1.6%) | 15 (3.7%) | ||
Student | 0 (0%) | 5 (1.2%) | ||
Homemaker | 2 (3.3%) | 12 (3.0%) | ||
Retired | 6 (9.8%) | 40 (10.0%) | ||
Laborer | 3 (4.9%) | 12 (3.0%) | ||
Office | 33 (54%) | 187 (47%) | ||
Freelancer | 2 (3.3%) | 47 (12%) | ||
Other | 14 (23%) | 84 (21%) | ||
Marital status | 460 | |||
Single | 21 (35%) | 118 (30%) | ||
Married | 35 (58%) | 229 (57%) | ||
Widowed | 0 (0%) | 13 (3.2%) | ||
Divorced | 4 (6.7%) | 40 (10%) | ||
Body height (m) | 463 | 1.64 (1.59, 1.69) | 1.62 (1.58, 1.68) | −0.06 (−0.07, −0.05) |
Body weight (kg) | 463 | 75 (68, 91) | 73 (66, 83) | −0.03 (−0.03, −0.02) |
Body mass index (kg/m²) | 463 | 28.7 (25.9, 32.8) | 27.9 (25.7, 30.8) | |
Body mass index category | 463 | |||
Underweight | 1 (1.6%) | 3 (0.7%) | ||
Normal weight | 9 (15%) | 76 (19%) | ||
Overweight | 27 (44%) | 191 (48%) | ||
Obese | 24 (39%) | 132 (33%) | ||
Waist circumference (cm) | 459 | 98 (86, 106) | 95 (88, 103) | |
Unknown | 0 | 4 | ||
Body fat (as %) | 440 | 39.8 (34.7, 43.3) | 41.5 (37.8, 43.9) | −0.06 (−0.08, −0.04) |
Unknown | 2 | 21 | ||
Resting energy expenditure (kcal/day) | 461 | 1416 (1268, 1666) | 1332 (1233, 1459) | |
Unknown | 1 | 1 | ||
Metabolic equivalents of task (MET-minutes/week) | 448 | 1059 (884, 1377) | 1215 (885, 2120) | −0.06 (−0.12, −0.01) |
Unknown | 2 | 13 | ||
Physical activity level | 448 | |||
Low | 5 (8.5%) | 66 (17%) | ||
Moderate | 48 (81%) | 242 (62%) | ||
High | 6 (10%) | 81 (21%) | ||
Unknown | 2 | 13 | ||
Prescribed energy intake (kcal/day) | 460 | 1450 (1300, 1700) | 1350 (1250, 1500) | 0.07 (0.07, 0.08) |
Unknown | 0 | 3 | ||
Diet duration (months) | 463 | 2.56 (2.50, 4.34) | 2.76 (2.53, 3.22) | −0.07 (−0.07, −0.06) |
Time in lockdown (months) | 463 | 1.64 (1.28, 1.94) | 0.00 (0.00, 0.00) |
Characteristics | Confined, N = 61 1 | Not Confined, N = 402 1 | p-Value 2 |
---|---|---|---|
Caloric deficit (kcal/day) | 580 (500, 709) | 563 (458, 725) | 0.5 |
Protein (g) | 68 (62, 77) | 65 (60, 71) | 0.002 |
Protein (g/kg body weight) | 0.87 (0.80, 0.98) | 0.86 (0.81, 0.92) | 0.3 |
Carbohydrate (g) | 197 (178, 233) | 188 (174, 207) | 0.055 |
Carbohydrate fraction of energy intake (as %) | 49.60 (48.52, 51.54) | 50.31 (49.26, 51.50) | 0.069 |
Fat (g) | 50 (42, 57) | 47 (43, 54) | 0.6 |
Fat fraction of energy intake (as %) | 28.87 (27.71, 30.39) | 30.38 (29.05, 31.69) | <0.001 |
Fibers (g) | 25.4 (22.3, 28.0) | 25.2 (23.0, 27.2) | 0.6 |
Fibers (g/1000 kcal energy intake) | 16.71 (15.40, 17.78) | 17.57 (16.28, 18.93) | <0.001 |
Characteristics | Confined 3 | Not Confined 3 | Unadjusted 1 | Adjusted 2 | ||||
---|---|---|---|---|---|---|---|---|
Difference | 95% CI | p-Value | Difference 4 | 95% CI 4 | p-Value 4 | |||
Body weight at follow-up (kg) | 77.0 (17.1) | 76.4 (17.0) | 0.58 | −4.1, 5.2 | 0.8 | 1.1 | 0.14, 2.1 | 0.025 |
Characteristics | N | Before Lockdown 1 | During Lockdown 1 | Difference | 95% CI 2 | p-Value 3 |
---|---|---|---|---|---|---|
Mediterranean Adherence Screener | ||||||
Continuous score | 37 | 7.00 (5.75, 8.00) | 8.00 (7.00, 9.00) | 1.8 | 1.1, 2.4 | <0.001 |
Categorical score | 37 | 0.001 | ||||
Not adherent | 32 (86%) | 20 (54%) | ||||
Adherent | 5 (14%) | 17 (46%) | ||||
Yale Food Addiction Scale | ||||||
Continuous score | 37 | 1.00 (0.00, 2.25) | 0.00 (0.00, 1.00) | −1.1 | −2.2, −0.02 | 0.047 |
Categorical score | 37 | 0.4 | ||||
No food addiction | 34 (92%) | 36 (97%) | ||||
Mild food addiction | 1 (2.7%) | 0 (0%) | ||||
Moderate food addiction | 1 (2.7%) | 1 (3.0%) | ||||
Severe food addiction | 1 (2.7%) | 0 (0%) | ||||
Binge Eating Scale | ||||||
Continuous score | 37 | 8.0 (7.0, 12.0) | 6.0 (2.0, 10.0) | −3.2 | −4.7, −1.6 | <0.001 |
Categorical score | 37 | 0.2 | ||||
Minimal binge eating problems | 35 (95%) | 37 (100%) | ||||
Moderate binge eating problems | 1 (2.5%) | 0 (0%) | ||||
Severe binge eating problems | 1 (2.5%) | 0 (0%) | ||||
Reduced Morningness–Eveningness Questionnaire | ||||||
Continuous score | 37 | 14.00 (13.00, 15.00) | 15.00 (13.00, 17.00) | 0.36 | −0.89, 1.6 | 0.6 |
Categorical score | 37 | 0.001 | ||||
Evening-types | 1 (2.5%) | 7 (19%) | ||||
Neither-types | 35 (95%) | 23 (62%) | ||||
Morning-types | 1 (2.5%) | 7 (19%) |
Characteristics | MEDAS 1 | YFAS 2 | BES 3 | rMEQ 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | 95% CI 5 | p-Value | Beta | 95% CI 5 | p-Value | Beta | 95% CI 5 | p-Value | Beta | 95% CI 5 | p-Value | |
(Intercept) | 6.5 | 4.8, 8.3 | <0.001 | 0.30 | −1.8, 2.4 | 0.8 | 3.1 | −0.93, 7.1 | 0.13 | 16 | 12, 19 | <0.001 |
Age spline 6 | ||||||||||||
Below median | −0.54 | −2.7, 1.6 | 0.6 | −0.09 | −2.3, 2.1 | >0.9 | 0.95 | −3.9, 5.8 | 0.7 | 3.7 | −0.55, 7.9 | 0.085 |
Above median | 0.25 | −1.1, 1.6 | 0.7 | −0.12 | −1.9, 1.6 | 0.9 | 2.7 | −0.50, 5.9 | 0.10 | −2.7 | −5.6, 0.25 | 0.071 |
Sex | ||||||||||||
Female | ||||||||||||
Male | 1.1 | −0.16, 2.4 | 0.083 | −0.11 | −1.9, 1.7 | 0.9 | −3.3 | −6.6, −0.08 | 0.045 | 1.3 | −1.8, 4.4 | 0.4 |
Body mass index spline 6 | ||||||||||||
Below median | 1.4 | −1.4, 4.1 | 0.3 | −1.5 | −5.4, 2.4 | 0.4 | −2.2 | −8.5, 4.1 | 0.5 | −4.0 | −9.5, 1.5 | 0.15 |
Above median | 0.81 | −0.21, 1.8 | 0.11 | −0.72 | −2.4, 1.0 | 0.4 | 0.83 | −1.6, 3.3 | 0.5 | −2.3 | −4.6, −0.13 | 0.039 |
Baseline score spline 6 | ||||||||||||
Below median | 1.3 | −1.4, 4.0 | 0.3 | 3.5 | 0.64, 6.3 | 0.021 | 5.3 | 0.91, 9.7 | 0.020 | −1.8 | −6.7, 3.1 | 0.5 |
Above median | 0.71 | −0.81, 2.2 | 0.3 | 1.6 | 0.44, 2.7 | 0.012 | 4.7 | 2.6, 6.8 | <0.001 | 0.74 | −1.9, 3.3 | 0.6 |
Time in lockdown spline 6 | ||||||||||||
Below median | 1.4 | −1.4, 4.2 | 0.3 | −0.36 | −3.6, 2.9 | 0.8 | 3.7 | −3.2, 11 | 0.3 | −1.1 | −7.1, 4.8 | 0.7 |
Above median | 0.83 | −1.2, 2.9 | 0.4 | 0.89 | −1.2, 3.0 | 0.4 | 4.8 | 0.60, 9.0 | 0.027 | −5.3 | −10, −0.33 | 0.038 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Amicis, R.; Foppiani, A.; Galasso, L.; Montaruli, A.; Roveda, E.; Esposito, F.; Battezzati, A.; Bertoli, S.; Leone, A. Weight Loss Management and Lifestyle Changes during COVID-19 Lockdown: A Matched Italian Cohort Study. Nutrients 2022, 14, 2897. https://doi.org/10.3390/nu14142897
De Amicis R, Foppiani A, Galasso L, Montaruli A, Roveda E, Esposito F, Battezzati A, Bertoli S, Leone A. Weight Loss Management and Lifestyle Changes during COVID-19 Lockdown: A Matched Italian Cohort Study. Nutrients. 2022; 14(14):2897. https://doi.org/10.3390/nu14142897
Chicago/Turabian StyleDe Amicis, Ramona, Andrea Foppiani, Letizia Galasso, Angela Montaruli, Eliana Roveda, Fabio Esposito, Alberto Battezzati, Simona Bertoli, and Alessandro Leone. 2022. "Weight Loss Management and Lifestyle Changes during COVID-19 Lockdown: A Matched Italian Cohort Study" Nutrients 14, no. 14: 2897. https://doi.org/10.3390/nu14142897