Evaluation of a Physical Activity and Multi-Micronutrient Intervention on Cognitive and Academic Performance in South African Primary Schoolchildren
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Study Design
2.3. Randomization of Treatment Groups
2.4. Sample Size Calculation
2.5. Adherence
2.6. Demographic and Anthropometric Data
2.7. Cognitive Performance
2.8. Academic Achievement
2.9. Statistical Analyses
3. Results
3.1. Baseline Characteristics of Study Participants
3.2. Intervention Effect on Cognitive Performance
3.3. Intervention Effect on Academic Achievement
3.4. Adverse Outcomes Associated with the Interventions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Tooley, U.A.; Bassett, D.S.; Mackey, A.P. Environmental influences on the pace of brain development. Nat. Rev. Neurosci. 2021, 22, 372–384. [Google Scholar] [CrossRef]
- Cortes Pascual, A.; Moyano Munoz, N.; Quilez Robres, A. The relationship between executive functions and academic performance in primary education: Review and meta-analysis. Front. Psychol. 2019, 10, 1582. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Grantham-McGregor, S.; Cheung, Y.B.; Cueto, S.; Glewwe, P.; Richter, L.; Strupp, B. Developmental potential in the first 5 years for children in developing countries. Lancet 2007, 369, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Shankar, P.; Chung, R.; Frank, D.A. Association of food insecurity with children’s behavioral, emotional, and academic outcomes: A systematic review. J. Dev. Behav. Pediatr. 2017, 38, 135–150. [Google Scholar] [CrossRef]
- Naicker, N.; Mathee, A.; Teare, J. Food insecurity in households in informal settlements in urban South Africa. S. Afr. Med. J. 2015, 105, 268–270. [Google Scholar] [CrossRef]
- Vorster, H.H. The link between poverty and malnutrition: A South African perspective. Health SA Gesondheid 2010, 15, 1–6. [Google Scholar] [CrossRef]
- Pabalan, N.; Singian, E.; Tabangay, L.; Jarjanazi, H.; Boivin, M.J.; Ezeamama, A.E. Soil-transmitted helminth infection, loss of education and cognitive impairment in school-aged children: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2018, 12, e0005523. [Google Scholar] [CrossRef] [Green Version]
- Ezeamama, A.E.; Bustinduy, A.L.; Nkwata, A.K.; Martinez, L.; Pabalan, N.; Boivin, M.J.; King, C.H. Cognitive deficits and educational loss in children with schistosome infection—A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2018, 12, e0005524. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, M.; Perignon, M.; Kuong, K.; de Groot, R.; Parker, M.; Burja, K.; Dijkhuizen, M.A.; Sokhom, S.; Chamnan, C.; Berger, J.; et al. Effect of multi-micronutrient-fortified rice on cognitive performance depends on premix composition and cognitive function tested: Results of an effectiveness study in Cambodian schoolchildren. Public Health Nutr. 2018, 21, 816–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asmare, B.; Taddele, M.; Berihun, S.; Wagnew, F. Nutritional status and correlation with academic performance among primary school children, northwest Ethiopia. BMC Res. Notes 2018, 11, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinyoka, K. Impact of poor nutrition on the academic performance of grade seven learners: A case of Zimbabwe. Int. J. Educ. Dev. 2014, 4, 73. [Google Scholar] [CrossRef] [Green Version]
- Haywood, X.; Pienaar, A.E. Long-term influences of stunting, being underweight, and thinness on the academic performance of primary school girls: The NW-child study. Int. J. Environ. Res. Public Health 2021, 18, 8973. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, J.; Lang, C.; Du Randt, R.; Gresse, A.; Long, K.Z.; Ludyga, S.; Müller, I.; Nqweniso, S.; Pühse, U.; Utzinger, J.; et al. Prevalence of stunting and relationship between stunting and associated risk factors with academic achievement and cognitive function: A cross-sectional study with South African primary school children. Int. J. Environ. Res. Public Health 2021, 18, 4218. [Google Scholar] [CrossRef]
- South African Government. What is the National School Nutrition Programme (NSNP)? Available online: https://www.gov.za/faq/education/what-national-school-nutrition-programme-nsnp (accessed on 26 May 2022).
- Said-Mohamed, R.; Micklesfield, L.K.; Pettifor, J.M.; Norris, S.A. Has the prevalence of stunting in South African children changed in 40 years? A systematic review. BMC Public Health 2015, 15, 534. [Google Scholar] [CrossRef] [Green Version]
- Vorster, H.H.; Kruger, A.; Margetts, B.M. The nutrition transition in Africa: Can it be steered into a more positive direction? Nutrients 2011, 3, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, H.; Roser, M. Micronutrient Deficiency. Available online: https://ourworldindata.org/micronutrient-deficiency (accessed on 17 January 2022).
- UNICEF. The State of the World’s Children 2019. Children, Food and Nutrition: Growing Well in a Changing World; UNICEF: New York, NY, USA, 2019; Available online: https://www.unicef.org/reports/state-of-worlds-children-2019 (accessed on 24 April 2022).
- Bailey, R.L.; West, K.P.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef]
- Roberts, M.; Tolar-Peterson, T.; Reynolds, A.; Wall, C.; Reeder, N.; Rico Mendez, G. The effects of nutritional interventions on the cognitive development of preschool-age children: A systematic review. Nutrients 2022, 14, 532. [Google Scholar] [CrossRef]
- Black, M.M.; Fernandez-Rao, S.; Nair, K.M.; Balakrishna, N.; Tilton, N.; Radhakrishna, K.V.; Ravinder, P.; Harding, K.B.; Reinhart, G.; Yimgang, D.P.; et al. A randomized multiple micronutrient powder point-of-use fortification trial implemented in indian preschools increases expressive language and reduces anemia and iron deficiency. J. Nutr. 2021, 151, 2029–2042. [Google Scholar] [CrossRef]
- Roberts, S.B.; Franceschini, M.A.; Silver, R.E.; Taylor, S.F.; de Sa, A.B.; Có, R.; Sonco, A.; Krauss, A.; Taetzsch, A.; Webb, P.; et al. Effects of food supplementation on cognitive function, cerebral blood flow, and nutritional status in young children at risk of undernutrition: Randomized controlled trial. BMJ 2020, 370, m2397. [Google Scholar] [CrossRef] [PubMed]
- Best, C.; Neufingerl, N.; Del Rosso, J.M.; Transler, C.; van den Briel, T.; Osendarp, S. Can multi-micronutrient food fortification improve the micronutrient status, growth, health, and cognition of schoolchildren? A systematic review. Nutr. Rev. 2011, 69, 186–204. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/handle/10665/272722 (accessed on 24 April 2022).
- Jago, R.; Salway, R.; Emm-Collison, L.; Sebire, S.J.; Thompson, J.L.; Lawlor, D.A. Association of BMI category with change in children’s physical activity between ages 6 and 11 years: A longitudinal study. Int. J. Obes. 2020, 44, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludyga, S.; Gerber, M.; Pühse, U.; Looser, V.N.; Kamijo, K. Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nat. Hum. Behav. 2020, 4, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Gall, S.; Adams, L.; Joubert, N.; Ludyga, S.; Muller, I.; Nqweniso, S.; Puhse, U.; du Randt, R.; Seelig, H.; Smith, D.; et al. Effect of a 20-week physical activity intervention on selective attention and academic performance in children living in disadvantaged neighborhoods: A cluster randomized control trial. PLoS ONE 2018, 13, e0206908. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Hormazábal-Aguayo, I.; Fernández-Vergara, O.; González-Calderón, N.; Russell-Guzmán, J.; Vicencio-Rojas, F.; Chacana-Cañas, C.; Ramírez-Vélez, R. A before-school physical activity intervention to improve cognitive parameters in children: The active-start study. Scand. J. Med. Sci. Sports 2020, 30, 108–116. [Google Scholar] [CrossRef]
- Takehara, K.; Togoobaatar, G.; Kikuchi, A.; Lkhagvasuren, G.; Lkhagvasuren, A.; Aoki, A.; Fukuie, T.; Shagdar, B.-E.; Suwabe, K.; Mikami, M.; et al. Exercise intervention for academic achievement among children: A randomized controlled trial. Pediatrics 2021, 148, e2021052808. [Google Scholar] [CrossRef]
- Meli, A.M.; Ali, A.; Mhd Jalil, A.M.; Mohd Yusof, H.; Tan, M.M.C. Effects of physical activity and micronutrients on cognitive performance in children aged 6 to 11 years: A systematic review and meta-analysis of randomized controlled trials. Medicina 2021, 58, 57. [Google Scholar] [CrossRef]
- Fosco, W.D.; Hawk, L.W.; Colder, C.R.; Meisel, S.N.; Lengua, L.J. The development of inhibitory control in adolescence and prospective relations with delinquency. J. Adolesc. 2019, 76, 37–47. [Google Scholar] [CrossRef]
- Gerber, M.; Ayekoe, S.A.; Beckmann, J.; Bonfoh, B.; Coulibaly, J.T.; Daouda, D.; du Randt, R.; Finda, L.; Gall, S.; Mollel, G.J.; et al. Effects of school-based physical activity and multi-micronutrient supplementation intervention on growth, health and well-being of schoolchildren in three African countries: The Kaziafya cluster randomised controlled trial protocol with a 2 × 2 factorial design. Trials 2020, 21, 22. [Google Scholar] [CrossRef] [Green Version]
- Troesch, B.; van Stuijvenberg, M.E.; Smuts, C.M.; Kruger, H.S.; Biebinger, R.; Hurrell, R.F.; Baumgartner, J.; Zimmermann, M.B. A micronutrient powder with low doses of highly absorbable iron and zinc reduces iron and zinc deficiency and improves weight-for-age z-scores in South African children. J. Nutr. 2011, 141, 237–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using g*power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Ip, P.; Ho, F.K.W.; Rao, N.; Sun, J.; Young, M.E.; Chow, C.B.; Tso, W.; Hon, K.L. Impact of nutritional supplements on cognitive development of children in developing countries: A meta-analysis. Sci. Rep. 2017, 7, 10611. [Google Scholar] [CrossRef]
- Bell, M.L.; Kenward, M.G.; Fairclough, D.L.; Horton, N.J. Differential dropout and bias in randomised controlled trials: When it matters and when it may not. BMJ 2013, 346, e8668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Onis, M. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Schirmbeck, K.; Rao, N.; Maehler, C. Similarities and differences across countries in the development of executive functions in children: A systematic review. Inf. Child. Dev. 2020, 29, e2164. [Google Scholar] [CrossRef] [Green Version]
- Taljaard, C.; Covic, N.M.; van Graan, A.E.; Kruger, H.S.; Smuts, C.M.; Baumgartner, J.; Kvalsvig, J.D.; Wright, H.H.; van Stuijvenberg, M.E.; Jerling, J.C. Effects of a multi-micronutrient-fortified beverage, with and without sugar, on growth and cognition in South African schoolchildren: A randomised, double-blind, controlled intervention. Br. J. Nutr. 2013, 110, 2271–2284. [Google Scholar] [CrossRef] [Green Version]
- Kromydas, T.; Campbell, M.; Chambers, S.; Boon, M.H.; Pearce, A.; Wells, V.; Craig, P. The effect of school summer holidays on inequalities in children and young people’s mental health and cognitive ability in the UK using data from the millennium cohort study. BMC Public Health 2022, 22, 154. [Google Scholar] [CrossRef]
- Martucci, M.; Conte, M.; Bucci, L.; Giampieri, E.; Fabbri, C.; Palmas, M.G.; Izzi, M.; Salvioli, S.; Zambrini, A.V.; Orsi, C.; et al. Twelve-week daily consumption of ad hoc fortified milk with ω-3, D, and group B vitamins has a positive impact on inflammaging parameters: A randomized cross-over trial. Nutrients 2020, 12, 3580. [Google Scholar] [CrossRef]
- Ogunlade, A.O.; Kruger, H.S.; Jerling, J.C.; Smuts, C.M.; Covic, N.; Hanekom, S.M.; Mamabolo, R.L.; Kvalsvig, J. Point-of-use micronutrient fortification: Lessons learned in implementing a preschool-based pilot trial in South Africa. Int. J. Food Sci. Nutr. 2011, 62, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Long, K.Z.; Beckmann, J.; Lang, C.; Seelig, H.; Nqweniso, S.; Probst-Hensch, N.; Müller, I.; Pühse, U.; Steinmann, P.; du Randt, R.; et al. Impact of a school-based health intervention program on body composition among South African primary schoolchildren: Results from the Kaziafya cluster-randomized controlled trial. BMC Med. 2022, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- MAL-ED Network Investigators. Early childhood cognitive development is affected by interactions among illness, diet, enteropathogens and the home environment: Findings from the MAL-ED birth cohort study. BMJ Glob. Health 2018, 3, e000752. [Google Scholar] [CrossRef] [PubMed]
- Sania, A.; Sudfeld, C.R.; Danaei, G.; Fink, G.; McCoy, D.C.; Zhu, Z.; Fawzi, M.C.S.; Akman, M.; Arifeen, S.E.; Barros, A.J.D.; et al. Early life risk factors of motor, cognitive and language development: A pooled analysis of studies from low/middle-income countries. BMJ Open 2019, 9, e026449. [Google Scholar] [CrossRef] [Green Version]
- Shisana, O.; Labadarios, D.; Rehle, T.; Simbayi, L.; Zuma, K.; Dhansay, A.; Reddy, P.; Parker, W.; Hoosain, E.; Naidoo, P.; et al. South African National Health and Nutrition Examination Survey (SANHANES-1); HSRC Press: Cape Town, South Africa, 2014; Available online: http://www.hsrc.ac.za/en/research-data/view/6493 (accessed on 24 April 2022).
- Olivier, L.; Curfs, L.M.G.; Viljoen, D.L. Fetal alcohol spectrum disorders: Prevalence rates in South Africa. S. Afr. Med. J. 2016, 106, S103. [Google Scholar] [CrossRef] [Green Version]
- Rochat, T.J.; Houle, B.; Stein, A.; Mitchell, J.; Bland, R.M. Maternal alcohol use and children’s emotional and cognitive outcomes in rural South Africa. S. Afr. Med. J. 2019, 109, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Kar, B.R.; Rao, S.L.; Chandramouli, B.A. Cognitive development in children with chronic protein energy malnutrition. Behav. Brain Funct. 2008, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- De Villiers, A.; Steyn, N.P.; Draper, C.E.; Hill, J.; Gwebushe, N.; Lambert, E.V.; Lombard, C. Primary school children’s nutrition knowledge, self-efficacy, and behavior, after a three-year healthy lifestyle intervention (healthkick). Ethn. Dis. 2016, 26, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, R.; Coopoo, Y.; Lambert, E.V.; Draper, C. Impact of a primary school-based nutrition and physical activity intervention on learners in KwaZulu-Natal, South Africa: A pilot study. S. Afr. J. Sports Med. 2009, 21, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Ludyga, S.; Gerber, M.; Herrmann, C.; Brand, S.; Pühse, U. Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents. Trends Neurosci. Educ. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Pesce, C.; Vazou, S.; Benzing, V.; Álvarez-Bueno, C.; Anzeneder, S.; Mavilidi, M.F.; Leone, L.; Schmidt, M. Effects of chronic physical activity on cognition across the lifespan: A systematic meta-review of randomized controlled trials and realist synthesis of contextualized mechanisms. Int. Rev. Sport Exerc. 2021, 14, 1–39. [Google Scholar] [CrossRef]
- Kristjansson, E.A.; Robinson, V.; Petticrew, M.; MacDonald, B.; Krasevec, J.; Janzen, L.; Greenhalgh, T.; Wells, G.; MacGowan, J.; Farmer, A.; et al. School feeding for improving the physical and psychosocial health of disadvantaged elementary school children. Cochrane Database Syst. Rev. 2007, 1, CD004676. [Google Scholar] [CrossRef] [Green Version]
- Adom, T.; De Villiers, A.; Puoane, T.; Kengne, A.P. School-based interventions targeting nutrition and physical activity, and body weight status of African children: A systematic review. Nutrients 2019, 12, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Intervention Group | ||||||
---|---|---|---|---|---|---|
Outcome Variables | Overall (n = 932) | PA + MMNS (n = 198) | PA + Placebo (n = 257) | MMNS (n = 253) | Placebo (n = 224) | p-Value |
Participants characteristics | ||||||
Age, y, M (SD) | 8.42 (1.94) | 8.5 (1.22) | 8.80 (2.95) | 8.28 (1.47) | 8.08 (1.29) | <0.001 * |
Sex, girls, n (%) | 458 (49.1) | 105 (53.0) | 136 (52.9) | 119 (47.0) | 98 (43.8) | 0.126 |
Anthropometric measure | ||||||
Normal weight, n (%) | 568 (73.6) | 112 (67.5) | 146 (73.0) | 154 (73.3) | 156 (79.6) | 0.901 |
Stunting (HAZ < −2), n (%) | 73 (9.5) | 19 (11.4) | 20 (10.0) | 20 (9.5) | 14 (7.1) | 0.901 |
Overweight/obese (BAZ > 1), n (%) | 131 (17.0) | 35 (21.1) | 34 (17.0) | 36 (17.1) | 26 (13.3) | 0.901 |
Underweight (WAZ < −2), n (%) | 62 (6.7) | 13 (21.0) | 21 (33.9) | 15 (24.2) | 13 (21.0) | 1.000 |
Cognitive performance | ||||||
Accuracy, congruent, (%/100), M (SD) | 0.94 (0.10) | 0.94 (0.08) | 0.94 (0.09) | 0.94 (0.09) | 0.92 (0.12) | 0.206 |
Accuracy, incongruent, (%/100), M (SD) | 0.86 (0.18) | 0.87 (0.18) | 0.88 (0.17) | 0.87 (0.16) | 0.83 (0.22) | 0.073 |
Reaction time, congruent, ms, M (SD) | 1170.16 (236.40) | 1181.31 (217.88) | 1148.82 (241.41) | 1161.84 (229.74) | 1194.19 (252.06) | 0.301 |
Reaction time, incongruent, ms, M (SD) | 1263.76 (264.64) | 1273.67 (255.09) | 1243.08 (257.03) | 1259.07 (268.16) | 1284.29 (277.16) | 0.468 |
Academic achievement | ||||||
End of the year results, M (SD) | 4.65 (1.23) | 4.58 (1.29) | 4.79 (1.31) | 4.76 (1.24) | 4.41 (1.02) | 0.001 * |
Language, M (SD) | 4.58 (1.27) | 4.54 (1.32) | 4.72 (1.38) | 4.70 (1.30) | 4.31 (1.02) | 0.001 * |
Mathematic, M (SD) | 4.71 (1.28) | 4.62 (1.37) | 4.86 (1.33) | 4.82 (1.28) | 4.51 (1.12) | 0.005 * |
Baseline | Post | Change Scores 1 | Intervention Effect 2 | ||
---|---|---|---|---|---|
M (SE) | M (SE) | M [95% CI] | Mean Difference (SE) | [95% CI] | |
Cognitive performance—information processing Accuracy, congruent (%/100) | |||||
PA + MMNS | 0.94 (0.01) | 0.97 (0.01) | 0.03 * [0.02; 0.04] | 0.00 (0.008) | [−0.01; 0.02] |
PA + Placebo | 0.94 (0.01) | 0.97 (0.01) | 0.03 * [0.01; 0.04] | −0.00 (0.007) | [−0.02; 0.01] |
MMNS | 0.94 (0.01) | 0.97 (0.01) | 0.03 * [0.02; 0.04] | −0.00 (0.007) | [−0.02; 0.01] |
Placebo | 0.92 (0.01) | 0.96 (0.01) | 0.04 * [0.02; 0.06] | − | − |
Reaction time, congruent (ms) | |||||
PA + MMNS | 1194.98 (33.10) | 1087.63 (33.10) | −107.35 * [−144.01; −70.70] | −4.94 (24–37) | [−54.67; 44.80] |
PA + Placebo | 1161.63 (43.16) | 1063.40 (43.16) | −98.23 * [−132.27; −64.18] | −3.13 (23.78) | [−51.85; 45.60] |
MMNS | 1164.86 (30.08) | 1088.99 (30.08) | −75.87 * [−109.50; −42.23] | 14.95 (23.63) | [−33.49; 63.38] |
Placebo | 1199.41 (26.22) | 1096.41 (26.22) | −102.85 * [−137.37; −68.33] | − | − |
Cognitive performance—inhibitory control | |||||
Accuracy, incongruent (%/100) | |||||
PA + MMNS | 0.86 (0.02) | 0.94 (0.02) | 0.08 * [0.05; 0.11] | 0.01 (0.016) | [−0.03; 0.04] |
PA + Placebo | 0.88 (0.02) | 0.93 (0.02) | 0.05 * [0.03; 0.08] | −0.01 (0.015) | [−0.05; 0.02] |
MMNS | 0.87 (0.02) | 0.93 (0.02) | 0.06 * [0.04; 0.09] | −0.01 (0.015) | [−0.04; 0.02] |
Placebo | 0.82 (0.02) | 0.92 (0.02) | 0.10 * [0.07; 0.13] | − | − |
Reaction time, incongruent (ms) | |||||
PA + MMNS | 1278.72 (25.99) | 1150.88 (25.94) | −127.84 * [−172.12; −83.56] | −22.51 (32.85) | [−89.51; 44.49] |
PA + Placebo | 1254.31 (41.84) | 1140.44 (41.84) | −113.87 * [−153.20; −74.55] | −16.46 (32.19) | [−82.33; 49.42] |
MMNS | 1260.19 (27.95) | 1161.55 (27.94) | −98.64 * [−139.20; −58.08] | −6.61 (32.00) | [−72.13; 58.91] |
Placebo | 1287.86 (26.14) | 1179.67 (26.07) | −108.19 * [−149.04; −67.34] | − | − |
Academic achievement End of year results | |||||
PA + MMNS | 4.39 (0.30) | 4.45 (0.30) | 0.06 [−0.14; 0.26] | −0.06 (0.20) | [−0.46; 0.34] |
PA + Placebo | 4.83 (0.13) | 4.49 (0.13) | −0.34 * [−0.59; −0.09] | −0.31 (0.19) | [−0.71; 0.08] |
MMNS | 4.72 (0.18) | 4.07 (0.18) | −0.65 * [−0.85; −0.45] | −0.72 (0.19) * | [−1.11; −0.33] |
Placebo | 4.39 (0.14) | 4.61 (0.14) | 0.23 * [0.03; 0.40] | − | − |
Language | |||||
PA + MMNS | 4.33 (0.35) | 4.45 (0.35) | 0.33 [0.09; 0.56] | 0.04 (0.18) | [−0.34; 0.41] |
PA + Placebo | 4.78 (0.15) | 4.42 (0.15) | −0.39 * [−0.06; −0.15] | −0.32 (0.18) | [−0.69; 0.05] |
MMNS | 4.66 (0.21) | 4.15 (0.21) | −0.63 * [−0.84; −0.43] | −0.55 (0.18) * | [−0.91; −0.18] |
Placebo | 4.28 (0.18) | 4.47 (0.18) | 0.23 * [0.02;0.44] | − | − |
Mathematics | |||||
PA + MMNS | 4.46 (0.26) | 4.46 (0.26) | 0.01 [−0.23; 0.22] | −0.15 (0.28) | [−0.71; 0.42] |
PA + Placebo | 4.88 (0.12) | 4.56 (0.12) | −0.32 * [−0.57; −0.06] | −0.28 (0.28) | [−0.84; 0.28] |
MMNS | 4.88 (0.16) | 3.99 (0.16) | −0.79 * [−1.00; −0.57] | −0.87 (0.28) * | [−1.43; −0.31] |
Placebo | 4.51 (0.12) | 4.75 (0.12) | 0.24 * [0.03; 0.45] | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckmann, J.; Nqweniso, S.; Ludyga, S.; du Randt, R.; Gresse, A.; Long, K.Z.; Nienaber, M.; Seelig, H.; Pühse, U.; Steinmann, P.; et al. Evaluation of a Physical Activity and Multi-Micronutrient Intervention on Cognitive and Academic Performance in South African Primary Schoolchildren. Nutrients 2022, 14, 2609. https://doi.org/10.3390/nu14132609
Beckmann J, Nqweniso S, Ludyga S, du Randt R, Gresse A, Long KZ, Nienaber M, Seelig H, Pühse U, Steinmann P, et al. Evaluation of a Physical Activity and Multi-Micronutrient Intervention on Cognitive and Academic Performance in South African Primary Schoolchildren. Nutrients. 2022; 14(13):2609. https://doi.org/10.3390/nu14132609
Chicago/Turabian StyleBeckmann, Johanna, Siphesihle Nqweniso, Sebastian Ludyga, Rosa du Randt, Annelie Gresse, Kurt Z. Long, Madeleine Nienaber, Harald Seelig, Uwe Pühse, Peter Steinmann, and et al. 2022. "Evaluation of a Physical Activity and Multi-Micronutrient Intervention on Cognitive and Academic Performance in South African Primary Schoolchildren" Nutrients 14, no. 13: 2609. https://doi.org/10.3390/nu14132609
APA StyleBeckmann, J., Nqweniso, S., Ludyga, S., du Randt, R., Gresse, A., Long, K. Z., Nienaber, M., Seelig, H., Pühse, U., Steinmann, P., Utzinger, J., Walter, C., Gerber, M., & Lang, C. (2022). Evaluation of a Physical Activity and Multi-Micronutrient Intervention on Cognitive and Academic Performance in South African Primary Schoolchildren. Nutrients, 14(13), 2609. https://doi.org/10.3390/nu14132609