Ileal Pouch–Anal Anastomosis and Pouchitis: The Role of the Microbiota in the Pathogenesis and Therapy
Abstract
:1. Introduction
2. Methods
3. IPAA Microbiota Evolution over Time
4. IPAA Microbiota and Pouchitis
5. Microbiota as a Target for the Treatment of Pouchitis
5.1. Antibiotics
5.2. Probiotics
5.3. Fecal Microbiota Transplantation
5.4. Diet and Prebiotics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Ijssennagger, N.; Belzer, C.; Hooiveld, G.J.; Dekker, J.; van Mil, S.W.; Müller, M.; Kleerebezem, M.; van der Meer, R. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl. Acad. Sci. USA 2015, 112, 10038–10043. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, C.; Bergentall, M.; Greiner, T.U.; Schaffner, F.; Ostergren-Lundén, G.; Petersen, L.C.; Ruf, W.; Bäckhed, F. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 2012, 483, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Devlin, A.S.; Fischbach, M. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 2015, 11, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Neuman, H.; Debelius, J.W.; Knight, R.; Koren, O. Microbial endocrinology: The interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 2015, 39, 509–521. [Google Scholar] [CrossRef] [Green Version]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seely, K.D.; Kotelko, C.A.; Douglas, H.; Bealer, B.; Brooks, A.E. The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. Int. J. Mol. Sci. 2021, 22, 9452. [Google Scholar] [CrossRef]
- Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci. 2017, 74, 2959–2977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wlodarska, M.; Kostic, A.D.; Xavier, R.J. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 2015, 17, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Mentella, M.C.; Scaldaferri, F.; Pizzoferrato, M.; Gasbarrini, A.; Miggiano, G.A.D. Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Sokol, H.; Seksik, P.; Furet, J.P.; Firmesse, O.; Nion-Larmurier, I.; Beaugerie, L.; Cosnes, J.; Corthier, G.; Marteau, P.; Doré, J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 2009, 15, 1183–1189. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Cosnes, J.; Gower-Rousseau, C.; Seksik, P.; Cortot, A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011, 140, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.; Ma, C.; Dulai, P.S.; Prokop, L.J.; Eisenstein, S.; Ramamoorthy, S.L.; Feagan, B.G.; Jairath, V.; Sandborn, W.J.; Singh, S. Contemporary Risk of Surgery in Patients With Ulcerative Colitis and Crohn’s Disease: A Meta-Analysis of Population-Based Cohorts. Clin. Gastroenterol. Hepatol. 2021, 19, 2031–2045.e11. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Surgical Treatment. J. Crohns Colitis 2022, 16, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Nebbia, M.; Yassin, N.A.; Spinelli, A. Colorectal Cancer in Inflammatory Bowel Disease. Clin. Colon Rectal Surg. 2020, 33, 305–317. [Google Scholar] [CrossRef]
- Michelassi, F.; Lee, J.; Rubin, M.; Fichera, A.; Kasza, K.; Karrison, T.; Hurst, R.D. Long-term functional results after ileal pouch anal restorative proctocolectomy for ulcerative colitis: A prospective observational study. Ann. Surg. 2003, 238, 433–441. [Google Scholar] [CrossRef]
- Hahnloser, D.; Pemberton, J.H.; Wolff, B.G.; Larson, D.R.; Crownhart, B.S.; Dozois, R.R. Results at up to 20 years after ileal pouch-anal anastomosis for chronic ulcerative colitis. Br. J. Surg. 2007, 94, 333–340. [Google Scholar] [CrossRef]
- Shen, B. Pouchitis: What every gastroenterologist needs to know. Clin. Gastroenterol. Hepatol. 2013, 11, 1538–1549. [Google Scholar] [CrossRef]
- Villanacci, V.; Reggiani-Bonetti, L.; Salviato, T.; Leoncini, G.; Cadei, M.; Albarello, L.; Caputo, A.; Aquilano, M.C.; Battista, S.; Parente, P. Histopathology of IBD Colitis. A practical approach from the pathologists of the Italian Group for the study of the gastrointestinal tract (GIPAD). Pathologica 2021, 113, 39–53. [Google Scholar] [CrossRef]
- Ferrante, M.; Declerck, S.; De Hertogh, G.; Van Assche, G.; Geboes, K.; Rutgeerts, P.; Penninckx, F.; Vermeire, S.; D’Hoore, A. Outcome after proctocolectomy with ileal pouch-anal anastomosis for ulcerative colitis. Inflamm. Bowel Dis. 2008, 14, 20–28. [Google Scholar] [CrossRef]
- Quinn, K.P.; Raffals, L.E. An Update on the Medical Management of Inflammatory Pouch Complications. Am. J. Gastroenterol. 2020, 115, 1439–1450. [Google Scholar] [CrossRef]
- Barnes, E.L.; Herfarth, H.H.; Kappelman, M.D.; Zhang, X.; Lightner, A.; Long, M.D.; Sandler, R.S. Incidence, Risk Factors, and Outcomes of Pouchitis and Pouch-Related Complications in Patients with Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2021, 19, 1583–1591.e4. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Yu, C.; Lian, L.; Remzi, F.H.; Kiran, R.P.; Fazio, V.W.; Kattan, M.W. Prediction of late-onset pouch failure in patients with restorative proctocolectomy with a nomogram. J. Crohns Colitis 2012, 6, 198–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazio, V.W.; Kiran, R.P.; Remzi, F.H.; Coffey, J.C.; Heneghan, H.M.; Kirat, H.T.; Manilich, E.; Shen, B.; Martin, S.T. Ileal pouch anal anastomosis: Analysis of outcome and quality of life in 3707 patients. Ann. Surg. 2013, 257, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Tekkis, P.P.; Lovegrove, R.E.; Tilney, H.S.; Smith, J.J.; Sagar, P.M.; Shorthouse, A.J.; Mortensen, N.J.; Nicholls, R.J. Long-term failure and function after restorative proctocolectomy—A multi-centre study of patients from the UK National Ileal Pouch Registry. Colorectal Dis. 2010, 12, 433–441. [Google Scholar] [CrossRef]
- Tulchinsky, H.; Hawley, P.R.; Nicholls, J. Long-term failure after restorative proctocolectomy for ulcerative colitis. Ann. Surg. 2003, 238, 229–234. [Google Scholar] [CrossRef]
- Gosselink, M.P.; Schouten, W.R.; van Lieshout, L.M.; Hop, W.C.; Laman, J.D.; Ruseler-van Embden, J.G. Eradication of pathogenic bacteria and restoration of normal pouch flora: Comparison of metronidazole and ciprofloxacin in the treatment of pouchitis. Dis. Colon Rectum 2004, 47, 1519–1525. [Google Scholar] [CrossRef]
- Schieffer, K.M.; Williams, E.D.; Yochum, G.S.; Koltun, W.A. Review article: The pathogenesis of pouchitis. Aliment. Pharmacol. Ther. 2016, 44, 817–835. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, J.F.; Segal, J.P.; de Campos Braz, L.M.; Hart, A.L. The Microbiome as a Therapy in Pouchitis and Ulcerative Colitis. Nutrients 2021, 13, 1780. [Google Scholar] [CrossRef]
- Weingarden, A.R.; Vaughn, B.P. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 2017, 8, 238–252. [Google Scholar] [CrossRef] [Green Version]
- Hinata, M.; Kohyama, A.; Ogawa, H.; Haneda, S.; Watanabe, K.; Suzuki, H.; Shibata, C.; Funayama, Y.; Takahashi, K.; Sasaki, I.; et al. A shift from colon- to ileum-predominant bacteria in ileal-pouch feces following total proctocolectomy. Dig. Dis. Sci. 2012, 57, 2965–2974. [Google Scholar] [CrossRef]
- Kohyama, A.; Ogawa, H.; Funayama, Y.; Takahashi, K.; Benno, Y.; Nagasawa, K.; Tomita, S.; Sasaki, I.; Fukushima, K. Bacterial population moves toward a colon-like community in the pouch after total proctocolectomy. Surgery 2009, 145, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Segal, J.P.; Oke, S.; Hold, G.L.; Clark, S.K.; Faiz, O.D.; Hart, A.L. Systematic review: Ileoanal pouch microbiota in health and disease. Aliment. Pharmacol. Ther. 2018, 47, 466–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, M.G.; Kiss, D.R.; Zilberstein, B.; Quintanilha, A.G.; Teixeira, M.G.; Habr-Gama, A. Intestinal mucosa-associated microflora in ulcerative colitis patients before and after restorative proctocolectomy with an ileoanal pouch. Dis. Colon Rectum 2008, 51, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Tannock, G.W.; Lawley, B.; Munro, K.; Lay, C.; Taylor, C.; Daynes, C.; Baladjay, L.; Mcleod, R.; Thompson-Fawcett, M. Comprehensive analysis of the bacterial content of stool from patients with chronic pouchitis, normal pouches, or familial adenomatous polyposis pouches. Inflamm. Bowel Dis. 2012, 18, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.M.; Coffey, J.C.; Kell, M.R.; O’Sullivan, M.; Redmond, H.P.; Kirwan, W.O. A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch. Colorectal Dis. 2005, 7, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.; O’Mahony, L.; Coffey, J.C.; Collins, J.K.; Shanahan, F.; Redmond, H.P.; Kirwan, W.O. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis. Dis. Colon Rectum 2002, 45, 384–388. [Google Scholar] [CrossRef]
- McLaughlin, S.D.; Walker, A.W.; Churcher, C.; Clark, S.K.; Tekkis, P.P.; Johnson, M.W.; Parkhill, J.; Ciclitira, P.J.; Dougan, G.; Nicholls, R.J.; et al. The bacteriology of pouchitis: A molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing. Ann. Surg. 2010, 252, 90–98. [Google Scholar] [CrossRef]
- Sinha, S.R.; Haileselassie, Y.; Nguyen, L.P.; Tropini, C.; Wang, M.; Becker, L.S.; Sim, D.; Jarr, K.; Spear, E.T.; Singh, G.; et al. Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host Microbe 2020, 27, 659–670.e5. [Google Scholar] [CrossRef]
- Reshef, L.; Kovacs, A.; Ofer, A.; Yahav, L.; Maharshak, N.; Keren, N.; Konikoff, F.M.; Tulchinsky, H.; Gophna, U.; Dotan, I. Pouch Inflammation Is Associated With a Decrease in Specific Bacterial Taxa. Gastroenterology 2015, 149, 718–727. [Google Scholar] [CrossRef]
- Tyler, A.D.; Knox, N.; Kabakchiev, B.; Milgrom, R.; Kirsch, R.; Cohen, Z.; McLeod, R.S.; Guttman, D.S.; Krause, D.O.; Silverberg, M. Characterization of the gut-associated microbiome in inflammatory pouch complications following ileal pouch-anal anastomosis. PLoS ONE 2013, 8, e66934. [Google Scholar]
- Li, K.Y.; Wang, J.L.; Wei, J.P.; Gao, S.Y.; Zhang, Y.Y.; Wang, L.T.; Liu, G. Fecal microbiota in pouchitis and ulcerative colitis. World J. Gastroenterol. 2016, 22, 8929–8939. [Google Scholar] [CrossRef] [PubMed]
- Zella, G.C.; Hait, E.J.; Glavan, T.; Gevers, D.; Ward, D.V.; Kitts, C.L.; Korzenik, J.R. Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis. Inflamm. Bowel Dis. 2011, 17, 1092–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaya, A.; Iiai, T.; Okamoto, H.; Ajioka, Y.; Yamamoto, T.; Asahara, T.; Nomoto, K.; Hatakevama, K. Change in the bacterial flora of pouchitis. Hepatogastroenterology 2006, 53, 55–59. [Google Scholar] [PubMed]
- Komanduri, S.; Gillevet, P.M.; Sikaroodi, M.; Mutlu, E.; Keshavarzian, A. Dysbiosis in pouchitis: Evidence of unique microfloral patterns in pouch inflammation. Clin. Gastroenterol. Hepatol. 2007, 5, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.; Mirsepasi-Lauridsen, H.C.; Vester-Andersen, M.K.; Sørensen, N.; Krogfelt, K.A.; Bendtsen, F. High Abundance of Proteobacteria in Ileo-Anal Pouch Anastomosis and Increased Abundance of Fusobacteria Associated with Increased Pouch Inflammation. Antibiotics 2020, 9, 237. [Google Scholar] [CrossRef]
- Palmieri, O.; Castellana, S.; Biscaglia, G.; Panza, A.; Latiano, A.; Fontana, R.; Guerra, M.; Corritore, G.; Latiano, T.; Martino, G.; et al. Microbiome Analysis of Mucosal Ileoanal Pouch in Ulcerative Colitis Patients Revealed Impairment of the Pouches Immunometabolites. Cells 2021, 10, 3243. [Google Scholar] [CrossRef]
- Lim, M.; Adams, J.D.; Wilcox, M.; Finan, P.; Sagar, P.; Burke, D. An assessment of bacterial dysbiosis in pouchitis using terminal restriction fragment length polymorphisms of 16S ribosomal DNA from pouch effluent microbiota. Dis. Colon Rectum 2009, 52, 1492–1500. [Google Scholar] [CrossRef]
- Pawełka, D.; Bednarz, W.; Krawczyk, Z.; Rzeszutko, M.; Olewiński, R.; Czopnik, P. Ileal pouch morphology and microbiology in ulcerative colitis patients. Adv. Clin. Exp. Med. 2015, 24, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- De Preter, V.; Bulteel, V.; Suenaert, P.; Geboes, K.P.; De Hertogh, G.; Luypaerts, A.; Geboes, K.; Verbeke, K.; Rutgeerts, P. Pouchitis, similar to active ulcerative colitis, is associated with impaired butyrate oxidation by intestinal mucosa. Inflamm. Bowel Dis. 2009, 15, 335–340. [Google Scholar] [CrossRef]
- Sagar, P.M.; Taylor, B.A.; Godwin, P.; Holdsworth, P.J.; Johnston, D.; Lewis, W.; Miller, A.; Quirke, P.; Williamson, M. Acute pouchitis and deficiencies of fuel. Dis. Colon Rectum 1995, 38, 488–493. [Google Scholar] [CrossRef]
- Ohge, H.; Furne, J.K.; Springfield, J.; Rothenberger, D.A.; Madoff, R.D.; Levitt, M. Association between fecal hydrogen sulfide production and pouchitis. Dis. Colon Rectum 2005, 48, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Kochhar, G.S.; Rubin, D.T.; Kane, S.V.; Navaneethan, U.; Bernstein, C.N.; Cross, R.K.; Sugita, A.; Schairer, J.; Kiran, R.P.; et al. Treatment of pouchitis, Crohn’s disease, cuffitis, and other inflammatory disorders of the pouch: Consensus guidelines from the International Ileal Pouch Consortium. Lancet Gastroenterol. Hepatol. 2022, 7, 69–95. [Google Scholar] [CrossRef]
- Segal, J.P.; Ding, N.S.; Worley, G.; Mclaughlin, S.; Preston, S.; Faiz, O.D.; Clark, S.K.; Hart, A.L. Systematic review with meta-analysis: The management of chronic refractory pouchitis with an evidence-based treatment algorithm. Aliment. Pharmacol. Ther. 2017, 45, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J. Crohns. Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Achkar, J.P.; Lashner, B.A.; Ormsby, A.H.; Remzi, F.H.; Brzezinski, A.; Bevins, C.L.; Bambrick, M.L.; Seidner, D.L.; Fazio, V.W. A randomized clinical trial of ciprofloxacin and metronidazole to treat acute pouchitis. Inflamm. Bowel Dis. 2001, 7, 301–305. [Google Scholar] [CrossRef]
- Mimura, T.; Rizzello, F.; Helwig, U.; Poggioli, G.; Schreiber, S.; Talbot, I.C.; Nicholls, R.J.; Gionchetti, P.; Campieri, M.; Kamm, M.A. Four-week open-label trial of metronidazole and ciprofloxacin for the treatment of recurrent or refractory pouchitis. Aliment. Pharmacol. Ther. 2002, 16, 909–917. [Google Scholar] [CrossRef]
- Dubinsky, V.; Reshef, L.; Bar, N.; Keizer, D.; Golan, N.; Rabinowitz, K.; Godny, L.; Yadgar, K.; Zonensain, K.; Tulchinsky, H.; et al. Predominantly Antibiotic-resistant Intestinal Microbiome Persists in Patients with Pouchitis Who Respond to Antibiotic Therapy. Gastroenterology 2020, 158, 610–624.e13. [Google Scholar] [CrossRef] [Green Version]
- Barreiro-de Acosta, M.; Bastón-Rey, I.; Calviño-Suárez, C.; Enrique Domínguez-Muñoz, J. Pouchitis: Treatment dilemmas at different stages of the disease. United Eur. Gastroenterol. J. 2020, 8, 256–262. [Google Scholar] [CrossRef]
- Gionchetti, P.; Rizzello, F.; Venturi, A.; Brigidi, P.; Matteuzzi, D.; Bazzocchi, G.; Poggioli, G.; Miglioli, M.; Campieri, M. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial. Gastroenterology 2000, 119, 305–309. [Google Scholar] [CrossRef]
- Mimura, T.; Rizzello, F.; Helwig, U.; Poggioli, G.; Schreiber, S.; Talbot, I.C.; Nicholls, R.J.; Gionchetti, P.; Campieri, M.; Kamm, M.A. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 2004, 53, 108–114. [Google Scholar] [PubMed] [Green Version]
- Ulisse, S.; Gionchetti, P.; D’Alò, S.; Russo, F.P.; Pesce, I.; Ricci, G.; Rizzello, F.; Helwig, U.; Cifone, M.G.; Campieri, M.; et al. Expression of cytokines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: Effects of probiotic treatment. Am. J. Gastroenterol. 2001, 96, 2691–2699. [Google Scholar] [CrossRef] [PubMed]
- Persborn, M.; Gerritsen, J.; Wallon, C.; Carlsson, A.; Akkermans, L.M.; Söderholm, J.D. The effects of probiotics on barrier function and mucosal pouch microbiota during maintenance treatment for severe pouchitis in patients with ulcerative colitis. Aliment. Pharmacol. Ther. 2013, 38, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Gionchetti, P.; Rizzello, F.; Helwig, U.; Venturi, A.; Lammers, K.M.; Brigidi, P.; Vitali, B.; Poggioli, G.; Miglioli, M.; Campieri, M. Prophylaxis of pouchitis onset with probiotic therapy: A double-blind, placebo-controlled trial. Gastroenterology 2003, 124, 1202–1209. [Google Scholar] [CrossRef]
- Yasueda, A.; Mizushima, T.; Nezu, R.; Sumi, R.; Tanaka, M.; Nishimura, J.; Kai, Y.; Hirota, M.; Osawa, H.; Nakajima, K.; et al. The effect of Clostridium butyricum MIYAIRI on the prevention of pouchitis and alteration of the microbiota profile in patients with ulcerative colitis. Surg. Today 2016, 46, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; de Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.; Tijssen, J.G.; et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Hvas, C.L.; Dahl Jørgensen, S.M.; Jørgensen, S.P.; Storgaard, M.; Lemming, L.; Hansen, M.M.; Erikstrup, C.; Dahlerup, J.F. Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection. Gastroenterology 2019, 156, 1324–1332.e3. [Google Scholar] [CrossRef] [Green Version]
- Kousgaard, S.J.; Michaelsen, T.Y.; Nielsen, H.L.; Kirk, K.F.; Brandt, J.; Albertsen, M.; Thorlacius-Ussing, O. Clinical results and microbiota changes after faecal microbiota transplantation for chronic pouchitis: A pilot study. Scand. J. Gastroenterol. 2020, 55, 421–429. [Google Scholar] [CrossRef]
- Kayal, M.; Lambin, T.; Pinotti, R.; Dubinsky, M.C.; Grinspan, A. A Systematic Review of Fecal Microbiota Transplant for the Management of Pouchitis. Crohn’s Colitis 360 2020, 2, otaa034. [Google Scholar] [CrossRef]
- Herfarth, H.; Barnes, E.L.; Long, M.D.; Isaacs, K.L.; Leith, T.; Silverstein, M.; Gerardin, Y.; Kassam, Z. Combined Endoscopic and Oral Fecal Microbiota Transplantation in Patients with Antibiotic-Dependent Pouchitis: Low Clinical Efficacy due to Low Donor Microbial Engraftment. Inflamm. Intest. Dis. 2019, 4, 1–6. [Google Scholar] [CrossRef]
- Karjalainen, E.K.; Renkonen-Sinisalo, L.; Satokari, R.; Mustonen, H.; Ristimäki, A.; Arkkila, P.; Lepistö, A. Fecal Microbiota Transplantation in Chronic Pouchitis: A Randomized, Parallel, Double-Blinded Clinical Trial. Inflamm. Bowel Dis. 2021, 27, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Cold, F.; Kousgaard, S.J.; Halkjaer, S.I.; Petersen, A.M.; Nielsen, H.L.; Thorlacius-Ussing, O.; Hansen, L. Fecal Microbiota Transplantation in the Treatment of Chronic Pouchitis: A Systematic Review. Microorganisms 2020, 8, 1433. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Welters, C.F.; Heineman, E.; Thunnissen, F.B.; van den Bogaard, A.E.; Soeters, P.B.; Baeten, C.G. Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis. Colon Rectum 2002, 45, 621–627. [Google Scholar] [CrossRef]
- Ianco, O.; Tulchinsky, H.; Lusthaus, M.; Ofer, A.; Santo, E.; Vaisman, N.; Dotan, I. Diet of patients after pouch surgery may affect pouch inflammation. World J. Gastroenterol. 2013, 19, 6458–6464. [Google Scholar] [CrossRef]
- Godny, L.; Maharshak, N.; Reshef, L.; Goren, I.; Yahav, L.; Fliss-Isakov, N.; Gophna, U.; Tulchinsky, H.; Dotan, I. Fruit Consumption is Associated with Alterations in Microbial Composition and Lower Rates of Pouchitis. J. Crohns Colitis 2019, 13, 1265–1272. [Google Scholar] [CrossRef]
- McLaughlin, S.D.; Culkin, A.; Cole, J.; Clark, S.K.; Tekkis, P.P.; Ciclitira, P.J.; Nicholls, R.J.; Whelan, K. Exclusive elemental diet impacts on the gastrointestinal microbiota and improves symptoms in patients with chronic pouchitis. J. Crohns Colitis 2013, 7, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Ardalan, Z.S.; Yao, C.K.; Sparrow, M.P.; Gibson, P.R. Review article: The impact of diet on ileoanal pouch function and on the pathogenesis of pouchitis. Aliment. Pharmacol. Ther. 2020, 52, 1323–1340. [Google Scholar]
Healthy Adults | IBD | UC-IPAA | FAP-IPAA |
---|---|---|---|
Bacteroidetes * | ↓ Bacteroidetes | ↓ Bacteroidetes | ↑ Bacteroidetes |
Firmicutes * | ↓ Firmicutes | ↓ Firmicutes | ↑ Firmicutes |
Actinobacteria * | ↓ Lactobacillus | ↑ Proteobacteria | ↓ Proteobacteria |
Proteobacteria * | ↑ Proteobacteria | Presence of SRB | Absence of SRB |
Verrucomicrobia | ↑ Enterobacteriaceae | ||
Methanogenic archaea | |||
Eucaria (i.e., yeasts) |
Authors | Sample Size | Bacterial Sequencing Platform | Results |
---|---|---|---|
Tannock [44] | 34 UC-IPAA (17 with pouchitis), 14 FAP-IPAA | HTS of 16S rRNA genes (V1–V3 regions), FISH, qPCR | FAP-IPAA and UC-IPAA with normal pouch were more biodiverse than UC-IPAA with pouchitis (p < 0.0001) and displayed higher proportions of Lachnospiraceae (p < 0.05). |
McLaughlin [47] | 16 UC-IPAA (8 with pouchitis) and 8 FAP-IPAA (3 with pouchitis) | 16S rRNA gene cloning and sequencing | Proteobacteria were increased (p = 0.019) while the Bacteroidetes were decreased (p = 0.001) in the total UC-IPAA compared with the total FAP-IPAA. Faecalibacterium prausnitzii was detected in the 75% of FAP-IPAA and only in 25% in UC-IPAA (p = 0.029). The median SDI for all UC-IPAA was 2.61 compared to 3.2 for all FAP -IPAA (p = 0.004) |
Sinha [48] | 17 UC-IPAA (4 with pouchitis), 7 FAP-IPA | LC-MS | UC-IPAA have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs) and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria) compared to FAP-IPAA. SBA supplementation ameliorates inflammation in animal models of colitis. |
Reshef [49] | 131 UC-IPAA (83 with pouchitis and 10 with unstable pouch behavior), 9 FAP-IPAA | 16S rRNA gene amplicon pyrosequencing | SDI was higher in normal UC-IPAA compared with UC-IPAA with pouchitis. Faecalibacterium was reduced in pouchitis compared to normal pouch (P 0.021). Lachnospiraceae and Ruminococcaceae were significantly decreased in pouchitis compared to normal UC-IPAA and FAP-IPAA. |
Tyler [50] | 53 UC-IPAA (15 with pouchitis and 19 with CDL), 18 FAP-IPAA | Pyrosequencing of the 16S rRNA V1-V3 hypervariable region | UC-IPAA had decreased microbial diversity compared to FAP-IPAA. Bacteroidetes were detected less frequently in UC-IPAA with pouchitis and CDL (p < 0.0001) compared to FAP-IPAA and UC-IPAA without pouchitis. Proteobacteria were detected more frequently in the inflammatory groups (pouchitis and CDL) (p = 0.01) |
Li [51] | 19 UC-IPAA (8 with pouchitis), 16 healthy controls, 41 UC. | Amplification of the V3 region of the 16S rRNA gene by the PCR technique | Healthy controls displayed a higher microbial biodiversity compared to UC-IPAA (p < 0.001). UC-IPAA with pouchitis showed fewer Eubacterium rectale (a butyrate-producing bacteria) and more Clostridium perfringens compared to UC-IPAA with normal pouch and healthy controls. |
Zella [52] | 12 UC-IPAA (9 with pouchitis), 7 FAP-IPAA | 16S rDNA-based terminal restriction fragment length polymorphism | UC-IPAA with pouchitis exhibited less Lactobacillus and Streptococcus compared to FAP-IPAA. On the other hand, Bacteroidetes were higher in the FAP-IPAA compared to UC-IPAA with pouchitis (p < 0.001). |
Iwaya [53] | 22 UC-IPAA (9 with pouchitis) | Culture | Bacteroidaceae, Bifidobacterium, and Lactobacilli were significantly lower in UC-IPAA with pouchitis compared to UC-IPAA without pouchitis (p < 0.01, p < 0.001, and p < 0.05 respectively). |
Komanduri [54] | 20 UC-IPAA (5 with pouchitis), 13 healthy controls | 16S rRNA–based LH-PCR | Streptococci were associated with UC-IPAA without pouchitis and were lower in pouchitis. Conversely, members of the Fusobacterium group were associated with pouchitis. |
Petersen [55] | 20 UC-IPAA (10 with pouchitis), 30 healthy controls, 140 IBD | 16S rDNA MiSeq sequencing (V3–V4 region) | Higher levels of Fusobacteria were found in UC-IPAA with a fecal calprotectin level >500 (p = 0.02). UC-IPAA had a lower SDI compared to healthy controls and IBD. The SDI was not significantly different between UC-IPAA with active and inactive inflammation (p = 0.74). |
Palmieri [56] | 34 UC-IPAA (13 with pouchitis), 19 healthy controls | 16S rDNA MiSeq sequencing (V3–V4 region) | UC-IPAA (with or without pouchitis) had significantly lower bacterial diversity compared to healthy controls. Faecalibacterium prausnitzii was more abundant in healthy controls than in the total UC-IPAA. Propionibacterium acnes was significantly associated with pouchitis. |
Lim [57] | 20 UC-IPAA (5 with pouchitis) | T-RFLP of 16S rDNA | Seventeen operational taxonomic units (OTU) were found exclusively in pouchitis; 11 of the 17 OTUs were entirely novel. The other six OTUs were identified as Pseudoalteromonas, Desulfosporosinus, Methylobacter, Leptospira, uncultered proteobacterium, and Microcystis. |
Pawełka [58] | 47 UC-IPAA (11 with pouchitis) | Culture | The presence of Staphylococcus aureus significantly correlated with a higher degree of chronic inflammation. |
De Preter [60] | 22 UC-IPAA (15 with pouchitis, 5 excluded pouch), 17 healthy controls | Butyrate oxidation: Biopsies incubation with 1 mM 14C-labeled Na-butyrate and measuring the released 14CO2. | Butyrate oxidation in UC-IPAA with mild or active pouchitis was decreased compared with that in normal ileum of healthy controls (p = 0.001) and in excluded/normal UC-IPAA (p = 0.005). |
Sagar [61] | 32 UC-IPAA (10 with pouchitis) | Measurement of stool concentrations of SCFA by gas–liquid chromatography | Stool concentrations of SCFA were lower in UC-IPAA with pouchitis compared to healthy UC-IPAA (p < 0.01). Resolution of pouchitis after antibiotic treatment (6 week course of metronidazole) was associated with an increment of SCFA stool concentration (p < 0.01). |
Ohge [62] | 45 UC-IPAA (19 with pouchitis), 5 FAP-IPAA | Measurement of hydrogen sulfide by gas chromatography. Serial tenfold dilutions of fecal homogenates for enumerating sulfate-reducing bacteria | FAP-IPAA produced significantly less hydrogen sulfide than nonantibiotic-treated UC-IPAA. Sulfate-reducing bacteria were significantly higher in UC-IPAA with pouchitis compared to UC-IPAA, which never experienced pouchitis. Sulfate-reducing bacterial count dropped with antibiotic treatment. |
Authors | Study Design | Intervention | Results |
---|---|---|---|
Gosselink [36] | Observational | Ciprofloxacin (daily, 2 × 500 mg) or Metronidazole (daily, 3 × 500 mg) for two weeks | In subjects with pouchitis, metronidazole eradicated the anaerobic flora, including C. perfringens but not E. coli. Ciprofloxacin eradicated C. perfringens and E. coli, while the large part of the anaerobic flora was not changed. Ciprofloxacin produced a larger reduction in the PDAI score compared to metronidazole (p = 0.04). |
Shen [66] | RCT | Ciprofloxacin (1000 mg/d) vs. Metronidazole (20 mg/kg/d) for two weeks | Both antibiotics significantly reduced total PDAI score in subjects with acute pouchitis. Ciprofloxacin produced a greater total PDAI reduction than metronidazole (6.9 vs. 3.8, p = 0.002). Ciprofloxacin group did not experience AEs, while the metronidazole group experienced AEs in 33% of cases. |
Mimura [67] | Observational | Ciprofloxacin (500 mg b.i.d) plus metronidazole (400 or 500 mg b.i.d) for 28 days | Remission was obtained in 82% of cases of refractory or recurrent pouchitis. Median PDAI score was reduced from 12 to 3 (p < 0.0001). |
Dubinsky [68] | Observational | Ciprofloxacin (500 mg b.i.d) plus Metronidazole (500 mg b.i.d) (two weeks courses or more in case of relapse) | In total, 79% of the antibiotic-treated subjects achieved clinical response. Antibiotics established an antibiotic-resistant microbiome with low inflammatory characteristics, which may confer resistance against colonization by bacteria that stimulate inflammation. |
Gionchetti [70] | RCT | Probiotic mixture (6 g/day) of lactobacilli (4 strains), bifidobacterial (3 strains), and Streptococcus thermophilus vs. placebo for 9 months | All subjects with chronic pouchitis were in clinical and endoscopic remission at the start of the study. During the follow-up, 15% had relapses in the probiotic group compared with 100% in the placebo group (p < 0.001). Fecal concentration of lactobacilli, bifidobacteria, and S. thermophilus increased from baseline levels only in the probiotic group (p < 0.01). |
Mimura [71] | RCT | Probiotic mixture (6 g/day) of lactobacilli (4 strains), bifidobacterial (3 strains), and Streptococcus thermophilus vs. placebo for 12 months or until relapse | Patients with refractory or recurrent pouchitis that achieved remission with a four week course of ciprofloxacin plus metronidazole were included at the start of the study. The cumulative maintained remission rate over the 12 months period was 85% in the probiotic group and 6% in the placebo group (p < 0.0001). |
Gionchetti [74] | RCT | Probiotic mixture (3 g/day) of lactobacilli (4 strains), bifidobacterial (3 strains), and Streptococcus thermophilus vs. placebo for one year | The study included subjects with IPAA and started within 1 week after ileostomy closure. During the follow-up, 10% of patients in the probiotic group experienced an episode of acute pouchitis compared with the 40% of patients treated with placebo (p < 0.05). |
Yasueda [75] | RCT | Probiotic (Clostridium butyricum MIYAIRI) (daily, 60 mg × 3) vs. placebo for 24 months. | The subjects included had not developed previous pouchitis after surgery; 11% in the probiotic group and 50% in the placebo group developed pouchitis (p = 0.07). |
Kousgaard [78] | Observational | Fecal microbiota transplantation by enemas (20 g) for 14 consecutive days | Patients with chronic pouchitis were included, and 44% of patients were in clinical remission at 30-day of follow-up; 33% were in remission until 6 months of follow-up. FMT increased microbial diversity in 67% of subjects. |
Herfarth [80] | RCT | Fecal microbiota transplantation by both enemas (24 g) and oral capsules (4.2 g) vs. placebo | Patients with antibiotic-dependent pouchitis were enrolled. The study was terminated prematurely due to a small clinical remission rate (6 subjects included). Only 1 patient (17%) clinically responded to FMT and remained off antibiotics for the study period of 16 weeks. |
Karjalainen [81] | RCT | Fecal microbiota transplantation by endoscopy (30 g) and via transanal catheter (30 g) vs. placebo | Patients with chronic pouchitis were included and were followed up for 52 weeks; 34.6% patients in the FMT group and 30.8% in the placebo group relapsed during the follow-up (p = 0.183) |
Welters [86] | RCT | 24 g of inulin daily for three weeks vs. placebo | Butyrate concentrations were significantly higher in the intervention group compared to placebo. The endoscopic and histologic scores were lower in the inulin group compared with placebo. |
Ianco [87] | Observational | Diet | Subjects with normal pouch consumed more fruits than subjects with pouchitis (3.6 s/d vs 1.8 s/d, p = 0.015) and tended to consume more vegetables (4.5 s/d vs 3.3 s/d, p = 0.06). |
Godny [88] | Observational | Diet | Subjects in the lower tertile of fruit consumption (<1.45 s/d) had a higher rate of pouchitis within 1 year of follow-up, compared with patients in the upper two tertiles (30.8% vs 3.8%, p = 0.03). Fruit consumption was associated with an improved microbial diversity (p = 0.003). |
McLaughlin [89] | Observational | Elemental diet (E028, SHS, UK) for 28 days | Elemental diet reduced the PDAI symptom score (from 4 to 1, p = 0.039). There was no reduction in endoscopic or histological signs of inflammation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabbiadini, R.; Dal Buono, A.; Correale, C.; Spinelli, A.; Repici, A.; Armuzzi, A.; Roda, G. Ileal Pouch–Anal Anastomosis and Pouchitis: The Role of the Microbiota in the Pathogenesis and Therapy. Nutrients 2022, 14, 2610. https://doi.org/10.3390/nu14132610
Gabbiadini R, Dal Buono A, Correale C, Spinelli A, Repici A, Armuzzi A, Roda G. Ileal Pouch–Anal Anastomosis and Pouchitis: The Role of the Microbiota in the Pathogenesis and Therapy. Nutrients. 2022; 14(13):2610. https://doi.org/10.3390/nu14132610
Chicago/Turabian StyleGabbiadini, Roberto, Arianna Dal Buono, Carmen Correale, Antonino Spinelli, Alessandro Repici, Alessandro Armuzzi, and Giulia Roda. 2022. "Ileal Pouch–Anal Anastomosis and Pouchitis: The Role of the Microbiota in the Pathogenesis and Therapy" Nutrients 14, no. 13: 2610. https://doi.org/10.3390/nu14132610
APA StyleGabbiadini, R., Dal Buono, A., Correale, C., Spinelli, A., Repici, A., Armuzzi, A., & Roda, G. (2022). Ileal Pouch–Anal Anastomosis and Pouchitis: The Role of the Microbiota in the Pathogenesis and Therapy. Nutrients, 14(13), 2610. https://doi.org/10.3390/nu14132610