Influence of Prefecture-Level Yield of Not-for-Sale Vegetables on Vegetable Intake in Japan: A Natural Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Study Design
2.3. Subjects
2.4. Outcomes
2.5. Analyses
2.5.1. Trend of Yield of Not-for-Sale Chinese Cabbage and Cabbage
2.5.2. Confirmation of Parallel Trends
2.5.3. Main Analyses (Difference-in-Differences)
2.5.4. Software and Statistical Significance
2.6. Ethical Approval
3. Results
3.1. Trends of Yield of Not-for-Sale Chinese Cabbage and Cabbage
3.2. Parallel Trends
3.3. Main Analyses (Difference-in-Differences)
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Survey Year | ||||
---|---|---|---|---|
2012 | 2016 | |||
N | % | n | % | |
1819 | 1588 | |||
Prefecture | ||||
Saitama | 572 | 31.4 | 515 | 32.4 |
Chiba | 481 | 26.4 | 532 | 33.5 |
Tokyo | 366 | 20.1 | 300 | 18.9 |
Kanagawa | 400 | 22.0 | 241 | 15.2 |
Gender | ||||
Men | 850 | 46.7 | 740 | 46.6 |
Women | 969 | 53.3 | 848 | 53.4 |
Age | ||||
20–39 | 479 | 26.3 | 339 | 21.3 |
40–59 | 637 | 35.0 | 567 | 35.7 |
60–79 | 703 | 38.6 | 682 | 42.9 |
Living style | ||||
Living alone | 173 | 9.5 | 204 | 12.8 |
Living together | 1646 | 90.5 | 1384 | 87.2 |
Employment | ||||
Not agricultural worker | 1794 | 98.6 | 1553 | 97.8 |
Agricultural worker | 25 | 1.4 | 31 | 2.0 |
(Missing) | 0 | 0.0 | 4 | 0.3 |
Energy intake | ||||
1st quartile group | 435 | 23.9 | 411 | 25.9 |
2nd quartile group | 486 | 26.7 | 410 | 25.8 |
3rd quartile group | 450 | 24.7 | 412 | 25.9 |
4th quartile group | 448 | 24.6 | 355 | 22.4 |
Body mass index | ||||
<18.5 | 128 | 7.0 | 109 | 6.9 |
18.5 to <25.0 | 1101 | 60.5 | 861 | 54.2 |
≥25.0 | 382 | 21.0 | 307 | 19.3 |
(Missing) | 208 | 11.4 | 311 | 19.6 |
Alcohol drinking | ||||
Rarely or never | 854 | 46.9 | 784 | 49.4 |
4 day/week or less | 534 | 29.4 | 436 | 27.5 |
5 day/week or more | 408 | 22.4 | 337 | 21.2 |
(Missing) | 23 | 1.3 | 31 | 2.0 |
Chinese Cabbage | Cabbage | |||
---|---|---|---|---|
Year | Nagano | Other Pref. | Gunma | Other Pref. |
2009 | 44.5 | 10.9 | 34.0 | 6.8 |
2010 | 34.3 | 10.7 | 32.6 | 6.4 |
2011 | 38.4 | 11.1 | 31.2 | 6.8 |
2012 | 52.9 | 10.8 | 45.7 | 6.3 |
2013 | 33.2 | 10.9 | 33.9 | 6.2 |
2014 | 33.2 | 11.7 | 33.5 | 6.1 |
2015 | 33.0 | 11.5 | 28.5 | 6.1 |
2016 | 40.6 | 12.4 | 24.4 | 5.8 |
2017 | 33.7 | 12.8 | 34.0 | 6.8 |
2018 | 31.6 | 13.1 | 35.1 | 6.6 |
Chinese Cabbage | Chinese Cabbage and Pickled Leaves | ||||
---|---|---|---|---|---|
Year | Prefecture | M | 95% CI | M | 95% CI |
Model 1 | |||||
2012 | Nagano | 27.6 | (23.9, 31.2) | 35.3 | (31.2, 39.2) |
Other Pref. | 19.1 | (17.2, 20.8) | 24.9 | (22.9, 26.8) | |
2016 | Nagano | 21.0 | (16.8, 25.1) | 26.5 | (22.0, 31.0) |
Other Pref. | 15.9 | (13.7, 17.9) | 19.9 | (17.5, 22.1) | |
Model 2 | |||||
2012 | Nagano | 27.5 | (23.8, 31.1) | 34.6 | (30.6, 38.5) |
Other Pref. | 19.0 | (17.2, 20.8) | 25.0 | (23.0, 26.9) | |
2016 | Nagano | 21.4 | (17.2, 25.6) | 26.3 | (21.7, 30.8) |
Other Pref. | 15.9 | (13.7, 18.0) | 20.2 | (17.8, 22.4) | |
Model 3 | |||||
2012 | Nagano | 29.2 | (25.1, 33.2) | 36.7 | (32.2, 41.1) |
Other Pref. | 18.3 | (16.2, 20.3) | 24.8 | (22.4, 27.0) | |
2016 | Nagano | 22.4 | (17.0, 27.6) | 27.3 | (21.5, 33.0) |
Other Pref. | 16.5 | (13.9, 18.9) | 20.6 | (17.9, 23.3) |
References
- Ma, L.; Sun, Z.; Zeng, Y.; Luo, M.; Yang, J. Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings. Int. J. Mol. Sci. 2018, 19, 2785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Li, Y.; Yang, J.; Pu, X.; Du, J.; Yang, X.; Yang, T.; Yang, S. Therapeutic role of functional components in alliums for preventive chronic disease in human being. Evid. Based Complement. Altern. Med. 2017, 2017, 9402849. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Nowsonk, C.A.; Lucas, M.; MacGregor, G.A. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 2007, 21, 717–728. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; Nowsonk, C.A.; Lucas, M.; MacGregor, G.A. Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies. Lancet. 2006, 367, 320–326. [Google Scholar] [CrossRef]
- Guzek, D.; Głąbska, D.; Groele, B.; Gutkowska, K. Fruit and vegetable dietary patterns and mental health in women: A systematic review. Nutr. Rev. 2021, 80, 1357–1370. [Google Scholar] [CrossRef]
- Ju, S.Y.; Park, Y.K. Low fruit and vegetable intake is associated with depression among Korean adults in data from the 2014 Korea National Health and Nutrition Examination Survey. J. Health Popul. Nutr. 2019, 38, 39. [Google Scholar] [CrossRef]
- World Health Organization. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 24 June 2022).
- Garcia, M.T.; Ribeiro, S.M.; Germani, A.C.C.G.; Bógus, C.M. The impact of urban gardens on adequate and healthy food: A systematic review. Public Health Nutr. 2018, 21, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Schram-Bijkerk, D.; Otte, P.; Dirven, L.; Breure, A.M. Indicators to support healthy urban gardening in urban management. Sci. Total Environ. 2018, 621, 863–871. [Google Scholar] [CrossRef]
- Langellotto, G.; Gupta, A. Gardening increases vegetable consumption in school-aged children: A meta-analytical synthesis. HortTechnology 2012, 22, 430–445. [Google Scholar] [CrossRef] [Green Version]
- McCormack, L.A.; Laska, M.N.; Larson, N.I.; Story, M. Review of the nutritional implications of farmers’ markets and community gardens: A call for evaluation and research efforts. J. Am. Diet. Assoc. 2010, 110, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Robinson-O’Brien, R.; Story, M.; Heim, S. Impact of garden-based youth nutrition intervention programs: A review. J. Am. Diet. Assoc. 2009, 109, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Machida, D.; Kushida, O. The influence of food production experience on dietary knowledge, awareness, behaviors, and health among Japanese: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoie-Roskos, M.R.; Wengreen, H.; Durward, C. Increasing fruit and vegetable intake among children and youth through gardening-based interventions: A systematic review. J. Acad. Nutr. Diet. 2017, 117, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Ohly, H.; Gentry, S.; Wigglesworth, R.; Bethel, A.; Lovell, R.; Garside, R. A systematic review of the health and well-being impacts of school gardening: Synthesis of quantitative and qualitative evidence. BMC Public Health 2016, 16, 286. [Google Scholar]
- Davis, J.N.; Spaniol, M.R.; Somerset, S. Sustenance and sustainability: Maximizing the impact of school gardens on health outcomes. Public Health Nutr. 2015, 18, 2358–2367. [Google Scholar] [CrossRef]
- Tatebayashi, K.; Kamiyama, C.; Matsui, T.; Saito, O.; Machimura, T. Accounting shadow benefits of non-market food through food-sharing networks on Hachijo Island, Japan. Sustain. Sci. 2019, 14, 1–18. [Google Scholar] [CrossRef]
- Saito, O.; Havas, J.; Shirai, K.; Kurisu, K.; Aramaki, T.; Hanaki, K. Non-Market food provisioning services in Hachijo Island, Japan and their implications toward building a resilient island. J. Jpn. Soc. Civ. Eng. Ser. G 2015, 71, 349–357. [Google Scholar]
- Umezawa, A.; Miwa, T.; Shibui, E.; Namikawa, T.; Tanaka, N.; Ishikawa, M. Total vegetable intake and homegrown vegetable intake in the rural area residents of Hokkaido. Eiyogaku Zassi 2012, 70, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Machida, D.; Yoshida, T. Vegetable intake frequency is higher among the rural than among the urban or suburban residents, and is partially related to vegetable cultivation, receiving, and purchasing at farmers’ markets: A cross-sectional study in a city within Gunma, Japan. J. Rural. Med. 2018, 13, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Machida, D.; Yoshida, T. Negative association of vegetable cultivation with the proportion of severely insufficient vegetable intake both directly and indirectly: A cross-sectional study in a city in Gunma, Japan. J. Rural. Med. 2018, 13, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Machida, D.; Kushida, O.; Yoshida, T. Relationship between vegetable intake and vegetable cultivation by prefecture in Japan: An ecological study at the prefectural level. Nihon Kenkoukyouiku Gakkaishi 2017, 25, 85–92. [Google Scholar]
- Machida, D. Relationship between Prefecture-Level Yield of Not-for-Sale Fruits and Vegetables and Individual-Level Fruit and Vegetable Intake in Japan: A Cross-Sectional Study. Nutrients 2021, 13, 4072. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries. Outline of National Crop Survey (Vegetables). Available online: https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_yasai/gaiyou/index.html#1 (accessed on 17 June 2022). (In Japanese)
- Ministry of Health, Labor and Welfare. The National Health and Nutrition Survey in Japan. 2016. Available online: https://www.mhlw.go.jp/content/000681180.pdf (accessed on 17 June 2022). (In Japanese)
- Ministry of Health, Labor and Welfare. The National Health and Nutrition Survey in Japan. 2012. Available online: https://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h24-houkoku.pdf (accessed on 17 June 2022). (In Japanese)
- Brittin, J.; Frerichs, L.; Sirard, J.R.; Wells, N.M.; Myers, B.M.; Garcia, J.; Sorensen, D.; Trowbridge, M.J.; Huang, T. Impacts of active school design on school-time sedentary behavior and physical activity: A pilot natural experiment. PLoS ONE 2017, 12, 0189236. [Google Scholar] [CrossRef]
- Petimar, J.; Moran, A.J.; Ramirez, M.; Block, J.P. A Natural Experiment to Evaluate the Nutritional Content of Restaurant Meal Purchases After Calorie Labeling. J. Acad. Nutr. Diet. 2020, 120, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Barlow, P.; McKee, M.; Basu, S.; Stuckler, D. Impact of the North American Free Trade Agreement on high-fructose corn syrup supply in Canada: A natural experiment using synthetic control methods. CMAJ 2017, 189, 881–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agriculture & Livestock Industries Corporation. Handouts for the 2nd Vegetable Supply and Demand Council Meeting in FY2012 (Document 1–2: Implementation of Emergency Supply and Demand Adjustment Project for Cabbage and Chinese Cabbage). Available online: https://www.alic.go.jp/content/000088408.pdf (accessed on 17 June 2022). (In Japanese)
- Statistics Bureau Ministry of Internal Affairs and Communications. Summary of Census Results. 2015. Available online: https://www.stat.go.jp/data/kokusei/2015/kekka/kihon1/pdf/gaiyou1.pdf (accessed on 17 June 2022). (In Japanese)
- Suzuki, W.; Iwamoto, Y.; Yuda, M.; Morozumi, R. Measuring the effect of specific health checkups and specific maintenance guidance in Japan: Evidence from program evaluation approaches. Jpn. J. Health Econ. Policy 2015, 27, 2–39. [Google Scholar]
- Japanese Ministry of Agriculture, Forestry and Fisheries. Statistics on the Agricultural Labor Force. Available online: http://www.maff.go.jp/j/tokei/sihyo/data/08.html (accessed on 17 June 2022). (In Japanese)
- Japanese Ministry of Agriculture, Forestry and Fisheries. Area Survey. Available online: http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/menseki/index.html#r (accessed on 17 June 2022). (In Japanese)
Survey Year | ||||
---|---|---|---|---|
2012 | 2016 | |||
n | % | n | % | |
3369 | 2425 | |||
Prefecture | ||||
Ibaraki | 795 | 23.6 | 422 | 17.4 |
Tochigi | 713 | 21.2 | 708 | 29.2 |
Gunma | 669 | 19.9 | 439 | 18.1 |
Yamanashi | 538 | 16.0 | 352 | 14.5 |
Nagano | 654 | 19.4 | 504 | 20.8 |
Gender | ||||
Men | 1606 | 47.7 | 1152 | 47.5 |
Women | 1763 | 52.3 | 1273 | 52.5 |
Age | ||||
20–39 | 749 | 22.2 | 510 | 21.0 |
40–59 | 1217 | 36.1 | 861 | 35.5 |
60–79 | 1403 | 41.6 | 1054 | 43.5 |
Living style | ||||
Living alone | 215 | 6.4 | 239 | 9.9 |
Living together | 3154 | 93.6 | 2186 | 90.1 |
Employment | ||||
Not agricultural worker | 3103 | 92.1 | 2284 | 94.2 |
Agricultural worker | 266 | 7.9 | 135 | 5.6 |
(Missing) | 0 | 0.0 | 6 | 0.2 |
Energy intake | ||||
1st quartile group | 860 | 25.5 | 595 | 24.5 |
2nd quartile group | 781 | 23.2 | 623 | 25.7 |
3rd quartile group | 837 | 24.8 | 601 | 24.8 |
4th quartile group | 891 | 26.4 | 606 | 25.0 |
Body mass index | ||||
<18.5 | 179 | 5.3 | 136 | 5.6 |
18.5 to <25.0 | 1801 | 53.5 | 1176 | 48.5 |
≥25.0 | 711 | 21.1 | 531 | 21.9 |
(Missing) | 678 | 20.1 | 582 | 24.0 |
Alcohol drinking | ||||
Rarely or never | 1718 | 51.0 | 1309 | 54.0 |
4 days/week or less | 839 | 24.9 | 523 | 21.6 |
5 days/week or more | 765 | 22.7 | 553 | 22.8 |
(missing) | 47 | 1.4 | 40 | 1.6 |
Chinese Cabbage (n = 8043) | Chinese Cabbage and Pickled Leaves (n = 8043) | Cabbage (n = 8093) | ||||
---|---|---|---|---|---|---|
Coef. | 95% CI | Coef. | 95% CI | Coef. | 95% CI | |
Interaction (year × area) | 1.000 | (−2.915, 4.916) | 1.006 | (−3.249, 5.261) | −10.194 | (−14.680, −5.706) |
Year | 2.228 | (−0.729, 5.185) | 4.047 | (0.833, 7.260) | 3.039 | (−0.361, 6.439) |
Area | 1.769 | (−1.151, 4.689) | 3.434 | (0.260, 6.607) | 5.953 | (2.620, 9.286) |
(Intercept) | 14.095 | (11.934, 16.255) | 16.436 | (14.087, 18.783) | 29.745 | (27.259, 32.229) |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Coef. | 95% CI | Coef. | 95% CI | Coef. | 95% CI | |
Chinese cabbage | ||||||
Interaction (year × prefecture) | −3.380 | (−9.590, 2.829) | −2.991 | (−9.217, 3.236) | −5.032 | (−12.406, 2.342) |
Year | 6.609 | (1.060, 12.156) | 6.075 | (0.517, 11.632) | 6.862 | (0.243, 13.480) |
Prefecture | −5.138 | (−9.822, −0.453) | −5.465 | (−10.20, −0.728) | −5.877 | (−11.726, −0.026) |
(Intercept) | 21.002 | (16.832, 25.170) | 16.052 | (8.199, 23.903) | 15.703 | (4.227, 27.179) |
Chinese cabbage and Pickled leaves | ||||||
Interaction (year × prefecture) | −3.684 | (−10.420, 3.052) | −3.495 | (−10.247, 3.256) | −5.218 | (−13.271, 2.835) |
Year | 8.736 | (2.718, 14.754) | 8.286 | (2.260, 14.312) | 9.355 | (2.127, 16.582) |
Prefecture | −6.658 | (−11.739, −1.576) | −6.143 | (−11.278, −1.006) | −6.726 | (−13.114, −0.338) |
(Intercept) | 26.528 | (22.004, 31.050) | 22.171 | (13.656, 30.685) | 18.291 | (5.7584, 30.822) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machida, D. Influence of Prefecture-Level Yield of Not-for-Sale Vegetables on Vegetable Intake in Japan: A Natural Experiment. Nutrients 2022, 14, 2884. https://doi.org/10.3390/nu14142884
Machida D. Influence of Prefecture-Level Yield of Not-for-Sale Vegetables on Vegetable Intake in Japan: A Natural Experiment. Nutrients. 2022; 14(14):2884. https://doi.org/10.3390/nu14142884
Chicago/Turabian StyleMachida, Daisuke. 2022. "Influence of Prefecture-Level Yield of Not-for-Sale Vegetables on Vegetable Intake in Japan: A Natural Experiment" Nutrients 14, no. 14: 2884. https://doi.org/10.3390/nu14142884
APA StyleMachida, D. (2022). Influence of Prefecture-Level Yield of Not-for-Sale Vegetables on Vegetable Intake in Japan: A Natural Experiment. Nutrients, 14(14), 2884. https://doi.org/10.3390/nu14142884