Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animal Models
2.2. Experimental Groups
2.3. Micro-Computed Tomography Analysis
2.4. Biomechanical Testing
2.5. Bone Biochemical Markers
2.6. Statistical Analyses
3. Results
3.1. Micro-Computed Tomography Analysis
3.2. Biomechanical Testing
3.3. Bone Biochemical Markers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [CrossRef]
- Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285, 785–795. [CrossRef] [PubMed]
- Bliuc, D.; Nguyen, N.D.; Alarkawi, D.; Nguyen, T.V.; Eisman, J.A.; Center, J.R. Accelerated bone loss and increased post-fracture mortality in elderly women and men. Osteoporos. Int. 2015, 26, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Nazrun, A.S.; Tzar, M.N.; Mokhtar, S.A.; Mohamed, I.N. A systematic review of the outcomes of osteoporotic fracture patients after hospital discharge: Morbidity, subsequent fractures, and mortality. Ther. Clin. Risk Manag. 2014, 10, 937–948. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Norton, N.; Harvey, N.C.; Jacobson, T.; Johansson, H.; Lorentzon, M.; McCloskey, E.V.; Willers, C.; Borgström, F. SCOPE 2021: A new scorecard for osteoporosis in Europe. Arch. Osteoporos. 2021, 16, 82. [Google Scholar] [CrossRef]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef] [Green Version]
- Odén, A.; McCloskey, E.V.; Kanis, J.A.; Harvey, N.C.; Johansson, H. Burden of high fracture probability worldwide: Secular increases 2010–2040. Osteoporos. Int. 2015, 26, 2243–2248. [Google Scholar] [CrossRef]
- Amorim, T.; Koutedakis, Y.; Nevill, A.; Wyon, M.; Maia, J.; Machado, J.C.; Marques, F.; Metsios, G.S.; Flouris, A.D.; Adubeiro, N.; et al. Bone mineral density in vocational and professional ballet dancers. Osteoporos. Int. 2017, 28, 2903–2912. [Google Scholar] [CrossRef]
- Amorim, T.; Wyon, M.; Maia, J.; Machado, J.C.; Marques, F.; Metsios, G.S.; Flouris, A.D.; Koutedakis, Y. Prevalence of low bone mineral density in female dancers. Sports Med. 2015, 45, 257–268. [Google Scholar] [CrossRef]
- Montero-Odasso, M.M.; Kamkar, N.; Pieruccini-Faria, F.; Osman, A.; Sarquis-Adamson, Y.; Close, J.; Hogan, D.B.; Hunter, S.W.; Kenny, R.A.; Lipsitz, L.A.; et al. Evaluation of Clinical Practice Guidelines on Fall Prevention and Management for Older Adults: A Systematic Review. JAMA Netw. Open 2021, 4, e2138911. [Google Scholar] [CrossRef]
- Coronado-Zarco, R.; Olascoaga-Gómez de León, A.; García-Lara, A.; Quinzaños-Fresnedo, J.; Nava-Bringas, T.I.; Macías-Hernández, S.I. Nonpharmacological interventions for osteoporosis treatment: Systematic review of clinical practice guidelines. Osteoporos. Sarcopenia 2019, 5, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Crockett, J.C. Osteoporosis—A current view of pharmacological prevention and treatment. Drug Des. Devel. Ther. 2013, 7, 435–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.C.; Biver, E.; Kaufman, J.M.; Bauer, J.; Branco, J.; Brandi, M.L.; Bruyère, O.; Coxam, V.; Cruz-Jentoft, A.; Czerwinski, E.; et al. The role of calcium supplementation in healthy musculoskeletal ageing: An expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos. Int. 2017, 28, 447–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiodini, I.; Bolland, M.J. Calcium supplementation in osteoporosis: Useful or harmful? Eur. J. Endocrinol. 2018, 178, D13–D25. [Google Scholar] [CrossRef] [Green Version]
- Ayub, N.; Faraj, M.; Ghatan, S.; Reijers, J.A.A.; Napoli, N.; Oei, L. The Treatment Gap in Osteoporosis. J. Clin. Med. 2021, 10, 3002. [Google Scholar] [CrossRef]
- Föger-Samwald, U.; Dovjak, P.; Azizi-Semrad, U.; Kerschan-Schindl, K.; Pietschmann, P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J. 2020, 19, 1017–1037. [Google Scholar] [CrossRef]
- Kanis, J.A.; Svedbom, A.; Harvey, N.; McCloskey, E.V. The osteoporosis treatment gap. J. Bone Miner. Res. 2014, 29, 1926–1928. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Wang, Z.; Bennett, S.; Chen, K.; Xiao, Z.; Zhan, J.; Chen, S.; Hou, Y.; Chen, J.; et al. Therapeutic Anabolic and Anticatabolic Benefits of Natural Chinese Medicines for the Treatment of Osteoporosis. Front. Pharmacol. 2019, 10, 1344. [Google Scholar] [CrossRef]
- Tabatabaei-Malazy, O.; Larijani, B.; Abdollahi, M. Targeting metabolic disorders by natural products. J. Diabetes Metab. Disord. 2015, 14, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Superti, F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients 2020, 12, 2562. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-R.; Kim, H.-M.; Choi, H.-S.; Hong, J.H. Effects of Colostrum Basic Protein from Colostrum Whey Protein: Increases in Osteoblast Proliferation and Bone Metabolism. J. Food Sci. Nutr. 2007, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Xu, W.; Yi, H.; Han, X.; Wang, C.; Zhang, L. Protective effects of bovine colostrum acid proteins on bone loss of ovariectomized rats and the ingredients identification. Mol. Nutr. Food Res. 2011, 55, 220–228. [Google Scholar] [CrossRef]
- Yun, B.; Maburutse, B.E.; Kang, M.; Park, M.R.; Park, D.J.; Kim, Y.; Oh, S. Short communication: Dietary bovine milk-derived exosomes improve bone health in an osteoporosis-induced mouse model. J. Dairy Sci. 2020, 103, 7752–7760. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, S.H.; Kim, H.M.; Fahey, S.N.; Knighton, D.R.; Sansom, A. Effect of a Growth Protein-Colostrum Fraction on bone development in juvenile rats. Biosci. Biotechnol. Biochem. 2008, 72, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Callon, K.E.; Naot, D.; Palmano, K.P.; Banovic, T.; Bava, U.; Watson, M.; Lin, J.M.; Tong, P.C.; Chen, Q.; et al. Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 2004, 145, 4366–4374. [Google Scholar] [CrossRef] [Green Version]
- Naot, D.; Chhana, A.; Matthews, B.G.; Callon, K.E.; Tong, P.C.; Lin, J.-M.; Costa, J.L.; Watson, M.; Grey, A.B.; Cornish, J. Molecular mechanisms involved in the mitogenic effect of lactoferrin in osteoblasts. Bone 2011, 49, 217–224. [Google Scholar] [CrossRef]
- Mizelman, E.; Duff, W.; Kontulainen, S.; Chilibeck, P.D. Chapter 4—The Health Benefits of Bovine Colostrum. In Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 51–60. [Google Scholar] [CrossRef]
- Oliveira, E.; Rangel, A.; MÜRmam, L.; Bezerra, M.; Oliveira, J. Bovine colostrum: Benefits of its use in human food. Food Sci. Technol. 2019, 39, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Kydonaki, E.K.; Freitas, L.; Fonseca, B.M.; Reguengo, H.; Raposo Simón, C.; Bastos, A.R.; Fernandes, E.M.; Canadas, R.F.; Oliveira, J.M.; Correlo, V.M.; et al. Bovine Colostrum Supplementation Improves Bone Metabolism in an Osteoporosis-Induced Animal Model. Nutrients 2021, 13, 2981. [Google Scholar] [CrossRef]
- Martin-Aragon, S.; Bermejo-Bescós, P.; Benedí, J.; Raposo, C.; Marques, F.; Kydonaki, E.K.; Gkiata, P.; Koutedakis, Y.; Ntina, G.; Carrillo, A.E.; et al. A Neuroprotective Bovine Colostrum Attenuates Apoptosis in Dexamethasone-Treated MC3T3-E1 Osteoblastic Cells. Int. J. Mol. Sci. 2021, 22, 10195. [Google Scholar] [CrossRef] [PubMed]
- Lelovas, P.P.; Xanthos, T.T.; Thoma, S.E.; Lyritis, G.P.; Dontas, I.A. The laboratory rat as an animal model for osteoporosis research. Comp. Med. 2008, 58, 424–430. [Google Scholar] [PubMed]
- Yousefzadeh, N.; Kashfi, K.; Jeddi, S.; Ghasemi, A. Ovariectomized rat model of osteoporosis: A practical guide. EXCLI J. 2020, 19, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Potikanond, S.; Rattanachote, P.; Pintana, H.; Suntornsaratoon, P.; Charoenphandhu, N.; Chattipakorn, N.; Chattipakorn, S. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats. J. Endocrinol. 2016, 228, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, S.; Kapoor, N.; Bondu, J.D.; Thomas, N.; Paul, T.V. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J. Endocrinol. Metab. 2016, 20, 846–852. [Google Scholar] [CrossRef]
- Guo, H.Y.; Jiang, L.; Ibrahim, S.A.; Zhang, L.; Zhang, H.; Zhang, M.; Ren, F.Z. Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats. J. Nutr. 2009, 139, 958–964. [Google Scholar] [CrossRef] [Green Version]
- Moon, Y.-I.; Lee, S.; Oh, S.; Kim, Y. Functionality of Dairy Foods on Osteoporosis. J. Milk Sci. Biotechnol. 2016, 34, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Rajput, R.; Wairkar, S.; Gaud, R. Nutraceuticals for better management of osteoporosis: An overview. J. Funct. Foods 2018, 47, 480–490. [Google Scholar] [CrossRef]
- Chen, H.L.; Tung, Y.T.; Chuang, C.H.; Tu, M.Y.; Tsai, T.C.; Chang, S.Y.; Chen, C.M. Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis. Osteoporos. Int. 2015, 26, 589–599. [Google Scholar] [CrossRef]
- Abdel-sattar, E. Antiosteoporotic Effect of Some Herbal Extracts versus Alendronate on an Animal Model of Osteoporosis. Life Sci. J. 2013, 10, 177–187. [Google Scholar]
- Grey, A.; Zhu, Q.; Watson, M.; Callon, K.; Cornish, J. Lactoferrin potently inhibits osteoblast apoptosis, via an LRP1-independent pathway. Mol. Cell Endocrinol. 2006, 251, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Blais, A.; Malet, A.; Mikogami, T.; Martin-Rouas, C.; Tomé, D. Oral bovine lactoferrin improves bone status of ovariectomized mice. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1281–E1288. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Shi, P.; Liu, M.; Chen, H.; Tu, M.; Lu, W.; Du, M. Lactoferrin preserves bone homeostasis by regulating the RANKL/RANK/OPG pathway of osteoimmunology. Food Funct. 2018, 9, 2653–2660. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.-M.; Xue, Y.; Lin, Q.-M. Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacol. Sin. 2012, 33, 1277–1284. [Google Scholar] [CrossRef] [Green Version]
- Bienko, M.; Wolski, D.; Lis, A.; Radzki, R.; Filip, D.; Polak, P. Densitometric, tomographic and mechanical parameters of the female Wistar rat skeletal system after lactoferrin and colostrum treatment in the condition of gonadectomy-induced osteopenia. Med. Weter. 2016, 72, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, S.; Naidu, A.G.; Betageri, G.V.; Prasadarao, N.V.; Naidu, A.S. Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women. Osteoporos. Int. 2009, 20, 1603–1611. [Google Scholar] [CrossRef]
- Mustafa, R.; Hijazi, H.; Header, E.; Azzeh, F.; Elfaky, N. Biological effect of calcium and vitamin D dietary supplements against osteoporosis in ovariectomized rats. Prog. Nutr. 2018, 20, 86–93. [Google Scholar]
- Lee, C.; Lee, S.; Kim, S. Bone-protective effects of Lactobacillus plantarum B719-fermented milk product. Int. J. Dairy Technol. 2020, 73, 706–717. [Google Scholar] [CrossRef]
- Almăşan, H.; Băciuţ, G.; Băciuţ, M.; Almăşan, O.; Bran, S.; Oana, L. Serum changes induced by intramedullar experimental administration of bisphosphonates. J. Morphol. Embryol. 2011, 52 (Suppl. S1), 435–442. [Google Scholar]
- Altundal, H.; Sayrak, H.; Yurtsever, E.; Göker, K. Inhibitory effect of alendronate on bone resorption of autogenous free bone grafts in rats. J. Oral. Maxillofac. Surg. 2007, 65, 508–516. [Google Scholar] [CrossRef]
- Kuo, T.-R.; Chen, C.-H. Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark. Res. 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odvina, C.V.; Zerwekh, J.E.; Rao, D.S.; Maalouf, N.; Gottschalk, F.A.; Pak, C.Y. Severely suppressed bone turnover: A potential complication of alendronate therapy. J. Clin. Endocrinol. Metab. 2005, 90, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
Post-Intervention | ||||
---|---|---|---|---|
Analyzed Parameter | Placebo (OVX, ORX: n = 8) | Alendronate (OVX, ORX: n = 8) | Vit. D + Calcium (OVX: n = 8; ORX: n = 6) | BC (OVX, ORX: n = 8) |
Cortical bone | ||||
Porosity (%) | ||||
OVX rats | 26.6 ± 11.1 a | 10.8 ± 1.5 b | 23.2 ± 14.4 a | 25.2 ± 8.5 a |
ORX rats | 29.5 ± 4.2 | 21.5 ± 13.6 | 28.5 ± 15.0 | 25.9 ± 7.4 |
Volume (% BV/TV) | ||||
OVX rats | 73.4 ± 11.1 a | 89.2 ± 1.5 b | 76.8 ± 14.4 a,b | 74.8 ± 8.5 a |
ORX rats | 70.4 ± 4.1 | 78.6 ± 13.6 | 71.5 ± 15.0 | 74.1 ± 7.4 |
BMD (g/cm3) | ||||
OVX rats | 2.93 ± 0.29 a | 0.92 ± 0.09 b | 1.05 ± 0.15 b | 2.83 ± 0.31 a |
ORX rats | 2.84 ± 0.33 a | 1.67 ± 0.60 b | 1.07 ± 0.07 b | 2.93 ± 0.37 a |
BMC (g) | ||||
OVX rats | 71.2 ± 9.6 a | 91.9 ± 5.0 b | 58.8 ± 31.4 a,b | 71.8 ± 14.8 a |
ORX rats | 72.0 ± 12.9 | 73.5 ± 17.5 | 44.8 ± 31.6 | 78.9 ± 10.9 |
Trabecular bone | ||||
Porosity (%) | ||||
OVX rats | 87.2 ± 2.0 a | 78.6 ± 3.6 b | 73.9 ± 7.8 b | 85.3 ± 2.2 a |
ORX rats | 87.2 ± 4.1 | 84.8 ± 5.7 | 84.0 ± 7.5 | 84.9 ± 4.2 |
Separation (µm) | ||||
OVX rats | 163.1 ± 86.6 a | 46.2 ± 7.8 b | 82.9 ± 61.7 a,b | 104.6 ± 47.4 a |
ORX rats | 113.0 ± 96.6 | 104.9 ± 54.6 | 141.1 ± 98.8 | 77.9 ± 22.4 |
Thickness (µm) | ||||
OVX rats | 25.7 ± 20.5 a | 41.6 ± 12.7 b | 21.6 ± 5.0 a | 18.4 ± 2.5 a |
ORX rats | 16.4 ± 1.4 | 33.1 ± 18.5 | 20.3 ± 6.0 | 16.8 ± 1.6 |
Volume (% BV/TV) | ||||
OVX rats | 12.8 ± 2.0 a | 21.4 ± 3.6 b | 26.1 ± 7.8 b | 14.7 ± 2.2 a |
ORX rats | 12.8 ± 4.1 | 15.2 ± 5.7 | 16.0 ± 7.5 | 15.1 ± 4.2 |
BMD (g/cm3) | ||||
OVX rats | 1.20 ± 0.12 a | −0.02 ± 0.05 b | 0.03 ± 0.04 b | 1.22 ± 0.12 a |
ORX rats | 1.23 ± 0.20 a | 0.04 ± 0.04 b | 0.02 ± 0.03 b | 1.27 ± 0.25 a |
BMC (g) | ||||
OVX rats | 61.2 ± 10.2 a | 78.2 ± 4.7 b | 56.1 ± 26.4 b | 72.7 ± 13.4 a,b |
ORX rats | 64.8 ± 12.9 | 59.4 ± 13.8 | 40.8 ± 30.9 | 74.2 ± 10.2 |
Post-Intervention | ||||
---|---|---|---|---|
Analyzed Parameter | Placebo (OVX, ORX: n = 3) | Alendronate (OVX, ORX: n = 3) | Vit. D + Calcium (OVX, ORX: n = 3) | BC (OVX, ORX: n = 3) |
Max. tensile strength (σ, MPa) | ||||
OVX rats | 8.0 ± 0.8 | 11.4 ± 1.6 | 6.4 ± 0.6 | 6.2 ± 1.7 |
ORX rats | 3.8 ± 0.6 | 3.4 ± 2.9 | 8.0 ± 3.9 | 6.0 ± 0.5 |
Elastic modulus (E, MPa) | ||||
OVX rats | 385.1 ± 54.1 | 336.4 ± 11.4 | 201.1 ± 14.3 | 277.4 ± 74.1 |
ORX rats | 151.8 ± 35.3 | 162.9 ± 54.4 | 270.4 ± 66.7 | 239.1 ± 21.4 |
Stress at yield (σy, MPa) | ||||
OVX rats | 3.5 ± 0.5 | 5.3 ± 1.7 | 2.7 ± 0.2 | 3.1 ± 0.5 |
ORX rats | 1.7 ± 0.3 | 1.7 ± 0.5 | 4.2 ± 1.0 | 2.5 ± 1.0 |
Strain at yield (εy, %) | ||||
OVX rats | 1.1 ± 0.0 | 1.7 ± 0.6 | 1.5 ± 0.0 | 1.3 ± 0.3 |
ORX rats | 1.4 ± 0.2 | 1.2 ± 0.6 | 1.5 ± 0.4 | 1.2 ± 0.4 |
Analyzed Parameter | Placebo (OVX, ORX: n = 8) | Alendronate (OVX, ORX: n = 8) | Vit. D + Calcium (OVX: n = 8; ORX: n = 6) | BC (OVX, ORX: n = 8) |
---|---|---|---|---|
Alkaline phosphatase (U/L) | ||||
OVX rats | ||||
Pre | 98.8 ± 12.2 b | 205.1 ± 287.0 b | 59.9 ± 13.7 a | 67.1 ± 19.6 a |
Post | 92.1 ± 26.3 a | 93.2 ± 8.6 a,* | 17.1 ± 4.9 b,* | 70.8 ± 19.9 a,* |
ORX rats | ||||
Pre | 114.4 ± 11.2 a | 100.3 ± 8.5 a | 59.0 ± 13.0 b | 106.8 ± 19.9 a |
Post | 114.5 ± 10.7 a | 93.9 ± 7.4 b,* | 18.0 ± 3.6 c,* | 119.7 ± 21.9 a,b,* |
Osteocalcin (µg/L) | ||||
OVX rats | ||||
Pre | 11.9 ± 1.7 a | 12.4 ± 1.9 a | 8.1 ± 0.7 b | 12.2 ± 2.3 a |
Post | 13.4 ± 2.5 a,b | 12.2 ± 1.7 b | 7.5 ± 0.4 c,* | 15.6 ± 2.2 a,* |
ORX rats | ||||
Pre | 10.6 ± 0.8 b,c | 11.5 ± 1.8 b | 9.1 ± 1.5 c | 14.8 ± 1.9 a |
Post | 10.7 ± 0.6 b | 11.4 ± 1.7 b | 7.5 ± 0.4 c,* | 16.6 ± 1.5 a,* |
Deoxypyridinoline (µg/L) | ||||
OVX rats | ||||
Pre | 0.44 ± 0.18 | 0.38 ± 0.10 | 0.46 ± 0.11 | 0.34 ± 0.1 |
Post | 0.43 ± 0.16 | 0.37 ± 0.06 | 0.47 ± 0.08 | 0.34 ± 0.1 |
ORX rats | ||||
Pre | 0.43 ± 0.06 a | 0.28 ± 0.06 b | 0.42 ± 0.09 a | 0.37 ± 0.11 a,b |
Post | 0.44 ± 0.04 a | 0.27 ± 0.05 b | 0.52 ± 0.08 a,* | 0.37 ± 0.11 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kydonaki, E.K.; Freitas, L.; Reguengo, H.; Simón, C.R.; Bastos, A.R.; Fernandes, E.M.; Canadas, R.F.; Oliveira, J.M.; Correlo, V.M.; Reis, R.L.; et al. Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model. Nutrients 2022, 14, 2837. https://doi.org/10.3390/nu14142837
Kydonaki EK, Freitas L, Reguengo H, Simón CR, Bastos AR, Fernandes EM, Canadas RF, Oliveira JM, Correlo VM, Reis RL, et al. Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model. Nutrients. 2022; 14(14):2837. https://doi.org/10.3390/nu14142837
Chicago/Turabian StyleKydonaki, Eirini K., Laura Freitas, Henrique Reguengo, Carlos Raposo Simón, Ana R. Bastos, Emanuel M. Fernandes, Raphaël F. Canadas, Joaquim M. Oliveira, Vitor M. Correlo, Rui L. Reis, and et al. 2022. "Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model" Nutrients 14, no. 14: 2837. https://doi.org/10.3390/nu14142837
APA StyleKydonaki, E. K., Freitas, L., Reguengo, H., Simón, C. R., Bastos, A. R., Fernandes, E. M., Canadas, R. F., Oliveira, J. M., Correlo, V. M., Reis, R. L., Vliora, M., Gkiata, P., Koutedakis, Y., Ntina, G., Pinto, R., Carrillo, A. E., Marques, F., & Amorim, T. (2022). Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model. Nutrients, 14(14), 2837. https://doi.org/10.3390/nu14142837