Intestinal Morphometric Changes Induced by a Western-Style Diet in Wistar Rats and GSPE Counter-Regulatory Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proanthocyanidin Extract
2.2. Animal Models
2.3. Histological Analysis of Intestinal Sections and Histopathology Inflammatory Scoring
2.4. Statistical Analysis
3. Results
3.1. Cafeteria Diet Modified Epithelium Morphology In Vivo
3.2. Cafeteria Diet Did Not Modify Goblet Cell Content
3.3. Correlations of Morphological Parameters and Metabolic Parameters in Wistar Rats
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Azaïs-Braesco, V.; Sluik, D.; Maillot, M.; Kok, F.; Moreno, L.A. A review of total & added sugar intakes and dietary sources in Europe. Nutr. J. 2017, 16, 6. [Google Scholar] [PubMed] [Green Version]
- Marriott, B.P.; Hunt, K.J.; Malek, A.M.; Newman, J.C. Trends in intake of energy and total sugar from sugar-sweetened beverages in the United States among children and adults, NHANES 2003–2016. Nutrients 2019, 11, 2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, G.A.; Popkin, B.M. Dietary sugar and body weight: Have we reached a crisis in the epidemic of obesity and diabetes? Health be damned! Pour on the sugar. Diabetes Care 2014, 37, 950–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Gil Cardoso, K.; Ginés, I.; Pinent, M.; Ardévol, A.; Blay, M.; Terra, X. The co-administration of proanthocyanidins and an obesogenic diet prevents the increase in intestinal permeability and metabolic endotoxemia derived to the diet. J. Nutr. Biochem. 2018, 62, 35–42. [Google Scholar] [CrossRef]
- Ginés, I.; Gil-Cardoso, K.; Serrano, J.; Casanova-Martí, À.; Blay, M.; Pinent, M.; Ardévol, A.; Terra, X. Effects of an Intermittent Grape-Seed Proanthocyanidin (GSPE) Treatment on a Cafeteria Diet Obesogenic Challenge in Rats. Nutrients 2018, 10, 315. [Google Scholar] [CrossRef] [Green Version]
- González-Quilen, C.; Gil-Cardoso, K.; Ginés, I.; Beltrán-Debón, R.; Pinent, M.; Ardévol, A.; Terra, X.; Blay, M.T. Grape-Seed Proanthocyanidins are Able to Reverse Intestinal Dysfunction and Metabolic Endotoxemia Induced by a Cafeteria Diet in Wistar Rats. Nutrients 2019, 11, 979. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xu, M.; Niu, Q.; Xu, S.; Ding, Y.; Yan, Y.; Guo, S.; Li, F. Efficacy of Procyanidins against In Vivo Cellular Oxidative Damage: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0139455. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pérez, C.; García-Villanova, B.; Guerra-Hernández, E.; Verardo, V. Grape Seeds Proanthocyanidins: An Overview of In Vivo Bioactivity in Animal Models. Nutrients 2019, 11, 2435. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.A.; O’Donnell, R.; Shurpin, M.; Kordunova, D. Epicatechin, procyanidins, cocoa, and appetite: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Valls, R.M.; Llauradó, E.; Fernández-Castillejo, S.; Puiggrós, F.; Solà, R.; Arola, L.; Pedret, A. Effects of low molecular weight procyanidin rich extract from french maritime pine bark on cardiovascular disease risk factors in stage-1 hypertensive subjects: Randomized, double-blind, crossover, placebo-controlled intervention trial. Phytomedicine 2016, 23, 1451–1461. [Google Scholar] [CrossRef]
- Shoji, T.; Yamada, M.; Miura, T.; Nagashima, K.; Ogura, K.; Inagaki, N.; Maeda-Yamamoto, M. Chronic administration of apple polyphenols ameliorates hyperglycaemia in high-normal and borderline subjects: A randomised, placebo-controlled trial. Diabetes Re. Clin. Pract. 2017, 129, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Schumacher, U.; Ronaasen, V.; Coates, M. Rat intestinal mucosal responses to a microbial flora and different diets. Gut 1995, 36, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Arola, L.; Muguerza, B.; Arola-Arnal, A. Gender-related similarities and differences in the body distribution of grape seed flavanols in rats. Mol. Nutr. Food Res. 2016, 60, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Kisielinski, K.; Willis, S.; Prescher, A.; Klosterhalfen, B.; Schumpelick, V. A simple new method to calculate small intestine absorptive surface in the rat. Clin. Exp. Med. 2022, 2, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Gil-Cardoso, K.; Ginés, I.; Pinent, M.; Ardévol, A.; Terra, X.; Blay, M. A cafeteria diet triggers intestinal inflammation and oxidative stress in obese rats. Br. J. Nutr. 2017, 117, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Gil-Cardoso, K.; Ginés, I.; Pinent, M.; Ardévol, A.; Arola, L.; Blay, M.; Terra, X. Chronic supplementation with dietary proanthocyanidins protects from diet-induced intestinal alterations in obese rats. Mol. Nutr. Food Res. 2017, 61, 1601039. [Google Scholar] [CrossRef]
- Teshfam, M.; Saeidi, J.; Zarei, A. Morphological and Enzymological Studies of the Small Intestine Villi of Rats Receiving Diets Containing Different Levels of Protein. J. Appl. Anim. Res. 2010, 37, 207–211. [Google Scholar] [CrossRef]
- Birchenough, G.M.H.; Johansson, M.E.; Gustafsson, J.K.; Bergström, J.H.; Hansson, G.C. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015, 8, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Do, M.H.; Lee, E.; Oh, M.-J.; Kim, Y.; Park, H.-Y. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients 2018, 10, 761. [Google Scholar] [CrossRef] [Green Version]
- Menge, H.; Werner, H.; Lorenz-Meyer, H.; Riecken, E.O. The nutritive effect of glucose on teh structure and function of jejunal self-emptying blind loops in the rat. Gut 1975, 16, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R.; Ramsamooj, S.; Liang, R.J.; Katti, A.; Pozovskiy, R.; Vasan, N.; Hwang, S.-K.; Nahiyaan, N.; Francoeur, N.J.; Schatoff, E.M. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 2021, 597, 7875. [Google Scholar] [CrossRef] [PubMed]
- Choi, P.M.; Sun, R.C.; Guo, J.; Erwin, C.R.; Warner, B.W. High-Fat Diet Enhances Villus Growth During the Adaptation Response to Massive Proximal Small Bowel Resection HHS Public Access. J. Gastrointest. Surg. 2014, 18, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Blikslager, A.T. The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases. Int. J. Mol. Sci. 2020, 21, 3550. [Google Scholar] [CrossRef] [PubMed]
- McAnuff, M.A.; Harding, W.W.; Omoruyi, F.O.; Jacobs, H.; Morrison, E.Y.; Asemota, H.N. Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food Chem. Toxicol. 2005, 43, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- González-Quilen, C.; Grau-Bové, C.; Jorba-Martín, R.; Caro-Tarragó, A.; Pinent, M.; Ardévol, A.; Beltrán-Debón, R.; Terra, X.; Blay, M.T. Protective properties of grape-seed proanthocyanidins in human ex vivo acute colonic dysfunction induced by dextran sodium sulfate. Eur. J. Nutr. 2020, 60, 79–88. [Google Scholar] [CrossRef]
STD | CAF | |
---|---|---|
Content (g 100 g–1dry matter) | ||
Available carbohydrate | 48.0 | 62.6 |
Sugar (sucrose) | ≈0.0 | 46.0 |
Protein | 14.3 | 15.1 |
Fat | 4.0 | 17.2 |
Saturated | 0.6 | 8.1 |
Fibre | 4.1 | 1.7 |
Energy contribution | ||
kJ g–1 dry matter | 12.1 | 20.7 |
Carbohydrate (%) | 67.2 | 52.0 |
Protein (%) | 20.2 | 14.1 |
Fat (%) | 12.6 | 33.9 |
Scoring Criteria | Score | |
---|---|---|
Chronic inflammation (IC) = number of mature forms | Absent | 0 |
Slight | 1 | |
Moderate | 2 | |
Intense | 3 | |
Distribution of IC | Diffuse | |
Aggregate | ||
Diffuse and Aggregate | ||
Acute inflammation (IA) = number of immature forms | Absent | 0 |
Slight | 1 | |
Moderate | 2 | |
Intense | 3 |
Morphometric Parameters | STD | CAF | SIT-CAF |
---|---|---|---|
Small intestine length (cm) | 101.78 ± 2.1 | 105.3 ± 2.1 | 104.5 ± 1.3 |
Colon length (cm) | 16.2 ± 0.9 | 15.4 ± 0.4 | 17 ± 0.6 |
Total length (cm) | 117.8 ± 2.9 | 120.8 ± 2.3 | 119.6 ± 2.6 |
Small Intestine | STD | CAF | SIT-CAF |
---|---|---|---|
Duodenum | |||
Villus height (µm) | 610.39 ± 22.07 | 734.67 ± 16.45 * | 657.38 ± 27.17 |
Villus width (µm) | 142.74 ± 10.83 | 160.90 ± 7.78 | 126.28 ± 18.26 |
Crypt depth (µm) | 189.02 ± 8.63 | 196.92 ± 6.69 | 197.56 ± 8.42 |
Crypt width (µm) | 48.87 ± 1.47 | 45.90 ± 1.27 | 47.10 ± 1.28 |
Epithelium height (µm) | 806.41 ± 22.22 | 939.46 ± 20.59 * | 864.84 ± 33.72 |
Villus/crypt ratio | 2.95 ± 0.11 | 3.77 ± 0.09 * | 3.28 ± 0.38 |
M (surface area amplification ratio) | 9.56 ± 0.83 | 11.87 ± 0.56* | 11.04 ± 0.43 |
Ileum | |||
Villus height (µm) | 229.33 ± 16.78 | 242.29 ± 21.15 | 242.53 ± 10.95 |
Villus width (µm) | 136.49 ± 21.78 | 121.12 ± 13.35 | 119.71 ± 11.88 |
Crypt depth (µm) | 124.91 ± 9.45 | 127.62 ± 12.19 | 131.10 ± 8.42 |
Crypt width (µm) | 44.02 ± 3.36 | 42.45 ± 0.51 | 47.10 ± 1.28 |
Epithelium width (µm) | 336.52 ± 20.18 | 369.91 ± 31.63 | 373.63 ± 16.52 |
Villus/crypt ratio | 1.85 ± 0.08 | 1.91 ± 0.06 | 1.87 ± 0.10 |
Large Intestine | STD | CAF | SIT-CAF |
Colon | |||
Crypt depth (µm) | 155.24 ± 4.45 | 166.55 ± 7.61 | 156.36 ± 7.96 |
Small Intestine | PRE-CAF | CORR100 | CORR500 |
---|---|---|---|
Duodenum | |||
Villus height (µm) | 766.39 ± 29.67 * | 818.27 ± 31.36 * | 726.66 ± 32.71 * |
Villus width (µm) | 147.28 ± 8.53 | 138.86 ± 17.43 | 146.42 ± 11.95 |
Crypt depth (µm) | 189.83 ± 9.46 | 199.62 ± 6.06 | 194.71 ± 4.09 |
Crypt width (µm) | 46.04 ± 0.67 | 45.17 ± 2.04 | 46.44 ± 1.17 |
Epithelium width (µm) | 936.57 ± 21.55 * | 1022.84 ± 27.66 * | 928.32 ± 37.64 * |
Villus/crypt ratio | 3.98 ± 0.25 * | 3.66 ± 0.17 * | 3.62 ± 0.15 * |
M (surface area amplification ratio) | 12.55 ± 0.73 * | 13.63 ± 1.38 * | 12.17 ± 0.84 * |
Large Intestine | PRE-CAF | CORR100 | CORR500 |
Colon | |||
Crypt depth (µm) | 151.88 ± 9.38 | 162.96 ± 9.81 | 169.66 ± 8.96 |
Small Intestine | STD | CAF | SIT-CAF |
---|---|---|---|
Duodenum | Grade | Grade | Grade |
Index of chronic inflammation | 0.56 ± 0.24 | 0.67 ± 0.17 | 1.00 ± 0.00 |
Index of acute inflammation | 0.83 ± 0.11 | 1.33 ± 0.33 | 1.00 ± 0.00 |
Inflammatory index | 1.39 ± 0.17 | 2.00 ± 0.25 * | 2.00 ± 0.00 * |
(accrued) |
% Goblet Cells | STD | CAF | PRE-CAF | SIT-CAF | CORR100 | CORR500 |
---|---|---|---|---|---|---|
Duodenum | 9.13 ± 1.02 | 12.17 ± 1.11 * | 11.26 ± 0.7 * | 10.83 ± 0.87 | 10.00 ± 1.41 | 9.75 ± 0.45 # |
Ileum | 21.43 ± 0.72 | 20.40 ± 1.89 | n.a | 20.20 ± 1.24 | n.a. | n.a |
Colon | 58.00 ± 3.78 | 58.33 ± 4.36 | 58.90 ± 3.03 | 64.50 ± 3.80 | 60.71 ± 3.08 | 65.11 ± 2.69 |
Correlation Matrix Pearson | Villus Height-Duodenum | Crypt Depth Colon |
Final Accrued body weight gain (n = 24) | 0.476 | |
Final food intake (n = 58) | 0.368 | |
MLCK gene expression (n = 31) | −0.369 | |
% Goblet cells (n = 52) | 0.379 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segú, H.; Jalševac, F.; Pinent, M.; Ardévol, A.; Terra, X.; Blay, M.T. Intestinal Morphometric Changes Induced by a Western-Style Diet in Wistar Rats and GSPE Counter-Regulatory Effect. Nutrients 2022, 14, 2608. https://doi.org/10.3390/nu14132608
Segú H, Jalševac F, Pinent M, Ardévol A, Terra X, Blay MT. Intestinal Morphometric Changes Induced by a Western-Style Diet in Wistar Rats and GSPE Counter-Regulatory Effect. Nutrients. 2022; 14(13):2608. https://doi.org/10.3390/nu14132608
Chicago/Turabian StyleSegú, Helena, Florijan Jalševac, Montserrat Pinent, Anna Ardévol, Ximena Terra, and Maria Teresa Blay. 2022. "Intestinal Morphometric Changes Induced by a Western-Style Diet in Wistar Rats and GSPE Counter-Regulatory Effect" Nutrients 14, no. 13: 2608. https://doi.org/10.3390/nu14132608
APA StyleSegú, H., Jalševac, F., Pinent, M., Ardévol, A., Terra, X., & Blay, M. T. (2022). Intestinal Morphometric Changes Induced by a Western-Style Diet in Wistar Rats and GSPE Counter-Regulatory Effect. Nutrients, 14(13), 2608. https://doi.org/10.3390/nu14132608