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Abstract: Inflammatory bowel diseases, Crohn’s disease and ulcerative colitis, are life-long disorders
characterized by the chronic relapsing inflammation of the gastrointestinal tract with the intermittent
need for escalation treatment and, eventually, even surgery. The total proctocolectomy with ileal
pouch–anal anastomosis (IPAA) is the surgical intervention of choice in subjects affected by ulcerative
colitis (UC). Although IPAA provides satisfactory functional outcomes, it can be susceptible to some
complications, including pouchitis as the most common. Furthermore, 10–20% of the pouchitis may
develop into chronic pouchitis. The etiology of pouchitis is mostly unclear. However, the efficacy
of antibiotics in pouchitis suggests that the dysbiosis of the IPAA microbiota plays an important
role in its pathogenesis. We aimed to review the role of the microbiota in the pathogenesis and as a
target therapy in subjects who develop pouchitis after undergoing the surgical intervention of total
proctocolectomy with IPAA reconstruction.

Keywords: inflammatory bowel diseases; ileal pouch–anal anastomosis; microbiota;
dysbiosis; pouchitis

1. Introduction

In humans, a wide number of different microbial species are located in the bowel,
which hosts several trillion microbial cells [1]. This ensemble of microbial species is gener-
ally called gut microbiota [2]. There is a profound interplay between the gut microbiota
and the human biology [3]. Indeed, the gut microbiota is important for various physio-
logical functions such as eliciting immune maturation [4], defending against pathogens
colonization and overgrowth [5], influencing epithelial proliferation [6] and intestinal
vascular density [7], modifying bile acids in the large bowel [8], promoting metabolic
homeostasis [9] and hormone modulation [10], synthesizing vitamins [11] and neurotrans-
mitters [12], supplying energy [1], and regulating bone metabolism [13]. The intestinal
microbiota of a healthy subject is composed predominantly by Bacteroidetes and Firmicutes,
with also other smaller sections comprised by Actinobacteria, Proteobacteria, Verrucomicrobia,
methanogenic archaea, Eucarya, and various phages [1]. Modifications in the constitution
and function of gut microbes lead to dysbiosis [1], and several diseases are associated
with gut dysbiosis [1,14]. In particular, intestinal dysbiosis is an important feature of in-
flammatory bowel diseases (IBD) [14,15], playing a crucial role in the onset of the disease
in predisposed subjects [16]. Indeed, some important alterations of intestinal microbiota
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have been identified in IBD, including an underrepresentation of Firmicutes (in particular
Faecalibacterium prausnitzii) [17], Bacteroidetes, and Lactobacillus [16] with increased levels
of Proteobacteria [18]. IBD are life-long disorders characterized by the chronic relapsing
inflammation of the gastrointestinal tract [19,20] with the intermittent need for escalation
treatment, eventually requiring surgical intervention [21]. In particular, although decreas-
ing over time, subjects affected by UC still have a 5- and 10-year risk of colectomy of 7.0%
and 9.6%, respectively [22]. Indications for colectomy comprise refractory acute severe UC,
medically refractory disease, and colorectal cancer [19]. For these cases, restorative total
proctocolectomy with ileal pouch–anal anastomosis (IPAA) is the surgical intervention of
choice [19,23,24]. Although IPAA provides a good quality of life and satisfactory functional
outcomes [25,26], it can be subject to some complications, including pouchitis as the most
common [27]. Pouchitis is an active, non-specific, idiopathic inflammation of the IPAA
mucosa [28]. Approximately 25% of subjects develop pouchitis a year after IPAA with
an increasing trend that reaches up to 45% at 5 years [29]. Approximately 10–20% of the
pouchitis may also progress to chronic pouchitis, leading to antibiotic dependency or refrac-
toriness requiring immunosuppressive therapy [30]. Furthermore, pouchitis is a risk factor
for hospitalization [31] and pouch failure [32], which can occur in 5–10% of cases [33–35].
The etiology of pouchitis is mostly unclear. However, the efficacy of antibiotics in pouchitis
suggests that the IPAA-related dysbiosis of the microbiota could play an important role in
its pathogenesis [36–38]. We aimed to perform a comprehensive review on the role of the
microbiota in the pathogenesis and as a target therapy In subjects with ulcerative colitis
who develop pouchitis after undergoing total proctocolectomy with IPAA reconstruction.

2. Methods

We performed a literature search in the PubMed database. The key words used were:
“ileal pouch-anal anastomosis”, “pouchitis”, “microbiota”, and “dysbiosis”. Furthermore,
references of original articles and relevant reviews were screened to find further publications.

3. IPAA Microbiota Evolution over Time

Although derived from the small intestinal tissue, the microbiota of the IPAA changes
over time into a microbiota with a colonic profile [39–42]. These modifications can arise as
early as two months after surgery and achieve a more stable composition as the years go by
after the creation of the IPAA [40,42]. Clostridium coccoides, Clostridium leptum, Bacteroides
fragilis, Atopobium, E. coli, Klebsiella, Veillonella, Staphylococcus (coag-), and Enterobacter are
the more counted bacterial species in functional IPAA [40,41,43]. In particular, it seems
that the microbiota of healthy IPAAs try to recover to a composition comparable to that
observed prior to surgery [43], and it has been hypothesized that the presence of Veil-
lonella, Lachnospiraceae, Ruminococcus gnavus, and clostridial cluster IV (i.e., Faecalibacterium
prausnitzii) might be a marker of regularity of the IPAA flora [37,43,44]. Furthermore, a
comparison between the microbiota of IPAA in subjects with UC and subjects with familial
adenomatous polyposis (FAP), which exhibit a low incidence of pouch inflammation, might
help to understand the microbial families potentially implicated in the pathogenesis of
pouchitis [37]. Indeed, a higher presence of sulfate-reducing bacteria (SRB) in UC-IPAA
has been observed compared to FAP-IPAA [45,46]. SRB produce hydrogen-sulfide, which
inhibits butyrate oxidation and prevents its utilization by the intestinal epithelial cells,
potentially resulting in the damage of the mucosa of IPAA [37,46]. Other findings confirm
the presence of differences between UC-IPAA and FAP-IPAA observing less bacterial di-
versity, an increased proportion of Proteobacteria, and decreased levels of Bacteroidetes and
Faecalibacterium prausnitzii in the UC-IPAA group [47,48]. Table 1 shows the most common
microorganisms and the main differences between healthy adults, IBD patients, UC-IPAA,
and FAP-IPAA patients.
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Table 1. Most common microorganisms and main differences between healthy adults, IBD patients,
UC-IPAA, and FAP-IPAA patients.

Healthy Adults IBD UC-IPAA FAP-IPAA

Bacteroidetes * ↓ Bacteroidetes ↓ Bacteroidetes ↑ Bacteroidetes
Firmicutes * ↓ Firmicutes ↓ Firmicutes ↑ Firmicutes

Actinobacteria * ↓ Lactobacillus ↑ Proteobacteria ↓ Proteobacteria
Proteobacteria * ↑ Proteobacteria Presence of SRB Absence of SRB
Verrucomicrobia ↑ Enterobacteriaceae

Methanogenic archaea
Eucaria (i.e., yeasts)

* Representing about 90% of the bacterial phyla of the gut microbiota. IBD: inflammatory bowel disease; UC-IPAA:
ulcerative colitis–ileal pouch–anal anastomosis; FAP-IPAA: familial adenomatous polyposis–ileal pouch–anal
anastomosis; SRB: sulfate-reducing bacteria; ↓: reduced levels; ↑: increased levels.

4. IPAA Microbiota and Pouchitis

It has been shown that patients with IPAA experiencing pouchitis exhibit a lower
bacterial diversity [47,49–51] with an increased amount of aerobes and a decrease in
anaerobes [36,37]. In particular, subjects with pouchitis display decreased levels of Bac-
teroidetes [50,52,53], Lachnospiraceae [44,49], Ruminococcaceae [49], Streptococci [47,54], and
Faecalibacterium [49], while incremented levels of Enterobacteriaceae (including E.Coli) [47,49]
Fusobacterium [54,55], and Propionibacterium acnes [56] have been observed. Furthermore,
Lim et al. identified seventeen operational taxonomic units that were seen exclusively in
subjects with inflamed pouches including Desulfosporosinus, Leptospira, Microcystis, Methy-
lobacter, and Pseudoalteromonas [57], while Pawelka et al. observed that the presence of
Staphylococcus aureus correlated with a higher degree of chronic inflammation [58]. Ru-
minococcaceae and Lachnospiraceae have an important role in preserving the host’s health
due to their ability to hydrolyze starch and other sugars producing butyrate and other
short-chain fatty acids (SCFAs), which are considered the principal nutrients of the colonic
epithelial cells [59]. When pouchitis occurs, lower levels of SCFAs have been observed in
contrast to uninflamed IPAA [37,60], and antibiotic therapy during pouchitis is associated
with an increment of SCFAs [61]. Furthermore, Lachnospiraceae and Ruminococcaceae families
are the only few bacteria with the ability to produce secondary bile acids (deoxycholic
acid-DCA, lithocholic acid-LCA) through the 7α-hydroxylation of the primary bile acids
(PBAs). Indeed, lower levels of Ruminococcaceae and secondary bile acids (SBAs) have been
demonstrated in UC-IPAA patients in comparison to FAP-IPAA patients. These findings
could partially explain the role of dysbiosis in pouchitis as it is known that SBAs can reduce
both acute and chronic colitis in animal models and may be essential in preserving immune
homeostasis in the IPAA [48].

Another difference that has been observed between UC-IPAA and FAP-IPAA patients
is that the former group displays a higher presence of SRBs, which are known to reduce
butyrate oxidation and intestinal nutrients, potentially damaging the IPAA mucosa. Indeed,
SRBs have been linked to pouchitis [37,62]. The presence of SRBs may be due to the
degradation of sulfomucin by commensal bacteria, resulting in the production of free
sulfate and SRB colonization [37]. Additionally, in this case, treatment with antibiotics
during pouchitis is associated with a reduction in hydrogen sulfide and SRBs [62]. These
studies show that the microbiota undoubtedly plays a role in the inflammation of the IPAA.
However, future longitudinal studies in the same subjects could reduce the impact of other
factors on microbiota alteration (i.e., diet, drugs) [37,42]. Table 2 summarizes the studies
that investigated the microbiota changes in UC-IPAA patients with pouchitis.
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Table 2. Summary of the studies describing the alterations of the microbiota in UC-IPAA patients with pouchitis.

Authors Sample Size Bacterial Sequencing Platform Results

Tannock [44] 34 UC-IPAA (17 with
pouchitis), 14 FAP-IPAA

HTS of 16S rRNA genes (V1–V3 regions),
FISH, qPCR

FAP-IPAA and UC-IPAA with normal pouch were more biodiverse than UC-IPAA with pouchitis
(p < 0.0001) and displayed higher proportions of Lachnospiraceae (p < 0.05).

McLaughlin [47]
16 UC-IPAA (8 with pouchitis)

and 8 FAP-IPAA
(3 with pouchitis)

16S rRNA gene cloning and sequencing

Proteobacteria were increased (p = 0.019) while the Bacteroidetes were decreased (p = 0.001) in the
total UC-IPAA compared with the total FAP-IPAA. Faecalibacterium prausnitzii was detected in the
75% of FAP-IPAA and only in 25% in UC-IPAA (p = 0.029). The median SDI for all UC-IPAA was

2.61 compared to 3.2 for all FAP -IPAA (p = 0.004)

Sinha [48] 17 UC-IPAA (4 with pouchitis),
7 FAP-IPA LC-MS

UC-IPAA have reduced levels of lithocholic acid and deoxycholic acid (normally the most
abundant gut SBAs) and Ruminococcaceae (one of few taxa known to include SBA-producing
bacteria) compared to FAP-IPAA. SBA supplementation ameliorates inflammation in animal

models of colitis.

Reshef [49]
131 UC-IPAA (83 with

pouchitis and 10 with unstable
pouch behavior), 9 FAP-IPAA

16S rRNA gene amplicon pyrosequencing
SDI was higher in normal UC-IPAA compared with UC-IPAA with pouchitis. Faecalibacterium was
reduced in pouchitis compared to normal pouch (P 0.021). Lachnospiraceae and Ruminococcaceae

were significantly decreased in pouchitis compared to normal UC-IPAA and FAP-IPAA.

Tyler [50]
53 UC-IPAA (15 with pouchitis

and 19 with CDL), 18
FAP-IPAA

Pyrosequencing of the 16S rRNA V1-V3
hypervariable region

UC-IPAA had decreased microbial diversity compared to FAP-IPAA. Bacteroidetes were detected
less frequently in UC-IPAA with pouchitis and CDL (p < 0.0001) compared to FAP-IPAA and

UC-IPAA without pouchitis. Proteobacteria were detected more frequently in the inflammatory
groups (pouchitis and CDL) (p = 0.01)

Li [51] 19 UC-IPAA (8 with pouchitis),
16 healthy controls, 41 UC.

Amplification of the V3 region of the 16S rRNA
gene by the PCR technique

Healthy controls displayed a higher microbial biodiversity compared to UC-IPAA (p < 0.001).
UC-IPAA with pouchitis showed fewer Eubacterium rectale (a butyrate-producing bacteria) and
more Clostridium perfringens compared to UC-IPAA with normal pouch and healthy controls.

Zella [52] 12 UC-IPAA (9 with pouchitis),
7 FAP-IPAA

16S rDNA-based terminal restriction fragment
length polymorphism

UC-IPAA with pouchitis exhibited less Lactobacillus and Streptococcus compared to FAP-IPAA. On
the other hand, Bacteroidetes were higher in the FAP-IPAA compared to UC-IPAA with pouchitis

(p < 0.001).

Iwaya [53] 22 UC-IPAA (9 with pouchitis) Culture Bacteroidaceae, Bifidobacterium, and Lactobacilli were significantly lower in UC-IPAA with pouchitis
compared to UC-IPAA without pouchitis (p < 0.01, p < 0.001, and p < 0.05 respectively).

Komanduri [54] 20 UC-IPAA (5 with pouchitis),
13 healthy controls 16S rRNA–based LH-PCR Streptococci were associated with UC-IPAA without pouchitis and were lower in pouchitis.

Conversely, members of the Fusobacterium group were associated with pouchitis.

Petersen [55]
20 UC-IPAA (10 with

pouchitis), 30 healthy controls,
140 IBD

16S rDNA MiSeq sequencing (V3–V4 region)
Higher levels of Fusobacteria were found in UC-IPAA with a fecal calprotectin level >500 (p = 0.02).
UC-IPAA had a lower SDI compared to healthy controls and IBD. The SDI was not significantly

different between UC-IPAA with active and inactive inflammation (p = 0.74).
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Table 2. Cont.

Authors Sample Size Bacterial Sequencing Platform Results

Palmieri [56] 34 UC-IPAA (13 with
pouchitis), 19 healthy controls 16S rDNA MiSeq sequencing (V3–V4 region)

UC-IPAA (with or without pouchitis) had significantly lower bacterial diversity compared to
healthy controls. Faecalibacterium prausnitzii was more abundant in healthy controls than in the

total UC-IPAA. Propionibacterium acnes was significantly associated with pouchitis.

Lim [57] 20 UC-IPAA (5 with pouchitis) T-RFLP of 16S rDNA
Seventeen operational taxonomic units (OTU) were found exclusively in pouchitis; 11 of the

17 OTUs were entirely novel. The other six OTUs were identified as Pseudoalteromonas,
Desulfosporosinus, Methylobacter, Leptospira, uncultered proteobacterium, and Microcystis.

Pawełka [58] 47 UC-IPAA
(11 with pouchitis) Culture The presence of Staphylococcus aureus significantly correlated with a higher degree of

chronic inflammation.

De Preter [60]
22 UC-IPAA (15 with pouchitis,
5 excluded pouch), 17 healthy

controls

Butyrate oxidation: Biopsies incubation with 1
mM 14C-labeled Na-butyrate and measuring

the released 14CO2.

Butyrate oxidation in UC-IPAA with mild or active pouchitis was decreased compared with that
in normal ileum of healthy controls (p = 0.001) and in excluded/normal UC-IPAA (p = 0.005).

Sagar [61] 32 UC-IPAA
(10 with pouchitis)

Measurement of stool concentrations of SCFA
by gas–liquid chromatography

Stool concentrations of SCFA were lower in UC-IPAA with pouchitis compared to healthy
UC-IPAA (p < 0.01). Resolution of pouchitis after antibiotic treatment (6 week course of
metronidazole) was associated with an increment of SCFA stool concentration (p < 0.01).

Ohge [62] 45 UC-IPAA (19 with
pouchitis), 5 FAP-IPAA

Measurement of hydrogen sulfide by gas
chromatography. Serial tenfold dilutions of

fecal homogenates for enumerating
sulfate-reducing bacteria

FAP-IPAA produced significantly less hydrogen sulfide than nonantibiotic-treated UC-IPAA.
Sulfate-reducing bacteria were significantly higher in UC-IPAA with pouchitis compared to

UC-IPAA, which never experienced pouchitis. Sulfate-reducing bacterial count dropped with
antibiotic treatment.

FAP-IPAA: familial adenomatous polyposis–ileal pouch–anal anastomosis; CDL: Crohn’s disease like; FISH: fluorescence in situ hybridization; HTS: High-throughput sequencing; IBD:
inflammatory bowel diseases; LC-MS: liquid chromatography–mass spectrometry; LH-PCR: length heterogeneity polymerase chain reaction; qPCR: quantitative polymerase chain
reaction; SBA: secondary bile acids; SCFA: short chain fatty acids; SDI: Shannon Diversity Index; rDNA: ribosomal DNA; rRNA: ribosomal RNA; T-RFLP: terminal restriction fragment
length polymorphism; UC: ulcerative colitis; UC-IPAA: ulcerative colitis–ileal pouch–anal anastomosis.
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5. Microbiota as a Target for the Treatment of Pouchitis
5.1. Antibiotics

Antibiotics represent the mainstay for the treatment of pouchitis [63] as they can
induce remission by 74% in chronic pouchitis [64]. Ciprofloxacin and metronidazole
are the first-line recommended antibiotics, although the best modality of treatment is
still unclear [65]. A randomized clinical trial showed that both antibiotics produced a
reduction in the total Pouchitis Disease Activity Index (PDAI) score in patients with
acute pouchitis; however, ciprofloxacin produced a greater reduction in both symptom
score and endoscopic score with fewer adverse events compared to metronidazole (0%
vs. 33%, respectively) [66]. Furthermore, it has been shown that a combination of the
two antibiotics can be effective also in patients with refractory/recurrent pouchitis [67].
The mechanisms implicated in the pouch microbiota’s changes after antibiotic therapy
that are responsible for their favorable effects are not clearly understood [38]. In the
study of Gosselink et al., ciprofloxacin could eradicate pathogens that are significantly
increased during pouchitis (Clostridium perfringens, hemolytic Escherichia coli) while not
disrupting most of the anaerobic bacteria that contribute to the stability of the IPAA’s
flora [36]. Subsequently, Dubinsky et al. observed that the effectiveness of antibiotic
therapy in pouchitis may be ascribed to the establishment of an intestinal microbiota
with non-pathogenic, antibiotic-resistant bacteria with low inflammatory potential. This
newly established microbiota may prevent more aggressive inflammatory bacteria from
colonizing the pouch [68]. However, within three months after therapy discontinuation,
most subjects relapsed, requiring additional antibiotic treatment [68]. Indeed, 7–20%
of subjects that experience a first episode of pouchitis will eventually develop chronic
pouchitis [69]. Therefore, further interventions following treatment with antibiotics should
be contemplated (i.e., probiotics, diet) to support beneficial bacteria and prevent subsequent
colonization by pathogenic species [68].

5.2. Probiotics

Randomized placebo-controlled trials (RCTs) showed that a probiotic mixture of
Lactobacilli (four strains), Bifidobacteria (three strains), and Streptococcus thermophilus was ef-
fective in maintaining remission in subjects that suffered previous pouchitis. The treatment
was generally well tolerated without significant serious adverse events (only one patient
stopped medication complaining of abdominal cramps, vomiting, and diarrhoea) [70,71].
The same probiotic mixture led to increased fecal levels of lactobacilli, bifidobacteria, and
Streptococcus salivarius in comparison to patients treated with placebo (p < 0.001) [70]. Sim-
ilar findings were observed also in the RCT of Mimura et al. [71]. One of the potential
mechanisms of the beneficial effect of the probiotic mixture could be its ability to increase
tissue levels of the anti-inflammatory interleukin (IL)-10 and to reduce levels of tumor
necrosis factor (TNF)-α, interferon-γ, and IL-1α. IL-10 may increase the tolerance of the
intestinal immune system to resident pouch bacteria. Nevertheless, other mechanisms are
probably involved in the anti-inflammatory effects of probiotics [72]. Indeed, Persborn et al.
demonstrated that maintenance treatment with Ecologic 825 (another probiotic mixture
containing strains of Lactobacilli and Bifidobacterium) after induction therapy with antibiotics
restored the mucosal barrier to E.Coli in subjects with pouchitis [73].

Interestingly, some probiotics have been shown to be effective also as a prophylaxis
therapy after surgery, reducing the rate of the first episode of pouchitis [74,75]. There-
fore, some Authors suggest prescribing prophylaxis treatment with probiotics in subjects
with high-risk factors of pouchitis after surgery (i.e., primary sclerosing cholangitis and
extraintestinal manifestations) [69].

In addition to probiotics, other treatments have been studied to rebalance the intestinal
flora in patients with IPAA.
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5.3. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) has been shown to be a successful treat-
ment in other conditions of microbiota alteration, such as recurrent Clostridioides difficile
infection [76,77]. As a result, there is increasing interest in the use of FMT to treat pouchitis.
In the study of Kousgaard et al., FMT could increase the microbial diversity in subjects
with chronic pouchitis and obtain clinical remission in 33% of the patients at 6 months of
follow-up [78]. However, a recent systematic review observed that FMT seems ineffective in
treating chronic pouchitis [79]. Indeed, two recent randomized controlled trials observed a
low efficacy of FMT in chronic pouchitis. Interestingly, the majority of the relapses occurred
during or shortly after the completion of FMT [80,81]. Overall, only a few studies have
explored the role of FMT in chronic pouchitis so far, exhibiting some pitfalls such as the
heterogeneity in study design and type of fecal transplant delivery [38]. Future specifically
dedicated RCTs with large sample-sizes and standardized protocols (i.e., disease defini-
tions, type of FMT delivery, dose, or duration) will help to ensure reproducible data and
provide higher quality of evidence on the real efficacy of FMT in the treatment of chronic
pouchitis [82].

5.4. Diet and Prebiotics

Finally, it is important to keep in mind that diet and prebiotics may also help in modi-
fying the gut microbial composition [83,84]. Prebiotics are substrates that are selectively
utilized by host microorganisms conferring health benefits [85]. Welters et al. showed that
three weeks of dietary supplementation with 24g of inulin increased IPAA butyrate concen-
tration and reduced the inflammation of the pouch mucosa with a significant decrease in
both endoscopic and histologic PDAI scores [86]. Fruit consumption may also be protective
against pouch inflammation. Ianco et al. observed that a decreased consumption in fruit
and vegetables may be associated with pouchitis [87]. Accordingly, in the prospective study
of Godny et al. the reduction in fruit consumption over time was associated with pouchitis
recurrence and with reduced microbial diversity. Interestingly, the consumption of 1.5 or
more servings/day of fruit was associated with a reduced risk of developing pouchitis in
the following year [88]. Fruits are a source of dietary fibers that can be fermented in SCFA
and can increase the levels of fiber-degrading bacteria (i.e., Faecalibacterium), balancing the
mucus-degrading bacteria and supporting the intestinal barrier function [88]. Dietary inter-
vention in chronic pouchitis has also been investigated by McLaughlin et al. In particular,
treatment with 28 days of an exclusive elemental diet improved the median clinical PDAI
and changed the microbiota with a trend towards improved levels of Clostridium Coccoides
and Eubacterium rectale, both producers of butyrate. However, there was no reduction in
endoscopic or histologic inflammation, and the study comprised a small sample size, so
the authors did not recommend an elemental diet as a therapy for pouchitis but only for
the temporary reduction of symptoms [89]. Based on this evidence, fruits and vegetables
seem to have protective effects against pouchitis, and physicians should encourage pouch
patients to include them in their daily diet. The abundant supply of micronutrients in
fruits and vegetables may play a role by modulating the microbiota and exercising anti-
inflammatory effects [90]. In the future, more interventional trials are needed to clarify the
role and the impact of diet as a treatment and prophylaxis of pouchitis. Figure 1 and Table 3
summarizes the possible therapeutic interventions involving microbiota for the treatment
of pouchitis.



Nutrients 2022, 14, 2610 8 of 15Nutrients 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 1. Interventions in the microbiota for the treatment of pouchitis. Antibiotic treatment (i.e., 
ciprofloxacin) may reduce the aerobic and pathogen bacteria (which are increased during pouchitis) 
while leaving undisturbed the larger part of the anaerobic flora, which is present in high numbers 
in subjects free of pouchitis [36]. Treatment with probiotics can increase fecal concentrations of an-
aerobes [70,75] and can decrease the levels of the Escherichia subgroup [75]. Pouch microbial diver-
sity is also positively correlated with fruit consumption. In addition, the intake of fruit is positively 
correlated with the presence of Faecalibacterium and Lachnospira [88]. Finally, the treatment of 
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Both antibiotics significantly reduced total PDAI 
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loxacin group did not experience AEs, while the 
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Mimura [67] Observational 

Ciprofloxacin (500  
mg b.i.d) plus metro-
nidazole (400 or 500 
mg b.i.d) for 28 days 

Remission was obtained in 82% of cases of re-
fractory or recurrent pouchitis. Median PDAI 
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Dubinsky [68] Observational 

Ciprofloxacin (500 mg 
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In total, 79% of the antibiotic-treated subjects 
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Figure 1. Interventions in the microbiota for the treatment of pouchitis. Antibiotic treatment (i.e.,
ciprofloxacin) may reduce the aerobic and pathogen bacteria (which are increased during pouchitis)
while leaving undisturbed the larger part of the anaerobic flora, which is present in high numbers in
subjects free of pouchitis [36]. Treatment with probiotics can increase fecal concentrations of anaer-
obes [70,75] and can decrease the levels of the Escherichia subgroup [75]. Pouch microbial diversity
is also positively correlated with fruit consumption. In addition, the intake of fruit is positively
correlated with the presence of Faecalibacterium and Lachnospira [88]. Finally, the treatment of
pouchitis with fecal microbiota transplantation may increase the microbial diversity with a switch
towards the donor’s microbiota [78].
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Table 3. Studies evaluating the interventions on the microbiota as a therapeutic target of pouchitis.

Authors Study Design Intervention Results

Gosselink [36] Observational Ciprofloxacin (daily, 2 × 500 mg) or Metronidazole (daily, 3 ×
500 mg) for two weeks

In subjects with pouchitis, metronidazole eradicated the anaerobic flora, including C. perfringens but
not E. coli. Ciprofloxacin eradicated C. perfringens and E. coli, while the large part of the anaerobic flora

was not changed. Ciprofloxacin produced a larger reduction in the PDAI score compared to
metronidazole (p = 0.04).

Shen [66] RCT Ciprofloxacin (1000 mg/d) vs. Metronidazole (20 mg/kg/d)
for two weeks

Both antibiotics significantly reduced total PDAI score in subjects with acute pouchitis. Ciprofloxacin
produced a greater total PDAI reduction than metronidazole (6.9 vs. 3.8, p = 0.002). Ciprofloxacin group

did not experience AEs, while the metronidazole group experienced AEs in 33% of cases.

Mimura [67] Observational Ciprofloxacin (500 mg b.i.d) plus metronidazole (400 or
500 mg b.i.d) for 28 days

Remission was obtained in 82% of cases of refractory or recurrent pouchitis. Median PDAI score was
reduced from 12 to 3 (p < 0.0001).

Dubinsky [68] Observational Ciprofloxacin (500 mg b.i.d) plus Metronidazole (500 mg b.i.d)
(two weeks courses or more in case of relapse)

In total, 79% of the antibiotic-treated subjects achieved clinical response. Antibiotics established an
antibiotic-resistant microbiome with low inflammatory characteristics, which may confer resistance

against colonization by bacteria that stimulate inflammation.

Gionchetti [70] RCT
Probiotic mixture (6 g/day) of lactobacilli (4 strains),

bifidobacterial (3 strains), and Streptococcus thermophilus vs.
placebo for 9 months

All subjects with chronic pouchitis were in clinical and endoscopic remission at the start of the study.
During the follow-up, 15% had relapses in the probiotic group compared with 100% in the placebo

group (p < 0.001). Fecal concentration of lactobacilli, bifidobacteria, and S. thermophilus increased from
baseline levels only in the probiotic group (p < 0.01).

Mimura [71] RCT
Probiotic mixture (6 g/day) of lactobacilli (4 strains),

bifidobacterial (3 strains), and Streptococcus thermophilus vs.
placebo for 12 months or until relapse

Patients with refractory or recurrent pouchitis that achieved remission with a four week course of
ciprofloxacin plus metronidazole were included at the start of the study. The cumulative maintained

remission rate over the 12 months period was 85% in the probiotic group and 6% in the placebo group
(p < 0.0001).

Gionchetti [74] RCT
Probiotic mixture (3 g/day) of lactobacilli (4 strains),

bifidobacterial (3 strains), and Streptococcus thermophilus vs.
placebo for one year

The study included subjects with IPAA and started within 1 week after ileostomy closure. During the
follow-up, 10% of patients in the probiotic group experienced an episode of acute pouchitis compared

with the 40% of patients treated with placebo (p < 0.05).

Yasueda [75] RCT Probiotic (Clostridium butyricum MIYAIRI) (daily, 60 mg × 3)
vs. placebo for 24 months.

The subjects included had not developed previous pouchitis after surgery; 11% in the probiotic group
and 50% in the placebo group developed pouchitis (p = 0.07).

Kousgaard [78] Observational Fecal microbiota transplantation by enemas (20 g) for
14 consecutive days

Patients with chronic pouchitis were included, and 44% of patients were in clinical remission at 30-day
of follow-up; 33% were in remission until 6 months of follow-up. FMT increased microbial diversity in

67% of subjects.

Herfarth [80] RCT Fecal microbiota transplantation by both enemas (24 g) and
oral capsules (4.2 g) vs. placebo

Patients with antibiotic-dependent pouchitis were enrolled. The study was terminated prematurely due
to a small clinical remission rate (6 subjects included). Only 1 patient (17%) clinically responded to FMT

and remained off antibiotics for the study period of 16 weeks.

Karjalainen [81] RCT Fecal microbiota transplantation by endoscopy (30 g) and via
transanal catheter (30 g) vs. placebo

Patients with chronic pouchitis were included and were followed up for 52 weeks; 34.6% patients in the
FMT group and 30.8% in the placebo group relapsed during the follow-up (p = 0.183)

Welters [86] RCT 24 g of inulin daily for three weeks vs. placebo Butyrate concentrations were significantly higher in the intervention group compared to placebo. The
endoscopic and histologic scores were lower in the inulin group compared with placebo.
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Table 3. Cont.

Authors Study Design Intervention Results

Ianco [87] Observational Diet Subjects with normal pouch consumed more fruits than subjects with pouchitis (3.6 s/d vs 1.8 s/d,
p = 0.015) and tended to consume more vegetables (4.5 s/d vs 3.3 s/d, p = 0.06).

Godny [88] Observational Diet
Subjects in the lower tertile of fruit consumption (<1.45 s/d) had a higher rate of pouchitis within 1 year

of follow-up, compared with patients in the upper two tertiles (30.8% vs 3.8%, p = 0.03). Fruit
consumption was associated with an improved microbial diversity (p = 0.003).

McLaughlin [89] Observational Elemental diet (E028, SHS, UK) for 28 days Elemental diet reduced the PDAI symptom score (from 4 to 1, p = 0.039). There was no reduction in
endoscopic or histological signs of inflammation.

FMT: fecal microbiota transplantation; PDAI: pouchitis disease activity index; AE: adverse event; RCT: randomized clinical trial; s/d: servings/day.
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6. Conclusions

The pathogenesis of pouchitis remains mostly unclear. However, evidence has shown
that the microbiota plays a fundamental role and that dysbiosis with a reduced microbial
diversity is associated with pouch inflammation. Nevertheless, a clear understanding of
whether inflammation causes an alteration in IPAA microbiota or vice versa is still lacking.
However, active interventions based on rebalancing the pouch microbiota are currently
the key strategy for the treatment of pouchitis. Antibiotics represent the gold standard
treatment for inducing remission. However, due to the high rate of relapse and the risk of
developing chronic pouchitis after a first episode of acute pouchitis, prophylactic treatment
with probiotics in order to maintain remission after antibiotics treatment appears to be a
successful strategy. High-evidence studies are warranted to understand the role of FMT
and diet intervention to maintain the remission of the disease.
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