Assessing the Association between Important Dietary Habits and Osteoporosis: A Genetic Correlation and Two-Sample Mendelian Randomization Study
Abstract
:1. Introduction
2. Methods
2.1. GWAS Summary Data of OP
2.2. GWAS Summary Data of Dietary Habits
2.3. Genetic Correlation Analysis
2.4. MR Analysis
3. Results
3.1. Genetic Correlations between OP and Dietary Habits
3.2. Causal Relationships between OP and Dietary Habits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Styrkarsdottir, U.; Thorleifsson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Center, J.R.; Lee, S.H.; Nguyen, T.V.; Kwok, T.C.Y.; Lee, J.S.W.; Ho, S.C.; et al. Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nat. Commun. 2016, 7, 10129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ralston, S.H.; Uitterlinden, A.G. Genetics of osteoporosis. Endocr. Rev. 2010, 31, 629–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesi, A.; Wagley, Y.; Johnson, M.E.; Manduchi, E.; Su, C.; Lu, S.; Leonard, M.E.; Hodge, K.M.; Pippin, J.A.; Hankenson, K.D.; et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat. Commun. 2019, 10, 1260. [Google Scholar] [CrossRef] [PubMed]
- Varley, I.; James, L.J.; Willis, S.A.; King, J.A.; Clayton, D.J. One week of high-fat overfeeding alters bone metabolism in healthy males: A pilot study. Nutrition 2022, 96, 111589. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.K.; Loh, P.R.; Finucane, H.K.; Ripke, S.; Yang, J.; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Cheng, S.; Li, C.; Cheng, B.; Liu, L.; Yang, X.; Meng, P.; Yao, Y.; Pan, C.; Zhang, J.; et al. Dissecting the association between psychiatric disorders and neurological proteins: A genetic correlation and two-sample bidirectional Mendelian Randomization study. Acta Neuropsychiatr. 2022, 1–7. [Google Scholar] [CrossRef]
- Yuan, G.; Luo, P.; Xu, K.; Jing, W.; Zhang, F. A large-scale genetic correlation scan between rheumatoid arthritis and human blood metabolites. Ann. Hum. Genet. 2022, 86, 127–136. [Google Scholar] [CrossRef]
- Ollier, W.; Sprosen, T.; Peakman, T. UK Biobank: From concept to reality. Pharmacogenomics 2005, 6, 639–646. [Google Scholar] [CrossRef]
- Cole, J.B.; Florez, J.C.; Hirschhorn, J.N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nat. Commun. 2020, 11, 1467. [Google Scholar] [CrossRef] [Green Version]
- El Kinany, K.; Garcia-Larsen, V.; Khalis, M.; Deoula, M.M.S.; Benslimane, A.; Ibrahim, A.; Benjelloun, M.C.; el Rhazi, K. Adaptation and validation of a food frequency questionnaire (FFQ) to assess dietary intake in Moroccan adults. Nutr. J. 2018, 17, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijay, A.; Mohan, L.; Taylor, M.A.; Grove, J.I.; Valdes, A.M.; Aithal, G.P.; Shenoy, K.T. The Evaluation and Use of a Food Frequency Questionnaire Among the Population in Trivandrum, South Kerala, India. Nutrients 2020, 12, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobin, M.D.; Minelli, C.; Burton, P.R.; Thompson, J.R. Commentary: Development of Mendelian randomization: From hypothesis test to “Mendelian deconfounding”. Int. J. Epidemiol. 2004, 33, 26–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linneberg, A.; Jacobsen, R.K.; Skaaby, T.; Taylor, A.E.; Fluharty, M.E.; Jeppesen, J.L.; Bjorngaard, J.H.; Åsvold, B.O.; Gabrielsen, M.E.; Campbell, A.; et al. Effect of Smoking on Blood Pressure and Resting Heart Rate: A Mendelian Randomization Meta-Analysis in the CARTA Consortium. Circ. Cardiovasc. Genet. 2015, 8, 832–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns in Relation to Low Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 219–236. [Google Scholar] [CrossRef]
- Seem, S.A.; Yuan, Y.V.; Tou, J.C. Chocolate and chocolate constituents influence bone health and osteoporosis risk. Nutrition 2019, 65, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Chocolate. In Drugs and Lactation Database (LactMed); National Library of Medicine: Bethesda, MD, USA, 2006.
- Kozłowska-Wojciechowska, M.; Makarewicz-Wujec, M.; Nowicka, G. Increased serum levels of vitamin D and calcium in young men after replacement of butter with soft margarine in usual diet. Pol. Arch. Med. Wewn. 2002, 108, 953–958. [Google Scholar]
- Chiodini, I.; Bolland, M.J. Calcium supplementation in osteoporosis: Useful or harmful? Eur. J. Endocrinol. 2018, 178, D13–D25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Q.; Ma, X.M.; Huang, Z.W.; Yang, X.G.; Chen, Y.M.; Su, Y.X. Effects of milk salt supplementation on bone mineral gain in pubertal Chinese adolescents: A 2-year randomized, double-blind, controlled, dose-response trial. Bone 2014, 65, 69–76. [Google Scholar] [CrossRef]
- Xu, H.; Liu, T.; Hu, L.; Li, J.; Gan, C.; Xu, J.; Chen, F.; Xiang, Z.; Wang, X.; Sheng, J. Effect of caffeine on ovariectomy-induced osteoporosis in rats. Biomed. Pharmacother. 2019, 112, 108650. [Google Scholar] [CrossRef]
- Cano-Marquina, A.; Tarín, J.J.; Cano, A. The impact of coffee on health. Maturitas 2013, 75, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Liu, Z.H.; Lei, T.; Tang, Z. Subjective evaluation of the frequency of coffee intake and relationship to osteoporosis in Chinese men. J. Health Popul. Nutr. 2016, 35, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, Y.P.; Au, P.C.M.; Li, G.H.Y.; Sing, C.W.; Cheng, V.K.F.; Tan, K.C.B.; Kung, A.W.C.; Cheung, C.L. Serum Metabolome of Coffee Consumption and its Association with Bone Mineral Density: The Hong Kong Osteoporosis Study. J. Clin. Endocrinol. Metab. 2020, 105, e619–e627. [Google Scholar] [CrossRef] [PubMed]
- Dew, T.P.; Day, A.J.; Morgan, M.R. Bone mineral density, polyphenols and caffeine: A reassessment. Nutr. Res. Rev. 2007, 20, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Su, Y.; Tan, A.; Zou, L.; Zha, W.; Yi, S.; Lv, Y.; Kwok, T. The association of coffee consumption with the risk of osteoporosis and fractures: A systematic review and meta-analysis. Osteoporos. Int. 2022, 1–23. [Google Scholar] [CrossRef]
- Hallstrom, H.; Wolk, A.; Glynn, A.; Michaelsson, K. Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos. Int. 2006, 17, 1055–1064. [Google Scholar] [CrossRef]
- Berman, N.K.; Honig, S.; Cronstein, B.N.; Pillinger, M.H. The effects of caffeine on bone mineral density and fracture risk. Osteoporos. Int. 2022, 33, 1235–1241. [Google Scholar] [CrossRef]
- Martin, O.C.B.; Olier, M.; Ellero-Simatos, S.; Naud, N.; Dupuy, J.; Huc, L.; Taché, S.; Graillot, V.; Levêque, M.; Bézirard, V.; et al. Haem iron reshapes colonic luminal environment: Impact on mucosal homeostasis and microbiome through aldehyde formation. Microbiome 2019, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Mayr, L.; Grabherr, F.; Schwärzler, J.; Reitmeier, I.; Sommer, F.; Gehmacher, T.; Niederreiter, L.; He, G.W.; Ruder, B.; Kunz, K.T.R.; et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat. Commun. 2020, 11, 177528096123. [Google Scholar] [CrossRef] [Green Version]
- Movassagh, E.Z.; Vatanparast, H. Current Evidence on the Association of Dietary Patterns and Bone Health: A Scoping Review. Adv. Nutr. 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Perna, S.; Avanzato, I.; Nichetti, M.; D’Antona, G.; Negro, M.; Rondanelli, M. Association between Dietary Patterns of Meat and Fish Consumption with Bone Mineral Density or Fracture Risk: A Systematic Literature. Nutrients 2017, 9, 1029. [Google Scholar] [CrossRef] [PubMed]
- Mikosch, P. Alcohol and bone. Wien. Med. Wochenschr. 2014, 164, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Gaddini, G.W.; Turner, R.T.; Grant, K.A.; Iwaniec, U.T. Alcohol: A Simple Nutrient with Complex Actions on Bone in the Adult Skeleton. Alcohol Clin. Exp. Res. 2016, 40, 657–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Chen, X.; Lu, L.; Yu, X. Alcoholism and Osteoimmunology. Curr. Med. Chem. 2021, 28, 1815–1828. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Tan, B.; Wu, X.; Liao, F.; Wang, F.; Huang, Z. Gut Microbiota Is Involved in Alcohol-Induced Osteoporosis in Young and Old Rats Through Immune Regulation. Front. Cell Infect. Microbiol. 2021, 11, 636231. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Y.; Liu, Y.; Chen, H.; Shi, S.; Liu, Y. Cellular and molecular mechanisms of alcohol-induced osteopenia. Cell Mol. Life Sci. 2017, 74, 4443–4453. [Google Scholar] [CrossRef]
- Muñoz-Garach, A.; García-Fontana, B.; Muñoz-Torres, M. Nutrients and Dietary Patterns Related to Osteoporosis. Nutrients 2020, 12, 1986. [Google Scholar] [CrossRef]
- Chisari, E.; Shivappa, N.; Vyas, S. Polyphenol-Rich Foods and Osteoporosis. Curr. Pharm. Des. 2019, 25, 2459–2466. [Google Scholar] [CrossRef]
- Hu, D.; Cheng, L.; Jiang, W. Fruit and vegetable consumption and the risk of postmenopausal osteoporosis: A meta-analysis of observational studies. Food Funct. 2018, 9, 2607–2616. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E.; Brennan-Speranza, T.C. Nutritional intake and bone health. Lancet Diabetes Endocrinol. 2021, 9, 606–621. [Google Scholar] [CrossRef]
- Sahni, S.; Mangano, K.M.; Kiel, D.P.; Tucker, K.L.; Hannan, M.T. Dairy Intake Is Protective against Bone Loss in Older Vitamin D Supplement Users: The Framingham Study. J. Nutr. 2017, 147, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, M.P.; Jacobson, E.H.; Layman, D.K.; He, X.; Kris-Etherton, P.M.; Evans, E.M. A diet high in protein, dairy, and calcium attenuates bone loss over twelve months of weight loss and maintenance relative to a conventional high-carbohydrate diet in adults. J. Nutr. 2008, 138, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschonis, G.; Manios, Y. Skeletal site-dependent response of bone mineral density and quantitative ultrasound parameters following a 12-month dietary intervention using dairy products fortified with calcium and vitamin D: The Postmenopausal Health Study. Br. J. Nutr. 2006, 96, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Polzonetti, V.; Pucciarelli, S.; Vincenzetti, S.; Polidori, P. Dietary Intake of Vitamin D from Dairy Products Reduces the Risk of Osteoporosis. Nutrients 2020, 12, 1743. [Google Scholar] [CrossRef] [PubMed]
- Sahni, S.; Tucker, K.L.; Kiel, D.P.; Quach, L.; Casey, V.A.; Hannan, M.T. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: The Framingham Offspring Study. Arch. Osteoporos. 2013, 8, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dietary Habits | Genetic Correlations | p Value | |
---|---|---|---|
Osteoporosis | Biscuit cereal | −0.1693 | 0.0183 |
PC17 (butter) | −0.1360 | 0.0145 | |
PC35 (decaffeinated coffee) | −0.1367 | 0.0114 | |
PC36 (overall processed meat intake) | −0.1443 | 0.0402 | |
PC39 (spirits measured per month) | 0.1471 | 0.00990 | |
Servings of raw vegetables per day | 0.0837 | 0.0379 | |
Spirits measured per month | 0.1150 | 0.0353 |
Exposure | Outcome | Number of SNP | Method | OR (95% CI) | p Value |
---|---|---|---|---|---|
PC17 (butter) | Osteoporosis | 378 | IVW | 0.974 (0.973, 0.976) | 0.000970 |
WM | 0.00126 | ||||
MR Egger | 0.0130 | ||||
PC35 (decaffeinated coffee) | Osteoporosis | 285 | IVW | 0.985 (0.983, 0.987) | 0.00126 |
WM | 0.00183 | ||||
MR Egger | 0.00785 | ||||
PC36 (overall processed meat intake) | Osteoporosis | 1521 | IVW | 1.035 (1.033, 1.037) | 0.000976 |
WM | 0.00100 | ||||
MR Egger | 0.00332 | ||||
PC39 (spirits measured per month) | Osteoporosis | 157 | IVW | 1.014 (1.011, 1.015) | 0.00153 |
WM | 0.00197 | ||||
MR Egger | 0.0173 | ||||
Servings of raw vegetables per day | Osteoporosis | 1860 | IVW | 0.978 (0.977, 0.979) | 0.000563 |
WM | 0.000712 | ||||
MR Egger | 0.00341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Li, S.; Zeng, Y.; Si, H.; Wu, Y.; Zhang, S.; Shen, B. Assessing the Association between Important Dietary Habits and Osteoporosis: A Genetic Correlation and Two-Sample Mendelian Randomization Study. Nutrients 2022, 14, 2656. https://doi.org/10.3390/nu14132656
Xu J, Li S, Zeng Y, Si H, Wu Y, Zhang S, Shen B. Assessing the Association between Important Dietary Habits and Osteoporosis: A Genetic Correlation and Two-Sample Mendelian Randomization Study. Nutrients. 2022; 14(13):2656. https://doi.org/10.3390/nu14132656
Chicago/Turabian StyleXu, Jiawen, Shuai Li, Yi Zeng, Haibo Si, Yuangang Wu, Shaoyun Zhang, and Bin Shen. 2022. "Assessing the Association between Important Dietary Habits and Osteoporosis: A Genetic Correlation and Two-Sample Mendelian Randomization Study" Nutrients 14, no. 13: 2656. https://doi.org/10.3390/nu14132656
APA StyleXu, J., Li, S., Zeng, Y., Si, H., Wu, Y., Zhang, S., & Shen, B. (2022). Assessing the Association between Important Dietary Habits and Osteoporosis: A Genetic Correlation and Two-Sample Mendelian Randomization Study. Nutrients, 14(13), 2656. https://doi.org/10.3390/nu14132656