Overhydration Assessed Using Bioelectrical Impedance Vector Analysis Adversely Affects 90-Day Clinical Outcome among SARS-CoV2 Patients: A New Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting Study
2.2. Measurements
2.3. Clinical and Analytical Variables
2.4. Sample Size Calculation
2.5. Statistical Analysis
3. Results
3.1. Global Results
3.2. Hydration Status and 90 d Mortality
3.3. Optimal Hydration Parameters Cut-Off Value and 90 d Mortality Prediction in COVID-19 Disease
4. Discussion
5. Conclusions
6. Strengths–Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- de Bruin, S.; Bos, L.D.; van Roon, M.A.; Tuip-de Boer, A.M.; Schuurman, A.R.; Koel-Simmelinck, M.J.A.; Bogaard, H.J.; Tuinman, P.R.; van Agtmael, M.A.; Hamann, J.; et al. Clinical Features and Prognostic Factors in COVID-19: A Prospective Cohort Study. EBioMedicine 2021, 67, 103378. [Google Scholar] [CrossRef] [PubMed]
- Valtueña, J.; Ruiz-Sánchez, D.; Volo, V.; Manchado-López, P.; Garayar-Cantero, M. Acral Edema during the COVID-19 Pandemic. Int. J. Dermatol. 2020, 59, 1155–1157. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Chen, W.; Zhou, H.; Gong, Y.; Zhu, B.; Lv, X.; Guo, H.; Duan, J.; Zhou, J.; Marcon, E.; et al. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front. Pharmacol. 2021, 12, 664349. [Google Scholar] [CrossRef] [PubMed]
- Moonen, H.P.F.X.; van Zanten, F.J.L.; Driessen, L.; de Smet, V.; Slingerland-Boot, R.; Mensink, M.; van Zanten, A.R.H. Association of Bioelectric Impedance Analysis Body Composition and Disease Severity in COVID-19 Hospital Ward and ICU Patients: The BIAC-19 Study. Clin. Nutr. 2021, 40, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Osuna-Padilla, I.A.; Rodríguez-Moguel, N.C.; Rodríguez-Llamazares, S.; Aguilar-Vargas, A.; Casas-Aparicio, G.A.; Ríos-Ayala, M.A.; Hernández-Cardenas, C.M. Low Phase Angle Is Associated with 60-Day Mortality in Critically Ill Patients with COVID-19. J. Parenter. Enter. Nutr. 2021, 46, 828–835. [Google Scholar] [CrossRef]
- Alhazzani, W.; Møller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.; et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020, 46, 854–887. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.T.; Hauschild, D.B.; de Almeida Oliveira, L.D.; de Fragas Hinnig, P.; Moreno, Y.M.F.; Wazlawik, E. Association of Hyperhydration Evaluated by Bioelectrical Impedance Analysis and Mortality in Patients with Different Medical Conditions: Systematic Review and Meta-Analyses. Clin. Nutr. ESPEN 2018, 28, 12–20. [Google Scholar] [CrossRef]
- Di Somma, S.; Navarin, S.; Giordano, S.; Spadini, F.; Lippi, G.; Cervellin, G.; Dieffenbach, B.V.; Maisel, A.S. The Emerging Role of Biomarkers and Bio-Impedance in Evaluating Hydration Status in Patients with Acute Heart Failure. Clin. Chem. Lab. Med. 2012, 50, 2093–2105. [Google Scholar] [CrossRef]
- Hasanin, A.; Mostafa, M. Evaluation of Fluid Responsiveness during COVID-19 Pandemic: What Are the Remaining Choices? J. Anesth. 2020, 34, 758–764. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Vega Diaz, N.; Talluri, A.; Nescolarde, L. Classification of Hydration in Clinical Conditions: Indirect and Direct Approaches Using Bioimpedance. Nutrients 2019, 11, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A New Method for Monitoring Body Fluid Variation by Bioimpedance Analysis: The RXc Graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talluri, A.; Liedtke, R.; Mohamed, E.I.; Maiolo, C.; Martinoli, R.; De Lorenzo, A. The Application of Body Cell Mass Index for Studying Muscle Mass Changes in Health and Disease Conditions. Acta Diabetol. 2003, 40 (Suppl. 1), S286–S289. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, M.; Reber, H. Validation of Different Bioimpedance Analyzers for Predicting Cell Mass against Whole-Body Counting of Potassium (40K) as a Reference Method. Am. J. Hum. Biol. 2004, 16, 697–703. [Google Scholar] [CrossRef]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase Angle and Bioelectrical Impedance Vector Analysis in the Evaluation of Body Composition in Athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Denneman, N.; Hessels, L.; Broens, B.; Gjaltema, J.; Stapel, S.N.; Stohlmann, J.; Nijsten, M.W.; Oudemans-van Straaten, H.M. Fluid Balance and Phase Angle as Assessed by Bioelectrical Impedance Analysis in Critically Ill Patients: A Multicenter Prospective Cohort Study. Eur. J. Clin. Nutr. 2020, 74, 1410–1419. [Google Scholar] [CrossRef]
- Berenguer, J.; Borobia, A.M.; Ryan, P.; Rodríguez-Baño, J.; Bellón, J.M.; Jarrín, I.; Carratalà, J.; Pachón, J.; Carcas, A.J.; Yllescas, M.; et al. Development and Validation of a Prediction Model for 30-Day Mortality in Hospitalised Patients with COVID-19: The COVID-19 SEIMC Score. Thorax 2021, 76, 920–929. [Google Scholar] [CrossRef]
- Matsue, Y.; van der Meer, P.; Damman, K.; Metra, M.; O’Connor, C.M.; Ponikowski, P.; Teerlink, J.R.; Cotter, G.; Davison, B.; Cleland, J.G.; et al. Blood Urea Nitrogen-to-Creatinine Ratio in the General Population and in Patients with Acute Heart Failure. Heart 2017, 103, 407–413. [Google Scholar] [CrossRef]
- Lu, J.; Xu, B.-B.; Zheng, Z.-F.; Xie, J.-W.; Wang, J.-B.; Lin, J.-X.; Chen, Q.-Y.; Cao, L.-L.; Lin, M.; Tu, R.-H.; et al. CRP/Prealbumin, a Novel Inflammatory Index for Predicting Recurrence after Radical Resection in Gastric Cancer Patients: Post Hoc Analysis of a Randomized Phase III Trial. Gastric. Cancer 2019, 22, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Rezaie, S. COVID-19: Clinical/Therapeutic Staging Proposal and Treatment. REBEL EM Emergency Medicine Blog. 2020. Available online: https://rebelem.com/covid-19-clinical-therapeutic-staging-proposal-and-treatment/ (accessed on 12 May 2022).
- Piccoli, A.; Nigrelli, S.; Caberlotto, A.; Bottazzo, S.; Rossi, B.; Pillon, L.; Maggiore, Q. Bivariate Normal Values of the Bioelectrical Impedance Vector in Adult and Elderly Populations. Am. J. Clin. Nutr. 1995, 61, 269–270. [Google Scholar] [CrossRef]
- Evans, W.D.; McClagish, H.; Trudgett, C. Factors Affecting the in vivo Precision of Bioelectrical Impedance Analysis. Appl. Radiat. Isot. 1998, 49, 485–487. [Google Scholar] [CrossRef]
- Vettorazzi, C.; Smits, E.; Solomons, N.W. The Interobserver Reproducibility of Bioelectrical Impedance Analysis Measurements in Infants and Toddlers. J. Pediatr. Gastroenterol. Nutr. 1994, 19, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Chumlea, W.C.; Schubert, C.M.; Sun, S.S.; Demerath, E.; Towne, B.; Siervogel, R.M. A Review of Body Water Status and the Effects of Age and Body Fatness in Children and Adults. J. Nutr. Health Aging 2007, 11, 111–118. [Google Scholar]
- Schutz, Y.; Kyle, U.U.G.; Pichard, C. Fat-Free Mass Index and Fat Mass Index Percentiles in Caucasians Aged 18–98 y. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Moore, F.D.; Boyden, C.M. Body cell mass and limits of hydration of the fat-free body: Their relation to estimated skeletal weight. Ann. N. Y. Acad. Sci. 1963, 110, 62–71. [Google Scholar] [CrossRef]
- Selberg, O.; Selberg, D. Norms and Correlates of Bioimpedance Phase Angle in Healthy Human Subjects, Hospitalized Patients, and Patients with Liver Cirrhosis. Eur. J. Appl. Physiol. 2002, 86, 509–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talluri, A.; Maggia, G. Bioimpedance Analysis (BIA) in Hemodialysis: Technical Aspects. Int. J. Artif. Organs 1995, 18, 687–692. [Google Scholar] [CrossRef]
- Lindley, E.; Devine, Y.; Hall, L.; Cullen, M.; Cuthbert, S.; Woodrow, G.; Lopot, F. A Ward-Based Procedure for Assessment of Fluid Status in Peritoneal Dialysis Patients Using Bioimpedance Spectroscopy. Perit. Dial. Int. 2005, 25 (Suppl. 3), S46–S48. [Google Scholar] [CrossRef]
- Pérez-Morales, R.; Donate-Correa, J.; Martín-Núñez, E.; Pérez-Delgado, N.; Ferri, C.; López-Montes, A.; Jiménez-Sosa, A.; Navarro-González, J.F. Extracellular Water/Total Body Water Ratio as Predictor of Mortality in Hemodialysis Patients. Ren. Fail. 2021, 43, 821–829. [Google Scholar] [CrossRef]
- Basso, F.; Berdin, G.; Virzì, G.M.; Mason, G.; Piccinni, P.; Day, S.; Cruz, D.N.; Wjewodzka, M.; Giuliani, A.; Brendolan, A.; et al. Fluid Management in the Intensive Care Unit: Bioelectrical Impedance Vector Analysis as a Tool to Assess Hydration Status and Optimal Fluid Balance in Critically Ill Patients. Blood Purif. 2013, 36, 192–199. [Google Scholar] [CrossRef]
- Rahmel, T.; Nowak, H.; Rump, K.; Siffert, W.; Peters, J.; Adamzik, M. The Aquaporin 5 -1364A/C Promoter Polymorphism Impacts on Resolution of Acute Kidney Injury in Pneumonia Evoked ARDS. PLoS ONE 2018, 13, e0208582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samoni, S.; Vigo, V.; Reséndiz, L.I.B.; Villa, G.; De Rosa, S.; Nalesso, F.; Ferrari, F.; Meola, M.; Brendolan, A.; Malacarne, P.; et al. Impact of Hyperhydration on the Mortality Risk in Critically Ill Patients Admitted in Intensive Care Units: Comparison between Bioelectrical Impedance Vector Analysis and Cumulative Fluid Balance Recording. Crit. Care 2016, 20, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Dai, L.; Wang, X.; Wang, Y.; Zhou, L.; Chen, M.; Wang, H. Predictive Value of the C-Reactive Protein-to-Prealbumin Ratio in Medical ICU Patients. Biomark. Med. 2017, 11, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, S.; Russo, V.; Lalle, I.; De Berardinis, B.; Navarin, S.; Magrini, L.; Piccoli, A.; Codognotto, M.; Castello, L.M.; Avanzi, G.C.; et al. Usefulness of Combining Admission Brain Natriuretic Peptide (BNP) plus Hospital Discharge Bioelectrical Impedance Vector Analysis (BIVA) in Predicting 90 Days Cardiovascular Mortality in Patients with Acute Heart Failure. Int. Emerg. Med. 2017, 12, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Ok, F.; Erdogan, O.; Durmus, E.; Carkci, S.; Canik, A. Predictive Values of Blood Urea Nitrogen/Creatinine Ratio and Other Routine Blood Parameters on Disease Severity and Survival of COVID-19 Patients. J. Med. Virol. 2021, 93, 786–793. [Google Scholar] [CrossRef]
- Guo, Q.; Lin, J.; Li, J.; Yi, C.; Mao, H.; Yang, X.; Yu, X. The Effect of Fluid Overload on Clinical Outcome in Southern Chinese Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Perit. Dial. Int. 2015, 35, 691–702. [Google Scholar] [CrossRef] [Green Version]
COVID-19 Patients | COVID-19 Survivors | COVID-19 Non-Survivors | ||
---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | p a | |
(n = 127) | (n = 111) | (n = 16) | ||
Age (years) | 69 (59–80) | 68 (56–77) | 84 (70–88) | 0.001 |
Male, n (%) | 75 (59.1) | 66 (59.5) | 9 (56.3) | 0.807 |
Hydration (TBW/FFM, %) | 73.8 (73.3–84.3) | 73.7 (73.2–82.1) | 85.2 (76.9–89.3) | 0.001 |
ECW/TBW | 0.55 (0.49–0.63) | 0.54 (0.48–0.61) | 0.67 (0.59–0.75) | <0.001 |
TBW/H (L/m) | 0.24 (0.21–0.26) | 0.24 (0.21–0.26) | 0.22 (0.20–0.25) | 0.429 |
TBW/body weight (%) | 52.4 (48.1–56.1) | 51.9 (48.1–55.9) | 56 (47–63.3) | 0.085 |
COVID-19 SEIMC Score | 7 (4–15.5) | 6 (4–13) | 18.5 (12.8–21.5) | <0.001 |
Low risk category n (%) | 7.1 | 8 (7.9) | 0 (0) | 0.333 |
Moderate risk category n (%) | 29.2 | 33 (32.7) | 0 (0) | 0.019 |
High risk category n (%) | 17.7 | 19 (18.8) | 1 (8.3) | 0.369 |
Very high risk category n (%) | 46 | 41 (40.6) | 11 (91.7) | 0.001 |
Creatinine (mg/dL) | 0.85 (0.71–1.04) | 0.82 (0.71–1.01) | 1.07 (0.71–1.39) | 0.04 |
GF (mL/min/1.73 m2) | 81 (64.75–90) | 82 (70–90) | 55 (45.3–82.3) | 0.004 |
Na (mEq/L) | 141 (139–144) | 141 (139–144) | 144.5 (139.3–147) | 0.046 |
CRP (mg/L) | 16.7 (5.0–59.9) | 14.3 (4.2–44.7) | 97.5 (24.4–199.6) | <0.001 |
CRP/Pre-albumin | 0.26 (0.10–0.67) | 0.25 (0.08–0.37) | 1.06 (0.35–1.23) | 0.002 |
BUN/Creatinine | 24.2 (18.7–31.1) | 22.8 (17.4–30.1) | 31.7 (25.3–43.3) | 0.001 |
Variables | (T1) ≤73.5 | (T2) 73.6–79 | (T3) ≥79.1 | p |
---|---|---|---|---|
(n = 42) | (n = 43) | (n = 42) | ||
Median (IQR) | Median (IQR) | Median (IQR) | ||
Mortality ratio (%) | 1/16 (2.4) | 5/16 (11.6) | 10/16 (23.8) | 0.012 |
ICU admission ratio (%) | 4/23 (9.5) | 6/23 (14) | 13/23 (31) | 0.027 |
Age (y) | 63 (54–71) | 73 (61–83) | 71 (62–85) | <0.001 |
Male sex n (%) | 28 (66.7) | 23 (53.5) | 24 (57.1) | 0.445 |
BMI (kg/m2) | 25.6 (23.2–29.3) | 27.3 (24.2–30.9) | 26.2 (24.2–30.6) | 0.374 |
Hydration (%): TBW/FFM | 73.1 (72.7–73.3) | 73.8 (73.7–76.3) | 86.6 (84.1–90) | <0.001 |
ECW/TBW | 0.46 (0.43–0.49) | 0.55 (0.52–0.59) | 0.67 (0.61–0.74) | <0.001 |
TBW/H (L/m) | 0.22 (0.19–0.26) | 0.23 (0.20–0.25) | 0.25 (0.23–0.30) | <0.001 |
TBW/body weight (%) | 51.5 (48.6–55.1) | 50.8 (45.4–54.1) | 57.2 (51.4–62.8) | <0.001 |
COVID-19 SEIMC Score | 5 (3–7.5) | 10 (5–16) | 11.5 (6–19) | 0.003 |
Low risk category n (%) | 4 (10.0) | 2 (4.9) | 2 (6.3) | 0.66 |
Moderate risk category n (%) | 18 (45.0) | 11 (26.8) | 4 (12.5) | 0.01 |
High risk category n (%) | 10 (25.0) | 4 (9.8) | 6 (18.8) | 0.196 |
Very high risk category n (%) | 8 (20.0) | 24 (58.5) | 20 (62.5) | <0.001 |
Creatinine (mg/dL) | 0.85 (0.73–0.99) | 0.81 (0.71–1.03) | 0.85 (0.65–1.11) | 0.964 |
GF (mL/min/1.73 m2) | 85 (74.5–90) | 80 (64–90) | 76 (59–90) | 0.132 |
Na (mEq/L) | 140 (139–142) | 141 (138–144) | 144 (140–146) | 0.009 |
CRP (mg/L) | 12.9 (4.6–55.9) | 13 (4–31.4) | 30.2 (11.8–148.5) | 0.019 |
CRP/Pre-albumin | 0.255 (0.028–0.372) | 0.125 (0.018–0.213) | 0.440 (0.220–1.215) | 0.011 |
BUN/Creatinine | 21.3 (18.1–29.3) | 24.6 (17.7–31.7) | 26.0 (19.3–37.4) | 0.14 |
Variables | AUC | 95% CI Lower-Upper Bound | Cut-Off Point | Sensitivity | Specificity | p |
---|---|---|---|---|---|---|
Hydration (%) | 0.746 | 0.618–874 | 76.15% | 81.30% | 64% | 0.002 |
ECW/TBW ratio | 0.841 | 0.762–0.920 | 0.58 | 93.80% | 67.60% | <0.001 |
COVID-19 SEIMC Score | 0.858 | 0.770–0.947 | 10.5 | 91.70% | 68.30% | <0.001 |
CRP/Pre-albumin ratio | 0.794 | 0.616–0.973 | 0.88 | 72.70% | 90.20% | 0.002 |
BUN/Creatinine ratio | 0.77 | 0.659–0.880 | 23.98 | 93.80% | 54.10% | 0.001 |
Hydration Percentage | ECW/TBW Ratio | TBW/Weight Ratio | ||||
---|---|---|---|---|---|---|
HR (CI) | p | HR (CI) | p | HR (CI) | p | |
Crude model | 2.967 (1.459–6.032) | 0.003 | 2.528 (1.664–3.843) | <0.001 | 1.059 (1.001–1.120) | 0.046 |
Model 1 | 2.514 (1.281–5.236) | 0.014 | 2.277 (1.355–3.828) | 0.002 | 1.024 (0.957–1.096) | 0.492 |
Model 2 | 2.849 (1.259–6.448) | 0.012 | 2.692 (1.496–4.846) | 0.001 | 1.027 (0.956–1.102) | 0.469 |
Model 3 | 2.933 (1.215–7.077) | 0.017 | 3.043 (1.582–5.851) | 0.001 | 1.025 (0.956–1.100) | 0.485 |
Model 4 | 2.384 (1.067–5.328) | 0.034 | 2.449 (1.236–4.854) | 0.010 | 1.036 (0.968–1.109) | 0.308 |
Model 5 | 2.365 (0.942–5.937) | 0.067 | 2.537 (1.203–5.352) | 0.014 | 0.996 (0.921–1.078) | 0.921 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pareja, I.C.; Vegas-Aguilar, I.M.; Lukaski, H.; Talluri, A.; Bellido-Guerrero, D.; Tinahones, F.J.; García-Almeida, J.M. Overhydration Assessed Using Bioelectrical Impedance Vector Analysis Adversely Affects 90-Day Clinical Outcome among SARS-CoV2 Patients: A New Approach. Nutrients 2022, 14, 2726. https://doi.org/10.3390/nu14132726
Pareja IC, Vegas-Aguilar IM, Lukaski H, Talluri A, Bellido-Guerrero D, Tinahones FJ, García-Almeida JM. Overhydration Assessed Using Bioelectrical Impedance Vector Analysis Adversely Affects 90-Day Clinical Outcome among SARS-CoV2 Patients: A New Approach. Nutrients. 2022; 14(13):2726. https://doi.org/10.3390/nu14132726
Chicago/Turabian StylePareja, Isabel Cornejo, Isabel M. Vegas-Aguilar, Henry Lukaski, Antonio Talluri, Diego Bellido-Guerrero, Francisco J. Tinahones, and Jose Manuel García-Almeida. 2022. "Overhydration Assessed Using Bioelectrical Impedance Vector Analysis Adversely Affects 90-Day Clinical Outcome among SARS-CoV2 Patients: A New Approach" Nutrients 14, no. 13: 2726. https://doi.org/10.3390/nu14132726
APA StylePareja, I. C., Vegas-Aguilar, I. M., Lukaski, H., Talluri, A., Bellido-Guerrero, D., Tinahones, F. J., & García-Almeida, J. M. (2022). Overhydration Assessed Using Bioelectrical Impedance Vector Analysis Adversely Affects 90-Day Clinical Outcome among SARS-CoV2 Patients: A New Approach. Nutrients, 14(13), 2726. https://doi.org/10.3390/nu14132726